锂电池发鼓胀气和爆炸原因分析(2021版)
- 格式:docx
- 大小:57.58 KB
- 文档页数:10
锂电池胀气原因分析通过郭工了解到:1、锂电池胀气可能与水分控制有关;(通过周工了解到我们目前生产水分控制除了手套箱湿度达不到要求,其他均能达到要求)2、与正极配方有关;(通过周工了解到,与配方无关,与配方材料有关)3、与化成工序有关,包括排气不彻底与水分为烘干;(通过周工及相关资料了解到,化成与分容过程中,对其时间和湿度控制均有关,并且该过程是重中之重。
)通过网络及相关资料查询了解:1、锂电池出现胀气现象与正极过冲有关,正极过冲会引起电化学反应,从而产生气体;2、电池在使用与搁置过程中,电池不断的形成\消耗SEI膜会产生助负极成膜类气体,这时也会出现胀气现象,但该现象会在几次充放电循环中恢复正常;(可加入成膜性能稳定的添加剂,如碳酸亚乙烯酯VC, VC是一种不稳定的化合物,在锂离子电池的首次充电过程中氧化电位较低的VC几乎完全分解,电解液中加入少量VC添加剂,改善了石墨电极表面SE I膜的性能)3、当预充-化成不够完全时,也会出现胀气现象;(需要严格控制化成时间)4、锰酸锂电池存在胀气现象与电解质本身组成也有关系;因现缺乏相关经验与相关资料,所以对于以上每一条更深的原因(如为什么与组成或材料有关,有哪些关系?),我需要在今后工作学习中来逐渐总结。
工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。
前面已经介绍了引起T op s ealing、Side s ealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以T op sealing 和Degassing居多,T op sealin g主要是T ab位密封不良,D egassing 主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。
封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。
2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。
软包锂电池胀气的原因聚合物锂离子电池芯採用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外观如何,电池芯的使用性能(Capacity、Cycle life、C-rate等)会发生严重的失效,导致电池芯不能使用。
胀气会发生在生产过程中也会在客户甚至最终用户手中。
当然,电池芯在化成启动或Baking过程中会正常的产生一定量(一般很少)的气体,这根据所使用的原材料而异,这种气体在Degassing工序会被抽掉。
目前部分Model(一次封装成型电池芯)通过添加V18溶剂来消除这种SEI层形成、相介面稳定时所产生的气体。
但是由于工序异常所产生的气体在Degassing前表面非常明显或者Degassing后产生不能再消掉或者添加V18也不能消除。
这里简要介绍工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。
前面已经介绍了引起Top sealing、Side sealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以Top sealing 和Degassing居多,Top sealing主要是Tab位密封不良,Degassing 主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。
封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。
2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。
3.角位破损,由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔作用。
可以在角位加皱纹胶或热熔胶缓解。
并且在顶封后的各工序禁止拿气袋移动电池芯,更要注意操作方式防止老化板上电芯池的摆动。
4.电池芯内部水含量超标,前面我们已经介绍过对电池芯内水含量有一定的要求,一旦水含量超标,电解液会失效在化成或Degassing后产生气体。
B01锂离子电池气胀问题探析许名飞+’1,郭永兴1,李新海1,吴显明2(1中南大学冶金科学与工程学院,长沙410083:2吉首大学化学与化工学院,吉首427000)摘要:随着应用领域不断扩大,锂离子电池发展迅速。
但控制电池气胀问题一直是电池制造的难点。
本史对锂离子电池气胀的原因进行了分析,并对如何解决电池的气胀问题进行了探讨。
关键词:锂离子电池气胀SE[膜目前锂离子电池发展迅速,已成为电池中生力军,但在实际生产中一直存在着气胀问题[1l。
电池气胀不但影响到锂离子电池的外观及其电化学性能,更为严重的是会引发安全性问题。
目前人们对于锂离子电池气胀产生的原因研究较少,至于其解决方法更是鲜见报道12】。
1电池气胀原因分析锂离子电池在初次化成时,由于层间化合物的自身原因,Lr在层问化合物中脱嵌和嵌入的反应速度慢”-』,不能以大电流充电,晟好以小电流(锄|2c)进行化成而且应是采取多次逐步化成。
但锂离子电池在首次化成,即首次充电过程中,电解液中的非质子溶剂会在电极与电解液界面上发生反应,这些反应一方面形成覆盖在电极表面上的钝化薄膜,称为电子绝缘膜或固体电解质相界面膜,即SEl膜,同时会产生如1-12、CH2=CH2、CH4、CO、C02等气体…j。
SEl膜的形成~方面消耗了电流中有限的锂离子,造成不可逆容量损失,同时也增加了电栅电解液界面的电阻,造成一定的电压滞后;而此过程中产生的气体导致电池内压升高,出现气胀问题,严重影响电池的性能(如电池的循环性能和电池的安全性能),同时还影响到电池的外观,特别是采用软包装的聚合物锂离子电池。
另外,锂离子电池在使用过程中,有时由于使用不当还存在过充过放问题,过充过放也可能产生气体,也会导致电池气胀。
所以控制锂离子电池在化成阶段雨】循环过程中气体的产生对电池的性能改善有巨大的作用。
锂离子电池中气体的产生主要集中在首次化成阶段,即SEI膜的形成过程中,在随后的循环过程中产生的气体相对较少,但如果首次充电过程中形成的SEI膜不够稳定,随着循环的进行负极材料可能脱落或变疏松,在电极的表面需重新形成SEl膜,这样便义会产生气体。
常见锂电池爆炸原因及避免措施锂电池的爆炸主要是由于电池内部发生异常热失控而引起的。
锂电池爆炸的主要原因可以归纳为以下几个方面:过充、过放、短路、挤压、高温环境和材料缺陷等。
首先,过充是导致锂电池爆炸的一个主要原因。
当电池在充电时,如果电池内部的温度过高,或者充电电压超过了电池的耐受范围,就会导致电池内部的化学反应失控,产生大量的热量。
这种热量不能及时散发出去,就会导致电池内部的压力骤然增大,进而导致电池爆炸。
其次,过放也是导致锂电池爆炸的一个重要原因。
在使用过程中,如果将锂电池放电到超低电压,会导致锂电池内部的化学反应异常失控。
这种失控会导致电池内部的温度迅速升高,压力骤增,进而引发爆炸。
另外,短路也是引发锂电池爆炸的一个常见原因。
短路是指电池的正、负极之间发生电流直接流通的现象。
当锂电池内部的正、负极由于其中一种原因直接接触,电流就会被短路通路直接通过。
这会导致电池产生过高的电流,进而产生过热,引发电池爆炸。
此外,如果锂电池在使用或运输过程中受到挤压,也会引发锂电池爆炸。
当锂电池被挤压时,电池内部的隔膜和电池皮膜有可能被破坏,正、负极之间产生短路,从而引发温度升高和电池爆炸。
高温环境也是锂电池爆炸的一个重要因素。
当锂电池处于高温环境下,电池的内阻会明显降低,这样会导致电池放电速度加快,从而产生过多的热量,进而引发爆炸。
此外,锂电池的材料缺陷也会导致爆炸。
例如,如果电池内部的材料质量不合格,或者电池的外包装存在缺陷,就容易导致电池内部的化学反应失控,从而引发爆炸。
为了避免锂电池的爆炸,可以采取以下一些措施。
首先,选购正规品牌的锂电池,避免购买假冒伪劣产品。
其次,避免过充过放,控制好充电和使用电池的电压和时间。
再次,避免电池短路,比如避免不当、过于紧密的存放。
此外,要避免电池受到挤压和高温环境,尽量避免在高温环境中长时间使用和存放锂电池。
最后,应定期检查锂电池的状态,如有变形、漏液等异常情况应及时更换电池。
锂电池爆炸原理分析锂电池具有能量密度高、循环性能稳定、绿色环保、使用寿命长等优点,在生活领域应用不断扩大,主要源于智能手机、储能领域、电动自行车和新能源汽车的广泛使用,这些年来关于如何使用锂电池的小贴士,爆炸等新闻不断,但其中经常包含很多误导性信息。
下文存能电气小编就来和大家详细解读一下锂电池爆炸原因分析。
锂电池爆炸的原因类别:负极容量不足,水份含量过高,内部短路,保护线路老化失效,过充,过放,外部短路,外部挤压和暴力碰撞。
1、内部短路由于内部产生短路现象,电芯大电流放电,产生大量的热,烧坏隔膜,而造成更大的短路现象,这样电芯就会产生高温,使电解液分解成气体,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会爆炸。
激光焊时,热量经壳体传导到正极耳上,使正极耳温度高,如果上部胶纸没有隔开正极耳及隔膜,热的正极耳就会使隔膜纸烧坏或收缩,造成内部短路,而形成爆炸。
2、高温胶纸包住负极耳客户在负极耳点焊时,热量传导到负极耳上,如果高温胶纸未贴好,负极耳上的热量就会烧坏隔膜,造成内部短路,形成爆炸。
3、贴底部胶未完全包住底部客户在底部铝镍复合带处点焊时,会在底部壳壁产生大量的热,传导极芯的底部,如果高温胶纸未完全包住隔膜,会烧坏隔膜,造成内部短路,形成爆炸。
4、水分含量过高水份可以和电芯中的电解液反应,生产气体,充电时,可以和生成的锂反应,生成氧化锂,使电芯的容量损失,易使电芯过充而生成气体,水份的分解电压较低,充电时很容易分解生成气体,当这一系列生成的气体会使电芯的内部压力增大,当电芯的外壳无法承受时,电芯就会爆炸。
5、负极容量不足当正极部位对面的负极部位容量不足,或是根本没有容量时,充电时所产生的部分或全部的锂电池就无法插入负极石墨的间层结构中,会析在负极的表面,形成突起状“枝晶”,而下一次充电时,这个突起部分更容易造成锂的析出,经过几十至上百次的循环充放电后,“枝晶”会长大,最后会刺穿隔膜纸,使内部产生短路。
本文摘自再生资源回收-变宝网()锂电池为什么会鼓胀气或者发生爆炸?一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。
体积小所以容量密度高,广受消费者与工程师欢迎。
但是,化学特性太活泼,则带来了极高的危险性。
锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。
为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。
这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。
这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。
锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。
锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。
锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。
放电时,整个程序倒过来。
为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。
好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。
保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。
过充电压愈高,危险性也跟着愈高。
锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。
如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。
这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。
这些锂金属结晶会穿过隔膜纸,使正负极短路。
有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。
因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。
最理想的充电电压上限为 4.2V。
锂电芯放电时也要有电压下限。
锂电池鼓包产气锂电池作为目前主流的电池技术之一,在众多电子设备中得到了广泛应用。
然而,锂电池虽然具有高能量密度、长寿命等优点,但其也存在一些问题,其中之一就是鼓包产气的现象。
本文将就锂电池鼓包产气的原因、影响以及解决方法进行探讨。
我们需要了解什么是锂电池鼓包产气。
简单来说,锂电池鼓包产气指的是锂电池在使用过程中,电池内部产生气体,导致电池外壳膨胀、变形甚至爆炸的现象。
产生这种现象的原因主要有以下几点:1.电池内部结构问题:锂电池内部由正负极、隔膜和电解液组成,如果电池内部结构设计不合理,或者隔膜材料不符合要求,就容易导致电池内部产生气体积聚。
2.充放电过程中的化学反应:锂电池在充放电过程中,正极和负极之间会发生氧化还原反应,这些反应可能会产生气体,当气体不能及时排出时,就会导致电池鼓包。
3.过度充放电:如果电池在充电时过度充电,或者在放电时过度放电,就会导致电池内部产生气体积聚,进而引起鼓包产气。
锂电池鼓包产气不仅会影响电池的正常使用,还可能对人身安全造成威胁。
鼓包的电池外壳可能会在充放电过程中发生破裂,导致电解液泄漏,甚至引发火灾或爆炸。
因此,及早发现并解决锂电池鼓包产气的问题是非常重要的。
针对锂电池鼓包产气问题,可以采取以下措施进行解决:1.优化电池结构设计:改进电池内部结构,提高隔膜材料的质量,以减少气体积聚的可能性。
2.控制充放电过程中的温度:合理控制充放电过程中的温度,避免温度过高或过低,以减少气体产生的可能性。
3.严格控制充放电过程:合理控制充放电的电流和电压,避免过度充放电,以减少气体积聚。
4.加强电池质量检测:在生产过程中,严格把控电池的质量,确保每一颗电池都符合质量标准,以减少鼓包产气的风险。
5.合理使用和储存锂电池:在使用锂电池时,避免过度使用或过度充放电,同时在储存锂电池时,要注意避免长时间存放和高温环境。
锂电池鼓包产气是锂电池技术面临的一个重要问题。
了解产生鼓包产气的原因,并采取相应的解决措施,可以有效减少鼓包产气的风险,提高锂电池的安全性和可靠性。
深度剖析锂离子电池鼓胀原因锂离子电池由于具有高寿命、高容量被广泛推广使用,但是随着使用时间的延长,其存在鼓胀、安全性能不理想和循环衰减加快的问题也日益严重,引起了锂电界深度的分析和抑制研究。
根据实验研发经验,笔者将锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。
在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。
一、电极极片厚度变化在锂电池使用过程中,电极极片厚度会发生一定的厚度变化,尤其是石墨负极。
据现有数据,锂电池经过高温存储和循环,容易发生鼓胀,厚度增长率约6%——20%,其中正极膨胀率仅为4%,负极膨胀率在20%以上。
锂电池极片厚度变大导致的鼓胀根本原因是受石墨的本质影响,负极石墨在嵌锂时形成LiCx(LiC24、LiC12和LiC6等),晶格间距变化,导致形成微观内应力,使负极产生膨胀。
下图是石墨负极极片在放置、充放电过程中的结构变化示意图。
石墨负极的膨胀主要是嵌锂后产生不可恢复膨胀导致的。
这部分膨胀主要与颗粒尺寸、粘接剂剂及极片的结构有关。
负极的膨胀造成卷芯变形,使电极与隔膜间形成空洞,负极颗粒形成微裂纹,固体电解质相界面(SEI)膜发生破裂与重组,消耗电解液,使循环性能变差。
影响负极极片变厚的因素有很多,粘接剂的性质和极片的结构参数是最重要的两个。
石墨负极常用的粘接剂是SBR,不同的粘接剂弹性模量、机械强度不同,对极片的厚度影响也不同。
极片涂布完成后的轧制力也影响负极极片在电池使用中的厚度。
在相同的应力下,粘接剂弹性模量越大,极片物理搁置反弹越小;充电时,由于Li+嵌入,使石墨晶格膨胀;同时,因负极颗粒及SBR的形变,内应力完全释放,使负极膨胀率急剧升高,SBR处于塑性变形阶段。
这部分膨胀率与SBR的弹性模量和断裂强度有关,导致SBR的弹性模量和断裂强度越大,造成不可逆的膨胀越小。
文件编号:GD/FS-6355(安全管理范本系列)锂电池发鼓胀气和爆炸原因分析详细版In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.编辑:_________________单位:_________________日期:_________________锂电池发鼓胀气和爆炸原因分析详细版提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。
,文档所展示内容即为所得,可在下载完成后直接进行编辑。
一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。
体积小所以容量密度高,广受消费者与工程师欢迎。
但是,化学特性太活泼,则带来了极高的危险性。
锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。
为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。
这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。
这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。
锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。
锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。
锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。
放电时,整个程序倒过来。
为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。
好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。
锂电池鼓包的原因
1、锂电池制造水平的难题是电极镀层不均匀,生产工艺不平整。
2、短路故障的短反射,转化为大量热量,导致电解液溶液溶解汽化,引起锂离子。
3、电池组长期不使用,也会产生鼓包现象,因为气体在一定水平上是导电的,所以放电时间等于可充电电池的正负直接接触。
4、锂电池充电器质量差。
充电头采用虚假或不良的电子装置制成,热量大,主要参数不准确,无法控制蓄电池充电限制器。
5、电池充电时间太长。
如果过多的电池充电会导致大量的蒸汽冲洗电极,使活性材料内的锂电池脱落,减少电池循环次数,加速充电电池缺水率,危及锂电池的溶解,使电池温度升高,使其充满鼓形。
锂离子电池鼓气原理
嘿,朋友们!今天咱来聊聊锂离子电池鼓气这事儿。
你说这锂离子电池啊,有时候就像个爱闹脾气的小孩子。
咱平常使用的手机啊、电脑啊,里面都有它呢。
那这锂离子电池为啥会鼓气呢?这可得好好说道说道。
你想啊,这锂离子电池就好比是一个小小的房子,里面住着锂离子这个小家伙。
平常呢,它安安稳稳地在里面工作着,给咱的设备提供能量。
可要是遇到一些情况,它就不乐意啦,就开始“捣乱”啦!
比如说,充电的时候电流太大啦,或者温度太高啦,这就好比给这个小房子里扔了一把火,锂离子能不着急吗?它一着急,就开始折腾,这一折腾,可不就把房子给撑大了嘛,也就是电池鼓气啦。
再比如,电池用的时间太长啦,就像人老了一样,也会出些毛病。
它里面的一些材料啊结构啊可能就不那么灵光了,这时候也容易鼓气呀。
那这鼓气了可咋整呢?咱就得小心对待啦!可不能像对待普通电池那样随便乱扔。
鼓气的电池就像个随时会爆发的小炸弹,不小心处理可能会出问题哟!
要是发现自己的设备电池鼓气了,那可得赶紧停止使用呀!难道还留着它继续“发脾气”吗?然后去找专业的人来处理,可别自己瞎捣鼓。
你说这锂离子电池平时给咱提供了那么多方便,咱是不是也得好好照顾它呀?就像咱对待好朋友一样,不能光知道索取,不知道关心呀。
平常充电的时候注意点电流和温度,别让它太累啦。
总之呢,锂离子电池鼓气不是个小事情,咱得重视起来。
别等到出了问题才后悔莫及呀!大家可得记住咯!
原创不易,请尊重原创,谢谢!。
锂电池爆炸五大原因
一、锂电池外部短路
外部短路可能由于操作不当,或误使用所造成,由于外部短路,电池放电电流很大,会使电芯的发热,高温会使电芯内部的隔膜收缩或完全坏坏,造成内部短路,因而起火。
二、锂电池内部短路
由于内部出现短路现象,电芯大电流放电,出现大量的热,烧坏隔膜,而造成更大的短路现象,这样电芯就会出现高温,使电解液分解成气体,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会起火。
三、锂电池过充
电芯过充电时,正极的锂过度放出会使正极的结构发生变化,而放出的锂过多也容易无法插入负极中,也容易造成负极表面析锂,而且,当电压达到 4.5V 以上时,电解液会分解生产大量的气体。
上面种种均可能造成起火。
四、水份含量过高
水份可以和电芯中的电解液反应,生产气体,充电时,可以和生成的锂反应,生成氧化锂,使电芯的容量损失,易使电芯过充而生成气体,水份的分解电压较低,充电时很容易分解生成气体,当这一系列生成的气体会使电芯的内部压力增大,当电芯的外壳无法承受时,电芯就会爆炸。
五、锂电池负极容量不足
当正极部位对面的负极部位容量不足,或是根本没有容量时,充电时所出现的部分或全部的锂就无法插入负极石墨的间层结构中,会析在负极的表面,形成突起状枝晶,而下一次充电时,这个突起部分更容易造成锂的析出,经过几十至上百次的循环充放电后,枝晶会长大,最后会刺穿隔膜纸,使内部出现短路。
锂电池发鼓胀气和爆炸原因分析(2021版)Safety technology is guided by safety technology, based on personnel protection, and an orderly combined safety protection service guarantee system.( 安全技术)单位:_______________________部门:_______________________日期:_______________________本文档文字可以自由修改锂电池发鼓胀气和爆炸原因分析(2021版)一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。
体积小所以容量密度高,广受消费者与工程师欢迎。
但是,化学特性太活泼,则带来了极高的危险性。
锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。
为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。
这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。
这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。
锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。
锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。
锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。
放电时,整个程序倒过来。
为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。
好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。
保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。
过充电压愈高,危险性也跟着愈高。
锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。
如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。
这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。
这些锂金属结晶会穿过隔膜纸,使正负极短路。
有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。
因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。
最理想的充电电压上限为4.2V。
锂电芯放电时也要有电压下限。
当电芯电压低于2.4V时,部分材料会开始被破坏。
又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。
锂电池从3.0V 放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。
因此,3.0V是一个理想的放电截止电压。
充放电时,除了电压的限制,电流的限制也有其必要。
电流过大时,锂离子来不及进入储存格,会聚集于材料表面。
这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。
万一电池外壳破裂,就会爆炸。
因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。
一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。
但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。
要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。
二、电池爆炸原因:1、内部极化较大;2、极片吸水,与电解液发生反应气鼓;3、电解液本身的质量,性能问题;4、注液时候注液量达不到工艺要求;5、装配制程中激光焊焊接密封性能差,漏气.测漏气漏测;6、粉尘,极片粉尘首先易导致微短路,具体原因未知;7、正负极片较工艺范围偏厚,入壳难;8、注液封口问题,钢珠密封性能不好导致气鼓;9、壳体来料存在壳壁偏厚,壳体变形影响厚度;三、爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。
此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。
当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。
当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。
但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。
内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。
这些细小的针状金属,会造成微短路。
由于,针很细有一定的电阻值,因此,电流不见得会很大。
铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。
而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。
因此,因毛刺微短路引发爆炸的机率不高。
这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。
因此,内部短路引发的爆炸,主要还是因为过充造成的。
因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。
因此,电池温度会逐渐升高,最后高温将电解液气体。
这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。
但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。
有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。
这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。
消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。
综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。
其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。
电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。
四、设计规范由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。
由于,电路板的故障率一般都远高于一亿分之一。
因此,电池系统设计时,必须有两道以上的安全防线。
常见的错误设计是用充电器(adaptor)直接去充电池组。
这样将过充的防护重任,完全交给电池组上的保护板。
虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。
电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。
常见的电池充电系统方块图如下,包含充电器及电池组两大部分。
充电器又包含适配器(Adaptor)及充电控制器两部分。
适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。
电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。
五、文字方块:适配器交流变直流文字方块:充电控制器限流限压文字方块:充电器文字方块:保护板过充、过放过流等防护文字方块:电池组文字方块:限流片文字方块:电池芯以手机电池系统为例,过充防护系利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。
第二道防护是保护板上的过充防护功能,一般设定为4.3V。
这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。
过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。
由于过放电只会发生在电子产品被使用的过程。
因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。
当电子产品侦测到供电电压低于3.0V时,应该自动关机。
如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。
总之,电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。
其中保护板是第二道防护。
把保护板拿掉后充电,如果电池会爆炸就代表设计不良。
上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。
结果,劣币驱逐良币,市面上出现了许多劣质充电器。
这使得过充防护失去了第一道也是最重要的一道防线。
而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。
当然,并非所有的电池系统都采用如上图的方案。
在有些情况下,电池组内也会有充电控制器的设计。
例如:许多笔记型计算机的外加电池棒,就有充电控制器。
这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。
因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。
另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。
最后的防线如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。
电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。
由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。
而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。
可在本位置填写公司名或地址YOU CAN FILL IN THE COMPANY NAME OR ADDRESS IN THIS POSITION。