最新浙教版七年级上册数学课件:2.1有理数的加法(1)资料讲解
- 格式:ppt
- 大小:594.00 KB
- 文档页数:19
完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。
正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。
整数和分数合在一起就是有理数。
1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。
任何一个有理数都可以用数轴上的点来表示。
如果两个数符号不同,其中一个数称为另一个数的相反数。
在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。
1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。
互为相反数的两个绝对值相等。
需要注意的是,任何数的绝对值都大于或等于零(非负数)。
1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零,一个数与零相加仍得这个数。
在有理数运算中,加法的交换律和结合律仍然成立。
2.2 有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为1,就称这两个有理数互为倒数。
在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。
2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都等于零。
代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。
七年级数学上册第2章有理数的运算2.1有理数的加法第2课时有理数加法运算律说课稿(新版浙教版)一. 教材分析《七年级数学上册》第2章主要介绍有理数的运算,其中2.1节讲述了有理数的加法。
本节内容是学生学习有理数运算的基础,对于学生掌握有理数的基本运算规则具有重要意义。
通过本节的学习,学生能够理解有理数加法的运算律,并能够运用这些运算律进行有理数的加法运算。
二. 学情分析七年级的学生已经掌握了整数的加减法运算,对于负数的加减法也有一定的了解。
但是,对于有理数的加法运算律,学生可能还没有完全理解和掌握。
因此,在教学过程中,需要引导学生从实际例子出发,通过观察和分析,总结出有理数加法运算律。
三. 说教学目标1.知识与技能目标:学生能够理解有理数加法的运算律,并能够运用这些运算律进行有理数的加法运算。
2.过程与方法目标:学生通过观察和分析实际例子,总结出有理数加法运算律,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:学生通过对有理数加法运算律的学习,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解有理数加法的运算律,并能够运用这些运算律进行有理数的加法运算。
2.教学难点:学生对于有理数加法运算律的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生从实际例子出发,通过观察和分析,总结出有理数加法运算律。
2.教学手段:利用多媒体课件,展示实际例子,引导学生进行观察和分析。
同时,利用黑板和粉笔,进行板书设计,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际例子,引导学生思考有理数加法的运算规则。
例如,展示一幅图,图中有两个数轴,一个正数轴和一个负数轴,让学生观察和分析,两个有理数相加的结果应该如何表示。
2.探究:引导学生从实际例子出发,观察和分析有理数加法的运算规律。
可以让学生分组讨论,每组找出几个例子,总结出有理数加法的运算律。
3.总结:根据学生的探究结果,引导学生总结出有理数加法的运算律。
第2章有理数的运算2.1 有理数的加法(1)1.两数相加,其和小于每一个加数,那么(B)A.这两个加数必有一个数是0B.这两个加数必是两个负数C.这两个加数一正一负,且负数的绝对值较大D.这两个加数的符号不能确定2.如果|a+b|=|a|+|b|,那么(D)A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为03.如果两个数的和是负数,那么(D)A.这两个加数都是负数B .一个加数为负,另一个加数为0C .两个加数异号,且负数的绝对值大D .必属于以上三种情况之一4.下列运算正确的是(D )A. -12+12=-24B. -6+4=-10C. 0-12=12D. -16+56=235.已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么a +b +|c |等于(B )A .-1B .0C .1D .26.A ,B ,C ,D ,E 五个景点之间的路线如图所示.若每条路线的里程a (km)及行驶的平均速度b (km/h)用(a ,b )表示,则从景点A 到景点C 用时最少的路线是(D ),(第6题))A .A ⇒E ⇒CB .A ⇒B ⇒CC .A ⇒E ⇒B ⇒CD .A ⇒B ⇒E ⇒C7.一个数为5,另一个数比5的相反数大2,则这两个数的和为(A )A.2 B.-2C.7 D.128.设m为-5的相反数与-12的和,n为比-6大5的数,求m+n的值.【解】由题意知,m=-(-5)+(-12)=-7,n=(-6)+5=-1,∴m+n=(-7)+(-1)=-8.9.已知|a|=8,|b|=3,且|a-b|=b-a,求a+b的值.【解】∵||a=8,∴a=±8.同理,b=±3.a-b=b-a,∴a<b,∵||∴a=-8,b=3或a=-8,b=-3,∴a+b的值为-5或-11.10.有理数a,b,c在数轴上的位置如图所示,用“>”或“<”比较出下列式子与“0”的大小.(第10题)(1)c+a__<__0.(2)b+c__<__0.(3)b+(-a)__>__0.(4)c+(-b)__<__0.【解】(1)∵a<0,c<0,∴c+a<0.(2)∵b>0,c<0,且|c|>|b|,∴b+c<0.(3)∵b>0,-a>0,∴b+(-a)>0.(4)∵c<0,-b<0,∴c+(-b)<0.11.已知||a=3,||b=2,||c=1,且a<b<c,求a+b+c的值.【解】∵||a=3,∴a=±3.同理,b=±2,c=±1.又∵a<b<c,∴a=-3,b=-2,c=1或a=-3,b=-2,c=-1,∴a+b+c=(-3)+(-2)+1=-4或a+b+c=(-3)+(-2)+(-1)=-6.12.已知|x-4|与|y+5|互为相反数,求x+y的值.【解】∵|x-4|与|y+5|互为相反数,∴|x-4|+|y+5|=0.又∵|x-4|与|y+5|都是非负数,∴|x-4|=0,|y+5|=0,∴x-4=0,y+5=0,∴x=4,y=-5,∴x+y=4+(-5)=-(5-4)=-1.13.小虫从原点O出发在一直线上爬行,规定向右爬行记做正数,向左爬行记做负数,爬行的各路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否爬回到出发点O?(2)小虫离开出发点的最远距离是多少?(3)在爬行过程中,如果每爬行1 cm,奖一粒芝麻,那么小虫共得芝麻多少粒?【解】(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,∴小虫最后爬回到出发点O.(2)小虫爬行离开出发点的最远距离为12 cm.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54,∴小虫共得芝麻54粒.14.数学课上,小李发现:(1)到表示数2的点和表示数6的点的距离相等的点表示的数是4,有这样的关系:4=12(2+6). (2)到表示数1的点和表示数9的点的距离相等的点表示的数是5,有这样的关系:5=12(1+9). ……那么到表示数2015的点和表示数2013的点的距离相等的点表示的数是________;到表示数45的点和表示数-67的点的距离相等的点表示的数是________; 到表示数-6的点和表示数-8的点的距离相等的点表示的数是________. 你能说出你得到的规律吗?【解】 到表示数2015的点和表示数2013的点的距离相等的点表示的数是2015+20132=2014.到表示数45的点和表示数-67的点的距离相等的点表示的数是45+⎝ ⎛⎭⎪⎫-672=-2352=-135. 到表示数-6的点和表示数-8的点的距离相等的点表示的数是-6-82=-7. 规律:到表示数m 的点和表示数n 的点的距离相等的点表示的数是12(m +n ).初中数学试卷。
2.1.2 有理数的加法运算律【教学目标】1.正确理解加法交换律、结合律,并能运用字母表示运算律的内容;2.灵活熟练地运用加法交换律、结合律简化运算,并会运用加法运算律解决实际问题.【教学难点】1.了解加法交换律、结合律的内容,运用运算律进行加法运算.2.运用有理数的加法解决问题.运用有理数的加法解决问题.【教学过程】一、问题引入问题1 小学里我们学过的加法运算定律有哪些?加法交换律、加法结合律问题2 其内容是什么?举例说明例如(1) 5 +3.5 = 3.5+5 ;(2)(5+3.5)+ 2.5 = 5 +(3.5+2.5).问题3 你会用字母表示它吗?(1)a+b=b+a,(2)(a+b)+c=a+(b+c)思考加法的运算律是不是也可以扩充到有理数范围?二、探究新知有理数的加法的运算律现在我们来探究引入负数后,加法运输律是否还成立.根据上节课学过的内容,完成下面各题:(1)(-30)+20= (2)20 +(-30)=(3)8+(-5)= (4)(-5)+8=(5)〔8+(-5)〕+(-4)=(6)8+〔(-5)+(-4)〕=通过计算,你得出了什么结论?你们能再举一些数字也符合这样的结论吗?试试看!总结归纳:由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)三、典例精析例1 计算:(1)(+26)+(-18)+5+(-16);(2)(3)(-1.75)+1.5+(+7.3)+(-2.25)+(-8.5);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).例2 10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5, 1.5, 3,-1, 0,-2.5.问这10筐苹果总共重多少千克?四、巩固练习同学们做练习题。
有理数的加减法(基础)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.要点诠释:交换加数的位置时,不要忘记符号.【:有理数的加减 382681 有理数的减法】要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1) (+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666类型二、有理数的减法运算2.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2015•泰安)若( )﹣(﹣2)=3,则括号内的数是( )A . ﹣1B . 1C . 5D . ﹣5【答案】B .根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.(2016春•浦东新区期中)计算:3.8+4﹣(+6)+(﹣8)【思路点拨】根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可.【答案与解析】解:原式=(3.8﹣6.8)+(4﹣8)=﹣3﹣4=﹣7,【总结升华】本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.举一反三:【:有理数的加减 382681 简便方法计算】【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4.(2014秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。
4.1用字母表示数
✓在现实情境中进一步理解用字母表示数的意义,能分析简单问
4.3代数式的值
✓培养学生的探索精神和探索能力
✓通过学习使学生了解求代数式的值在日常生活中的应用
5.2等式的基本性质✓等式的基本性质
✓范例2第2小题需用2次等式的性质将方程变形成
内容
✓重点是正确掌握移项的方法求方程的解
✓难点是采用移项方法解一元一次方程的步骤
内容
)
(为常数
a
a
x=
✓经历从现实世界中抽象出几何图形的过程,感受点、线、面、体之间的关系✓抽象能力的培养,学习热情的激发
内容
✓线段的长度的大小的概念及其比较方法
✓掌握叠合法比较线段长短的正确方法。
浙教版数学七年级上册《2.1 有理数的加法》教学设计1一. 教材分析浙教版数学七年级上册《2.1 有理数的加法》是学生在学习有理数基本概念后的第一个有理数运算内容。
这部分内容主要介绍有理数的加法法则,包括同号相加、异号相加、以及互为相反数的两个数相加等。
本节课内容是后续学习有理数减法、乘法和除法的基础,对学生掌握有理数运算具有重要的意义。
二. 学情分析七年级的学生已经掌握了整数和分数的概念,对基本的运算规则有一定的了解。
但学生在学习有理数的加法时,可能会对有理数的符号、绝对值以及运算规则产生困惑。
因此,在教学过程中,需要引导学生理解有理数加法的本质,并通过大量的实例来帮助学生掌握有理数加法的运算规则。
三. 教学目标1.理解有理数的加法概念,掌握有理数加法的基本规则。
2.能够正确进行有理数的加法运算。
3.能够运用有理数加法解决实际问题。
四. 教学重难点1.教学重点:有理数的加法法则。
2.教学难点:有理数加法运算的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解有理数加法的概念和规则。
2.使用多媒体教学手段,展示有理数加法的动画和实例,帮助学生形象地理解有理数加法的过程。
3.通过大量的练习和实际问题,让学生在实践中掌握有理数加法的运算方法。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题和实际问题,用于学生的操练和巩固。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾已学的整数和分数的加法规则,为新课的学习做好铺垫。
2.呈现(15分钟)使用PPT展示有理数加法的动画和实例,引导学生思考和讨论有理数加法的规则。
教师通过讲解和演示,向学生介绍有理数加法的基本法则。
3.操练(15分钟)让学生分组进行练习,互相讨论和解答有理数加法的问题。
教师巡回指导,解答学生的问题,并给予及时的反馈。
4.巩固(10分钟)教师挑选一些典型的练习题,让学生在黑板上进行板书和解答。
浙教版数学七年级上册2.1《有理数的加法》教学设计一. 教材分析《有理数的加法》是浙教版数学七年级上册第二章第一节的内容。
本节内容是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的。
有理数的加法是数学中基本的运算之一,它不仅在日常生活中有广泛的应用,而且在后续的学习中也会经常用到。
因此,本节内容对于学生来说是非常重要的。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的概念和运算法则,对于加法的理解也有一定的基础。
但是,由于年龄和认知水平的限制,学生在理解有理数加法的本质和应用方面还存在一定的困难。
因此,在教学过程中,需要针对学生的实际情况进行针对性的教学。
三. 教学目标1.让学生理解有理数加法的概念和运算法则。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.重点:有理数加法的概念和运算法则。
2.难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作学习来掌握有理数加法的基本概念和运算法则。
2.利用多媒体教学手段,生动形象地展示有理数加法的运算过程,帮助学生更好地理解有理数加法的本质。
3.通过实际问题的解决,让学生学会运用有理数加法解决实际问题,提高学生的应用能力。
六. 教学准备1.多媒体教学设备。
2.PPT课件。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:有理数的加法。
例:小明有3个苹果,小华给了小明2个苹果,请问小明现在有多少个苹果?2.呈现(15分钟)利用PPT课件,呈现有理数加法的概念和运算法则。
有理数加法的概念:两个有理数相加,叫做有理数的加法。
有理数加法的运算法则:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3.操练(15分钟)让学生进行有理数加法的计算练习,教师巡回指导。
浙教版初一数学上第2章有理数的运算知识点总结在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
初中频道为大家整理了有理数的运算知识点,让我们一起学习,一起进步吧!2.1 有理数的加法同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加仍得这个数。
想要学习更多知识点请点击浙教版数学初一上册有理数的加法知识点2.2 有理数的减法1.减去一个数,等于加这个数的相反数,有理数减法法则用字母表示成:a-b=a+(-b);2.有理数减法的步骤:需要先将减法转化为加法,再按有理数的加法法则和运算律计算;3.将减法转化为加法时,注意两变一不变,即一是减法变加法;二是把减数变为它的相反数而被减数不变。
的减法知识点2.3 有理数的乘法(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
例:(-5) (-3)= +(5 x 3)=15 (-6) 4= - (6 x 4)= -24(2)任何数与0相乘,积为0. 例:0 1=0想要学习更多知识点请点击浙教版初一数学上册有理数的乘法知识点2.4 有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a b=a (b 0)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
想要学习更多知识点请点击七年级浙教版数学上册有理数的除法知识点2.5 有理数的乘方(1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。
数的乘方知识点2.6 有理数的混合运算正整数正整数整数 0正有理数负整数正分数有理数正分数有理数 0 负整数分数负有理数负分数负分数注意:正负数表示具有相反意义的量(具有相反意义的量,只要求意义相反,而不要求数量一定相等,负号 - 本身就表示意义相反的意思)。
浙教版数学七年级上册2.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是浙教版数学七年级上册第2章第1节的内容,本节内容是在学生已经掌握了有理数的概念和运算的基础上进行学习的。
有理数的加法是数学中基本的运算之一,它不仅在数学领域中有着广泛的应用,同时在日常生活中也有着重要的作用。
本节内容主要介绍了有理数加法的运算方法,包括同号有理数的加法、异号有理数的加法以及互为相反数的有理数的加法。
这些运算方法不仅需要学生记忆,更需要学生理解和掌握,以便在实际问题中能够灵活运用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算有一定的了解。
但是,学生在进行有理数加法运算时,往往会受到正负号的影响,对同号和异号有理数的加法规则理解不深,容易出错。
因此,在教学过程中,需要引导学生通过实例来理解和掌握有理数加法的规则,提高学生的运算能力。
三. 教学目标1.理解有理数加法的概念,掌握同号有理数、异号有理数以及互为相反数的有理数的加法规则。
2.能够正确进行有理数的加法运算,提高运算能力。
3.能够运用有理数加法解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:有理数加法的运算方法。
2.难点:理解和掌握同号有理数、异号有理数以及互为相反数的有理数的加法规则。
五. 教学方法采用实例教学法、讨论法、练习法等教学方法,引导学生通过实例来理解和掌握有理数加法的规则,提高学生的运算能力。
六. 教学准备1.准备相关的实例,用于引导学生理解和掌握有理数加法的规则。
2.准备练习题,用于巩固学生对有理数加法的理解和掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数加法的话题,激发学生的兴趣。
示例:小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?2.呈现(10分钟)呈现同号有理数的加法、异号有理数的加法以及互为相反数的有理数的加法规则,引导学生理解和掌握。
同号有理数的加法:两个正数相加,结果还是正数;两个负数相加,结果还是负数。