部编版人教初中数学八年级上册《因式分解-公式法 教学设计(表格版)》最新精品优秀教案
- 格式:doc
- 大小:69.00 KB
- 文档页数:3
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
人教版八年级上册《公式法》教学设计《人教版八年级上册《公式法》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!14.3公式法——-用平方差公式分解因式教学目标经历用平方差公式因式分解的探索过程;会用平方差公式对多项式进行因式分解;经历探索运用平方差公式分解因式的过程,体会逆向思维的作用,渗透化归思想.体会从正、反两个方向认识和研究事物的方法。
重点难点重点能灵活运用平方差公式进行因式分解。
难点对平方差公式特点的理解和把握。
教学过程一、复习回顾1.什么特点的多项式可以用提公因式法进行因式分解?2.如果一个多项式的各项没有公因式,是否就不能因式分解了呢?通过讨论,感受到还需要寻找其它方法3.观察乘法公式:大家判断一下,把这个式子反过来,从右边到左边地使用,是否是因式分解?学生观察、讨论:反过来就是根据因式分解的定义,这是因式分解。
教师总结:把乘法公式从右到左地使用,就可以把某些形式的多项式进行因式分解,这种因式分解的方法叫做公式法。
什么形式的多项式可以用平方差公式进行因式分解?怎样分解呢?二、公式探究1.请大家观察公式左边的式子,找出它的特点。
学生讨论交流,并用数学语言叙述:是一个二项式,每一项都可以化成整式的平方,整体看是两个整式的平方差。
体会式子中的字母可以是单项式,也可以是多项式。
2.师生共同归纳:如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式因式分解,分解成两个整式的和与这两个整式的差的积。
3.把下列多项式因式分解:(1);(2);(3);(3)学生口答,教师给予肯定或点拨。
三、典例剖析例1把下列多项式因式分解.(1);(2)教师引导学生将每个多项式化成两个单项式的平方差,利用平方差公式因式分解,板书分解过程.注意,因式分解要进行到不能分解为止。
专项训练:填空:(1);(2);(3);(4)例2把因式分解.教师引导学生观察多项式的特点,是否是两个整式的平方差,体会两个多项式的平方差也可以用公式来分解。
前言:
该备课资料教案由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的备课资料教案是高效课堂的前提和保障。
(最新精品备课资料教案)
第十四章 14.3.2公式法(一)
知识点:利用平方差公式分解因式
两个数的平方差,等于这两个数的和与这两个数的差的积,即
a2-b2=(a+b)(a-b).
归纳整理:对于利用平方差公式分解因式时一般要满足:①要分解的因式是一个二项式,而且这两项都是一个数的平方的形式;②含有的两项的符号还必须是相反的;③当利用该方法分解因式时,如果存在公因式时,应先提出公因式.
考点1:利用平方差公式因式分解
【例1】分解因式:(1)(x+p)2-(x+q)2;(2)16(a-b)2-9(a+b)2.
解:(1)原式=(x+p+x+q)(x+p-x-q)=(2x+p+q)(p-q);
(2)原式=[4(a-b)]2-[3(a+b)]2
=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]
= (4a-4b-3a-3b)=(7a-b)(a-7b).
点拨:(1)把(x+p)看作a,(x+q)看成b;(2)先把式子化成
[4(a-b)]2-[3(a+b)]2后,再用平方差公式分解.
考点2:利用平方差公式因式分解解决问题
【例2】用因式分解法证明499-714能被2400整除.
解:499-714
1。
义务教育学校课时教案备课时间:上课时间:公式,即a 2±2ab+b 2=(a ±b )2,用文字表述为:两个数的平方和,加上(或减去)这两数积的2倍,等于这两个数的和(或差)的平方.问题判断下列各式是不是完全平方式.(1)a 2-4a+4(2)x 2+4x+4y 2(3)4a 2+2ab+241b (4)a 2-ab+b 2(5)x 2-6x-9(6)a 2+a+0.25【归纳总结】完全平方公式的特点:左边是一个三项式,其中的两项同号且均为一个整式的平方,另一项是前两项幂的底数的积的2倍,符号可“+”可“-”.右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号.二、思考探究,获取新知例1下列各式中能用平方差公式分解因式的有个(填序号). ①-a 2-b 2 ②a 2-4b 2 ③x 2-y 2-4 ④-9a 2b 2+1 ⑤(x-y )2+(y-x )2⑥x 4-1例2分解因式.例3已知4x 2+1+mx 是关于x 的完全平方式,求m 2-5m+3的值. 例4分解因式.(1)x 2+14x+49(2)9x 2-12x+4 (3)a 2-a+41 (4)81y -x 7216124+--)()(y x三、运用新知,深化理解1.下列多项式能用平方差公式分解的有().3.分解因式.(1)22363-ay axy ax -+ (2)42242b b a a +-(3)22222)416y x y x +-( (4)4224168b b a a +-四、师生互动,课堂小结集体回顾公式结构与分解因式时应注意的事项。
板书设计14.3.2 公式法作业设计与布置作业类型 作业内容 试做时长 基础性作业基本性作业(必做) 同步练习册 基础练习 5分钟 鼓励性作业(选择) 同步练习册 综合提升 4分钟 挑战性作业(选择)同步练习册 创新应用4分钟拓展性作业无作业反馈记录教学反思。
人教版数学八年级上册教学设计14.3.2《公式法》一. 教材分析人教版数学八年级上册第14章是关于二次根式的,而14.3.2《公式法》是这一章节中的一个重要内容。
公式法是解一元二次方程的一种方法,它通过将方程转化成标准形式,应用求根公式来求解。
本节课的内容对于学生来说,既熟悉又陌生。
说熟悉,是因为学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
说陌生,是因为学生还没有系统地学习过公式法,对于公式法的推导和应用还不够熟练。
因此,本节课的教学设计既要考虑学生已有的知识基础,又要注重引导学生深入理解公式法的原理和应用。
二. 学情分析学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
在学习本节课之前,学生已经掌握了整式的加减、乘除和因式分解等基本运算,对于解一元二次方程,学生可能还停留在“试错法”和“图像法”等直观解法上。
因此,学生对于公式法的理解和应用会有一定的困难。
另外,学生在学习过程中可能存在以下问题:1. 对公式法的推导过程理解不深,只是机械记忆公式;2. 在应用公式法解题时,容易忽视对方程条件的判断,导致解题错误;3. 对于一些特殊类型的一元二次方程,学生可能无法熟练运用公式法求解。
三. 教学目标1.理解公式法的推导过程,掌握求解一元二次方程的基本步骤。
2.能够灵活运用公式法解一元二次方程,并能够判断解题过程中可能出现的错误。
3.通过对公式法的深入学习,提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.公式法的推导过程和原理的理解。
2.在解题过程中,如何正确运用公式法,并判断解题过程中可能出现的错误。
3.对于一些特殊类型的一元二次方程,如何运用公式法求解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来理解公式法的原理和应用。
2.使用多媒体课件,通过动画演示和步骤解析,帮助学生直观地理解公式法的推导过程。
3.设计具有梯度的练习题,让学生在实践中巩固公式法的应用。
课题:§15.4.2公式法因式分解——平方差公式教学过程设计中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
因式分解--公式法教材分析因式分解是代数式的一种重要恒等变形。
《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。
分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。
分解因式这一章在整个教材中起到了承上启下的作用。
本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点重点:灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
教学过程教学环节教师活动预设学生行为设计意图一、探究分解因式的平方差公式活动1:(1)你能将多项式x -4与多项式y -16分解因式吗?(2)这两个多项式有什么共同特点?(3)能利用整式的乘法公式—平方差公式(a+b)(a-b)= a-b 来解决这个问题吗?(1)学生尝试用提公因式的方法分解因式,经过观察发现每个多项式中没有公因式可提,不能用提公因式的方法分解因式。
(2)教师引导学生观察这两个多项式的特征,学生通过观察、类比得到这两个多项式都可以写成两个数的平方差的形式(3)学生观察将公式倒过来就可以分解因式了。
教学目标:1.理解什么是因式分解,掌握因式分解的基本方法。
2.通过例题的练习,能够灵活运用公式法进行因式分解。
3.培养学生的实际应用能力,能够运用因式分解解决实际问题。
教学重点:1.公式法分解因式的基本思路和方法。
2.掌握一些常见的分解公式。
教学难点:1.运用公式法解决复杂因式分解问题。
2.培养学生的思维能力,能够灵活运用公式法解决实际问题。
教学准备:教师准备课件、书籍和练习册。
学生准备笔记本、课本和笔。
教学过程:一、导入新课(15分钟)1.引导学生回顾因数和倍数的概念,复习因数分解的方法。
2.提问学生,如何做因式分解?二、讲解因式分解—公式法(10分钟)1.通过例题解析,介绍因式分解的公式法。
2.阐述因式分解—公式法的基本思路和方法。
3.教师让学生记住常见的因式分解公式。
三、练习(30分钟)1.让学生做一些简单的练习题,巩固因式分解—公式法的运用。
2.老师解答学生存在的问题,并解释难题的解法。
3.让学生自主解题,互相审题和指导。
四、归纳总结(10分钟)1.让学生归纳总结因式分解—公式法的基本要点。
2.教师指导学生进行相关知识的总结,鼓励学生提出问题。
五、拓展应用(15分钟)1.提出一些实际问题,应用因式分解—公式法解决。
2.让学生自主思考和解答,促进学生的实际应用能力。
六、总结回顾(10分钟)1.教师对课堂进行总结,强调因式分解—公式法的重要性。
2.教师进行小结,提醒学生对公式法的重要性进行二次总结。
扩展:1.教师可提供一些拓展练习和应用题,让学生进一步巩固因式分解—公式法的运用。
2.鼓励学生自主探索和研究,提高解题的实际应用能力。
教学反思:因式分解—公式法是数学中的一个重要知识点,对于学生来说比较抽象和困难。
通过本堂课的教学实践,我发现学生对公式法的理解和应用还有待提高。
在以后的教学中,我将尝试通过更多的实例和练习,帮助学生更好地掌握因式分解—公式法。
人教版数学八年级上册15.4.2《公式法因式分解》教学设计一. 教材分析人教版数学八年级上册15.4.2《公式法因式分解》是因式分解的一个重要内容。
这部分内容是在学生已经掌握了多项式乘法、完全平方公式和平方差公式的基础上进行教学的。
通过这部分的学习,学生能够掌握公式法因式分解的方法,为进一步学习分式运算和二次函数打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了多项式乘法、完全平方公式和平方差公式,具备了一定的代数基础。
但是,对于公式法因式分解的方法和应用,还需要进一步引导和培养。
此外,学生对于新知识的接受能力不同,部分学生可能需要更多的例子和练习来巩固所学知识。
三. 教学目标1.知识与技能:学生能够掌握公式法因式分解的方法,并能运用到实际问题中。
2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作能力和表达能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:公式法因式分解的方法和应用。
2.难点:如何引导学生理解和运用公式法因式分解的方法。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握公式法因式分解的方法。
2.小组合作学习:学生分组讨论,培养学生的合作能力和表达能力。
3.练习法:通过大量的练习题,巩固所学知识。
六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解公式法因式分解的方法。
2.练习题:准备适量的练习题,用于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例,引出公式法因式分解的必要性。
例如,计算表达式(x+1)(x+2)(x+3)(x+4)的值,引导学生思考如何简化计算过程。
2.呈现(10分钟)介绍公式法因式分解的方法,引导学生理解并掌握公式法因式分解的步骤。
通过PPT展示,让学生清晰地看到公式法因式分解的过程。
3.操练(10分钟)让学生分组合作,运用公式法因式分解的方法解决实际问题。