《2.2轴对称的基本性质》(青岛版)
- 格式:ppt
- 大小:2.01 MB
- 文档页数:16
青岛版八年级数学上册《轴对称的基本性质》说课稿一、教材分析本节课是青岛版八年级数学上册中的一节课,主要内容是轴对称的基本性质。
该篇章位于上册教材的第三章《平面图形的基本性质》中的第一节,共计四个小节。
本节课的学习目标主要有: 1. 理解什么是轴对称; 2.掌握轴对称图形的特征和性质; 3. 能够通过轴对称性质画图。
二、教学目标1.知识与技能目标:–了解轴对称的定义;–掌握轴对称图形的特征和性质;–学会通过轴对称性质进行图形的绘制。
2.过程与方法目标:–引导学生通过观察和思考,探索轴对称的性质;–培养学生的逻辑思维能力和图形认知能力;–通过合作学习和展示,促进学生之间的交流与合作。
3.情感态度与价值观目标:–培养学生的观察力、耐心和细致性;–培养学生的团队合作精神和分享意识;–培养学生对数学的兴趣和学习动力。
三、教学重难点1.教学重点:–轴对称的定义与性质;–轴对称图形的判断与绘制。
2.教学难点:–轴对称性质的初步探索与发现;–多边形图形的判断与绘制。
四、教学过程1. 导入引入本节课的导入将通过一个小游戏来引发学生对轴对称的认识。
我将准备一些轴对称的图案卡片,让学生分组,每个小组派一名代表,从卡片中选择一个轴对称图形,然后其他组员根据代表所选择的图形,展示出它的轴对称性质。
通过这个小游戏,我们可以激发学生的学习兴趣,引出本节课的主题。
2. 概念解释在导入的基础上,我将向学生解释轴对称的概念。
轴对称即指图形相对于某条直线对称,将该直线称为轴线。
轴对称性质是指图形相对于轴线的两侧完全相同,即对称。
3. 轴对称图形的性质我将给学生展示一些轴对称图形,并引导他们观察、分析这些图形的性质。
通过让学生提出自己的想法和发言,我们可以逐渐引导他们发现轴对称图形的共同特征,如两侧图形的对应部分完全相同等。
4. 轴对称图形的判断让学生自行判断一些图形是否为轴对称图形,并向他们提出一些具体的问题,如:这个图形是否有轴对称线?如果有,你能找到吗?如果给你一支笔,你能通过轴对称性质在图形上画出一条对称线吗?通过这些问题的引导,我们可以帮助学生深入理解轴对称图形的判断方法。
生活中的方程模型11.4一元一次方程的应用(1)七年级数学上册青岛版: 巍巍宝塔高七层, 点点红灯倍加增。
灯共三百八十一, 请问顶层几盏灯。
学习目标:2、会列一元一次方程解决有关实际问题,总结运用方程解决实际问题的步骤;3、通过列一元一次方程解决实际问题提高分析问题、解决问题的能力。
1.能找出实际问题中的已知量、未知量及等量关系1.兴华学校距青云双语7.5千米,老师今天开车以60千米每小时的速度行驶,x小时到达;2.牛牛的爸爸今年35岁了,是牛牛年龄的2倍多7岁,牛牛的年龄是x 岁;3.小红买10本练习本和3只笔共花了20元,已知练习本每本1.4元,每只笔x元;体验身边的方程:(找出已知量、未知量及等量关系)一座雄伟壮丽的七层宝塔,层层飞檐上闪烁着红灯,下层红灯数目是相邻上层的2倍。
如果共有381盏灯,请问顶层有几盏灯?列一元一次方程解应用题的一般步骤是: 1.审:分析题中已知量、未知量各是什么,明确各量之间的关系;4.列:根据相等关系列出方程;5.解并检验方程的解是否正确、符合题意;6.答:写出答案. 3.设:设未知数,用代数式表示其他量;2.找:根据题意找出等量关系;关键为响应安丘市政府“文明城市”的号召,青云山购进A,B两种树苗共12棵,已知A种树苗每棵20元,B种树苗每棵10元,若购进A,B两种树苗刚好用去了140元,问购进A,B两种树苗各多少棵?等量关压缩包中的资料: 一元一次方程的应用(1)课件.ppt 教学设计.doc。
《轴对称的基本性质》(第2课时)教案探究版教学目标知识与技能1.在直角坐标系中能画出点关于坐标轴的对称点,并通过探索发现坐标系内点的对称规律.2.在直角坐标系中,能够写出给定平面图形的顶点关于坐标轴的对称坐标.3.让学生先从“做数学”中体会“获取知识”的快乐;让学生体会知识的丰富性.过程与方法经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换的应用.情感与态度1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点利用轴对称的性质得出坐标系内点的对称规律.教学难点对坐标系内点的对称规律的理解.教学过程一、情境导入在很多装饰的边框上有好多漂亮的花边,如下图.你想知道这些漂亮的花边是如何得到的吗?设计意图:通过展示漂亮的花边,吸引学生的注意力,使学生以积极的状态进入课堂,也让学生了解轴对称的用途.二、探究学习观察与思考(1)如图所示,在直角坐标系中,已知点Q的坐标为(4,3),画出点Q关于y轴的对称点Q',写出点Q'的坐标,你发现点Q和Q'的坐标有什么关系?利用轴对称的基本性质,与同学交流,说明你的理由.师生活动:师引导学生根据给定的对称轴是坐标系中的y轴,直观地说出点Q'所在的象限,再利用轴对称的基本性质,说出点Q'的坐标,从而发现点Q与它关于y轴的对称点Q'的横、纵坐标之间的关系.师给出结论:如图Q'在第二象限,坐标是(-4,3).因为点Q与Q'关于y轴成轴对称,所以y轴垂直平分线段QQ',从而QQ'平行于x轴,且两个端点到y轴的距离相等.所以点Q'与点Q的横坐标互为相反数,纵坐标相等.(2)画出点Q关于x轴的对称点Q'',写出点Q关于x轴的对称点Q''的坐标.你发现点Q与Q''的坐标有什么关系?师生活动:在学生经历了问题(1)后,问题(2)相对容易处理,可由学生自己完成后,师生交流.师给出结论:如图Q''在第四象限,坐标是(4,-3)因为点Q与Q''关于x轴成轴对称,所以x轴垂直平分线段QQ'',从而QQ''平行于y轴,且两个端点到x轴的距离相等.所以点Q''与点Q的纵坐标互为相反数,横坐标相等.(3)你能分别写出点(-1,0)关于y轴和x轴对称点的坐标吗?点(0,-1)呢?师生活动:师引导学生仿照问题(1)(2)的作法,解决该问题.解后交流.师给出结论:点(-1,0)关于y轴的对称点坐标为(1,0);点(-1,0)关于x轴的对称点坐标为(-1,0).都在x轴上点,关于x轴的对称点是它本身.点(0,-1)关于y轴的对称点坐标为(0,-1).都在y轴上点,关于y轴的对称点是它本身;点(0,-1)关于x轴的对称点坐标为(0,1).(4)一般地,已知点P的坐标为(a,b),按照上面发现的规律,你能分别写出点P 关于y轴的对称点P'和x轴对称点P''的坐标吗?师生活动:问题(4)是前三个问题的概括,这是一个由具体到抽象、由特殊到一般的过程.师应引导学生探索如何把问题(1)(2)(3)的结论推广到一般.师给出结论:P关于y轴的对称点P',所以P'的坐标为(-a,b),P关于x轴的对称点P'',所以P''的坐标为(a,-b).归纳:在直角坐标系中,点(a,b)关于y轴的对称点(-a,b),关于x轴的对称点(a,-b).设计意图:让学生通过用不同的方法画出点P关于x轴和y轴的对称的点,更好地掌握画轴对称图形的方法,加深理解与领悟轴对称的性质,进一步发展有条理的思考,逐步把握数学的本质,以达到化繁为简,化难为易的目的,这将十分有利于激发学生学习数学的积极性.三、例题精讲例1如图,在直角坐标系中,已知△ABC的顶点坐标分别是A(-2,1),B(1.5,-4),C(0,3).(1)写出△ABC关于y轴成轴对称的△A'B'C'的顶点坐标;(2)写出△ABC关于x轴成轴对称的△A''B''C''的顶点坐标;(3)分别画出△A'B'C'和△A''B''C''.师生活动:师引导学生先运用已得到的结论,通过合作交流,完成(1)(2),教师应及时纠正学生由于弄混对称轴或记不准一般规律所导致的错误,并帮助他们分析错误发生的原因。
2、2 轴对称的基本性质(1)【课程标准】探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
【学习目标】1.经历探索轴对称图形性质的过程,理解连接对应点的线段被对称轴平分、对应线段相等、对应角相等的性质.2.会画与已知图形关于某条直线对称的图形.【学习重点】1.经历探索轴对称图形性质的过程,理解其性质.2.会画与已知图形关于某条直线对称的图形.【学习难点】经历探索轴对称图形性质的过程,理解其性质.【知识链接】1.什么是“两个图形关于某条直线成轴对称”?2、右图中的两个三角形关于直线l成轴对称,已知三角形的部分边长和角的度数如图所示。
(1)找出所有对应边和对应角(2)求未知的边长和角的度数【自主探究】实验1把一张纸对折后扎一个小孔(如下面左图),然后展平(如下面中图),连接得到的A'与折痕MN的交点为O.两个小孔A与A',记ANM A 线段A A '与直线MN 具有怎样的位置关系?你发现了哪些等量关系?再扎几个小孔试试.探索成轴对称图形的性质 实验2.如右图,小莹扎了三个孔,把纸展平后连接各点.思考下面的问题:(1)与ABC ∆C B A '''∆有什么关系?(2)连接C C B B A A ''',,,它们各自与直线MN 具有怎样的位置关系?(3)延长BC,B ˊC ˊ,它们的交点与直线MN 具有怎样的位置关系?【归纳总结】轴对称的基本性质:交流与发现如下图,在纸上画一条直线MN ,再在直线MN 的一侧扎一个小孔A ,⑴不用折纸的方法你能找到小孔A 关于直线MN 的对称点的位置吗?与同学交流.Cl⑵你能说明你的理论依据吗?⑶如图,你能画出与直线AB关于直线l成轴对称的线段吗?例1如下图,画出ABC关于直线MN成轴对称的图形。
【总结与反思】画一个多边形关于一条直线的轴对称图形,可以先分别画出已知多边形的关于这条直线的对应点,然后,便得到已知多边形关于这条直线成轴对称的图形。
青岛版数学八年级上册2.2《轴对称的基本性质》说课稿2一. 教材分析《轴对称的基本性质》这一节内容是青岛版数学八年级上册第二章第二节的一部分。
本节课主要让学生了解轴对称的概念,掌握轴对称的性质,并能够运用轴对称的性质解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对图形的变换有一定的了解。
但是,他们对轴对称的概念和性质可能还比较陌生,需要通过具体的实例和操作活动来加深理解。
学生的学习动机较强,对于生活中的实际问题感兴趣,因此,在教学过程中,我将会充分运用实例,引导学生积极参与,提高他们的学习兴趣。
三. 说教学目标1.知识与技能目标:让学生了解轴对称的概念,掌握轴对称的性质,并能够运用轴对称的性质解决一些实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:轴对称的概念,轴对称的性质。
2.教学难点:轴对称性质的证明和运用。
五. 说教学方法与手段在本节课的教学中,我将采用以下教学方法和手段:1.实例引入:通过生活中的实例,引导学生观察和思考,激发学生的学习兴趣。
2.小组合作:学生进行小组合作,共同探讨轴对称的性质,培养学生的合作意识。
3.操作活动:学生进行实际的操作活动,让学生通过亲身体验来加深对轴对称性质的理解。
4.推理证明:引导学生运用推理的方法,证明轴对称的性质,培养学生的推理能力。
5.媒体辅助:利用多媒体课件,展示轴对称的实例和性质,增强学生的直观感受。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称实例,如剪纸、折叠等,引导学生观察和思考,激发学生的学习兴趣。
2.探究轴对称的概念:让学生通过观察和操作,尝试给出轴对称的定义,引导学生理解轴对称的概念。
青岛版数学八年级上册2.2《轴对称的基本性质》教学设计2一. 教材分析《轴对称的基本性质》是青岛版数学八年级上册第二章第二节的内容。
本节内容主要让学生掌握轴对称的定义,理解轴对称的性质,并能够运用轴对称解决实际问题。
教材通过丰富的实例,引导学生探索轴对称的性质,培养学生的观察能力、思考能力和动手能力。
二. 学情分析八年级的学生已经掌握了七年级数学的基本知识,具备一定的逻辑思维能力和观察能力。
但是,对于抽象的轴对称概念,部分学生可能难以理解。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平,合理设计教学内容,提高学生的学习兴趣和积极性。
三. 教学目标1.知识与技能目标:让学生理解轴对称的定义,掌握轴对称的性质,并能够运用轴对称解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生在学习过程中体验到成功的喜悦。
四. 教学重难点1.重点:轴对称的定义,轴对称的性质。
2.难点:轴对称性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察、思考,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论,培养学生的团队合作精神和沟通能力。
3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲望。
4.动手操作法:让学生亲自动手操作,加深对轴对称性质的理解。
六. 教学准备1.准备相关的实例,用于引导学生观察和思考。
2.准备多媒体教学设备,用于展示实例和动画。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如剪纸、折纸等,引导学生观察这些实例的特点,引发学生的思考:这些实例有什么共同的特点?2.呈现(10分钟)教师总结学生的观察结果,给出轴对称的定义,并展示一些轴对称的图形。
同时,教师通过动画演示,让学生直观地理解轴对称的性质。
知识归纳:轴对称和轴对称图形
轴对称
1、一个图形沿着某一条直线折叠,如果直线两侧的图形能够重合,就说这一个图形是轴对称图形。
这条直线叫做图形的对称轴。
2、轴对称图形一定有对称轴,而且至少有1条对称轴,常见的例如:等腰三角形、等腰梯形、线段、角;有两条对称轴的常见图形有长方形;有三条对称轴的常见图形有等边三角形;正方形有4条对称轴;五角星和正五边形有5条对称轴;圆有无数条对称轴。
轴对称图形的画法
1、轴对称图形的性质:
(1)对称轴两边的图形一定完全相同
(2)对应点也关于对称轴对称
(3)对应点的连线垂直于对称轴
(4)对应点到对称轴的距离相等
2、轴对称图形的画法:
(1)根据题意确定已知图形以及对称轴位置
(2)找出已知图形的关键点
(3)一次过每个点作垂直于对称轴的虚线
(4)在对称轴另一侧确定各对应点位置
(5)标明各点对应名称,顺次连接各对应点得到轴对称图形。
确定轴对称图形的对称轴
沿某条直线对折之后,两边的图形能够完全重叠,这条直线就是
图形的对称轴。
轴对称和成轴对称。