简单几何模型
- 格式:docx
- 大小:155.20 KB
- 文档页数:1
小学数学五大几何模型知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO baS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD ABCDEF G①AD AE DE AFAB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。
66个常用几何模型分类汇编一、三角形模型1. 等边三角形:三条边长度相等的三角形。
2. 直角三角形:其中一个角为直角的三角形。
3. 等腰三角形:两条边长度相等的三角形。
4. 锐角三角形:三个内角都小于90度的三角形。
5. 钝角三角形:其中一个内角大于90度的三角形。
6. 等腰锐角三角形:两个角为锐角,且两条边长度相等的三角形。
7. 直角等腰三角形:一个角为直角,两条边长度相等的三角形。
8. 等腰钝角三角形:一个角为钝角,两条边长度相等的三角形。
9. 等边锐角三角形:三个内角都小于90度,三条边长度相等的三角形。
二、四边形模型10. 矩形:四个角都是直角的四边形。
11. 正方形:四条边长度相等,四个角都是直角的四边形。
12. 平行四边形:对角线相互平分,两对边平行的四边形。
13. 菱形:四个边长度相等,对角线相等的四边形。
14. 梯形:有且仅有一对对边平行的四边形。
15. 阳角梯形:其中一对边为直角的梯形。
16. 等腰梯形:有两边相等的梯形。
三、圆模型17. 圆:平面上所有到圆心距离相等的点的集合。
18. 圆环:由两个同心圆构成的几何图形。
四、多边形模型19. 六边形:有六条边的多边形。
20. 正六边形:六个角都是直角的六边形。
21. 正多边形:所有边和角都相等的多边形,如正三角形、正四边形等。
22. 不规则多边形:边长度或者角度不相等的多边形。
五、体积与表面积模型23. 正方体:六个面都是正方形的立体。
24. 长方体:六个面都是矩形的立体。
25. 正圆柱:底面为圆的圆柱。
26. 正圆锥:底面为圆的圆锥。
27. 正棱柱:底面为正多边形的棱柱。
28. 正棱锥:底面为正多边形的棱锥。
29. 正四面体:四个面都是三角形的立体。
30. 正六面体:六个面都是正方形的立体。
六、相似模型31. 相似三角形:对应角相等,对应边成比例的三角形。
32. 相似四边形:对应角相等,对应边成比例的四边形。
七、坐标几何模型33. 点:一个位置的坐标表示。
一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。
1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。
已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。
又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。
一、常见的八大类几何模型在解决几何题目时,我们经常会遇到一些常见的几何模型。
这些模型包括但不限于:直角三角形、等腰三角形、等边三角形、直接相似三角形、等腰梯形、菱形、正方形和矩形。
1. 直角三角形直角三角形是一个内角为90度的三角形。
在求解直角三角形题目时,可以运用勾股定理、正弦定理、余弦定理等方法。
2. 等腰三角形等腰三角形是指两边相等的三角形。
在解决等腰三角形问题时,可以利用等角定理、等边角定理等。
3. 等边三角形等边三角形是指三边相等的三角形。
解决等边三角形问题时,可以利用等边三角形的性质,如高、中线等。
4. 直接相似三角形直接相似三角形是指对应角相等的两个三角形。
在对直接相似三角形进行解题时,可以利用相似三角形的性质,如边比例定理等。
5. 等腰梯形等腰梯形是指有两对对边相等的梯形。
解决等腰梯形问题时,可以运用梯形的性质以及各边的关系。
6. 菱形菱形是指四条边都相等的四边形。
在解决菱形问题时,可以利用菱形的性质,如对角线垂直平分、对角相等等。
7. 正方形正方形是指四条边相等且四个角均为直角的四边形。
解决正方形问题时,可以利用正方形的性质,如对角线相等、对角线垂直等。
8. 矩形矩形是指四边均为直角的四边形。
在解决矩形问题时,可以利用矩形的性质,如对角线相等、邻边互相垂直等。
二、60种解题技巧在解决几何题目时,我们还可以运用一些解题技巧来更快更准确地得出答案。
下面列举了60种解题技巧,以供参考。
1. 勾股定理2. 余弦定理3. 正弦定理4. 度角关系5. 弧度制下的两点间弧长相关关系6. 三角恒等变形7. 各角平分线8. 高度定理9. 中线定理10. 角平分线定理11. 等角定理12. 外角定理13. 内角定理14. 中位线定理15. 等腰三角形的性质16. 等边三角形的性质17. 相似三角形的三边对应比例关系18. 相似三角形的高度关系19. 相似三角形的边对应比例关系20. 相似三角形的面积关系21. 三角形高到底关系22. 三角形高乘底除以2的面积公式23. 三角形内切圆24. 三角形外接圆25. 正方形的性质26. 矩形的对角线关系27. 矩形的邻边互相垂直关系28. 长方形的面积公式29. 长方形的周长公式30. 菱形的性质31. 菱形对角线垂直平分32. 平行四边形的性质33. 平行四边形的对角线相等关系34. 平行四边形的对角互补35. 梯形的中位线关系36. 梯形的对角线垂直关系37. 梯形的高关系38. 圆的性质39. 圆周角的关系40. 圆心角的关系41. 切线关系42. 切线长定理43. 余弦定理的推广44. 余角关系45. 同位角关系46. 交叉线定理47. 锐角三角函数的关系48. 平行线夹角关系49. 余切函数的关系50. 同义形的面积公式51. 直角三角形斜边上的高52. 各角平分线角度关系53. 三角形中位线长度关系54. 三角形中位线平行长的关系55. 等角三角形三角函数的关系56. 三角形半周长乘外切圆内切圆面积关系57. 圆相关不等式58. 反证法59. 斜率性质60. 坐标系下平移关系解决几何问题时,首先要熟练掌握常见的八大类几何模型,然后灵活运用各种解题技巧,以便更加高效地解决问题。
完整版)初中数学经典几何模型初中数学经典几何模型(模型即套路),是初中数学里的重要部分。
在解决几何证明问题时,我们可以运用这些模型,从而更加高效地解决问题。
人们常说几何很困难,其中一个难点就在于辅助线的运用。
为了更好地运用辅助线,我们需要把握定理和概念,并且刻苦加钻研,找出规律凭经验。
在绘制图形时,我们可以利用角平分线向两边作垂线,或者将图形对折来寻找对称关系。
利用角平分线的平行线,我们可以构造等腰三角形。
同时,我们也可以尝试将角平分线加上垂线,从而将三条线合为一条。
线段垂直平分线时,我们可以将线段向两端延长或缩短来验证线段的倍数与半数关系。
在三角形中,连接两中点可以构造出中位线,同时延长中线也可以等于中线。
对于平行四边形,我们可以找到对称中心等分点。
在梯形中,我们可以利用高线平移一腰来解决问题。
同时,平行移动对角线,补成三角形也是常见的方法。
当证明相似时,我们可以通过比线段,添加平行线来构造相似三角形。
在等积式子比例换时,寻找线段也是很关键的。
直接证明有困难时,我们可以通过等量代换来简化问题。
在计算圆的相关问题时,我们可以利用半径与弦长计算,或者利用勾股定理来计算切线长度。
同时,在判断是否为切线时,我们可以通过半径垂线来进行辨别。
在解决相交圆的问题时,我们需要注意作公共弦。
对于内外相切的两个圆,我们可以通过切点来构造公切线。
同时,我们也可以利用连心线来确定切点。
在绘制图形时,我们需要注意勿改变虚线的位置。
基本作图也是很关键的,我们需要熟练掌握。
在解题时,我们需要多动脑筋,经常总结方法。
同时,我们也需要注意方法的灵活性,不要盲目乱添线。
在选用分析综合方法时,我们需要根据具体情况进行选择。
最重要的是,我们需要虚心勤学,加以苦练,才能在数学上取得更好的成绩。
斜边上作高线,比例中项一大片。
--。
在斜边上作高线,可以得到比例中项一大片。
半径与弦长计算,弦心距来中间站。
--。
通过计算半径和弦长,可以得到弦心距。
小学奥数几何五大模型一、五大模型简介(1) 等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比, 如图 1 所示, S △ABD : S △ACD = BD : CD ;3、两个三角形底相等,面积之比等于高之比, 如图 2 所示, S △ACD : S △BCD = AE : BF ;4、在一组平行线之间的等积变形,如图 3 所示, S △ACD = S △BCD ;反之,如果S △ACD = S △BCD ,则直线 AB ∥CD 。
图1图2图3例、如图, △ABC 的面积是 24, D 、E 、F 分别是 BC 、AC 、AD 的中点,求 △DEF 的面积。
解析:根据等积变换知, S = 1 S = 1 ⨯ 24 = 12 , S = 1S △ADC= 1 ⨯12 = 6 , S 2 △ABC = 1 S 2= 1 ⨯ 6 = 3 。
△ADE2 △ADC2 △DEF2 △ADE 2(2)鸟头模型(共角定理)1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等或互补)两夹边的乘积之比。
如下图△ABC 中,D、E 分别是AB、AC 上或AB、AC 延长线上的点。
则有:S△ADES△ABC=AD ⨯AE。
AB ⨯AC我们现在以互补为例来简单证明一下共角定理!证明:如图,连接BE ,根据等积变换模型知,S△ADE: S△ABE=AD : AB 、S△ABE: S△CBE=AE : CE ,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC。
因此S△ADE =S△ADE ⨯S△ABE =AD⨯AE=AD ⨯AE。
S△ABCS△ABES△ABCAB AC AB ⨯AC例、如图,在△ABC 中,点D 在BA 的延长线上,点E 在AC 上,且AB : AD = 5 : 2,AE : EC = 3: 2 ,△ADE 的面积为 12 平方厘米,求△ABC 的面积。
五年级几何知识八大模型几何学作为数学的一个重要分支,研究的是图形的形状、大小和变化规律。
在五年级的几何学习中,我们将会学习到八大模型,它们是:点、线段、直线、射线、角、三角形、四边形和多边形。
本文将详细介绍这八大模型及其特点。
首先,点是几何学中最基本的模型,它没有长度、宽度和高度,只有位置。
点用大写字母标记,如A、B、C等。
点是构成其他几何模型的基础。
其次,线段是由两个不同的点A和B确定的具有长度的部分。
线段用小写字母表示,如ab。
线段有起点和终点,可以用尺子量取其长度。
线段还可以延长,形成直线。
直线是由无限多个点排列而成的。
直线没有起点和终点,可以用箭头表示方向。
直线上的任意两个点可以确定一条线段。
射线是由一个起点和无限多个通过起点的点排列而成的。
射线用小写字母加上一个起点字母表示,如ra。
射线上的任意两个点也可以确定一条线段。
角是由两条射线共享一个起点而形成的。
角用大写字母表示,如∠ABC。
角可以用一个固定的角度来度量,如45度,90度等。
三角形是由三条线段所围成的图形。
三角形有三个顶点、三条边和三个内角。
根据边的长度和角的大小,三角形又可以分为等边三角形、等腰三角形和一般三角形。
四边形是由四条线段所围成的图形。
四边形有四个顶点、四条边和四个内角。
根据边的长度和角的大小,四边形可以分为矩形、正方形、平行四边形和一般四边形。
多边形是由多条线段所围成的图形。
根据边的数量,多边形有不同的名称,如五边形、六边形等。
多边形可以分为正多边形和一般多边形。
以上就是五年级几何学中的八大模型,它们构成了几何学的基础,为我们进一步研究图形提供了坚实的基础。
通过学习这些模型,我们可以更好地理解和应用几何知识,为解决实际问题提供有效的方法和思路。
希望同学们能够通过实践和练习,掌握好这些几何模型,打下坚实的数学基础。
中考数学常见的11种几何模型一、三角形的不等关系模型:A字型、K字型、X字型1. 三角形两边之和大于第三边;2. 三角形两边之差小于第三边;3. 直角三角形斜边上的中线等于斜边的一半;4. 直角三角形中30度所对的直角边等于斜边的一半;5. 三角形三个内角之和等于180度。
二、全等、相似模型模型:A字型全等、A字型相似、8字型全等、8字型相似、蝴蝶型全等、蝴蝶型相似、平行型全等、平行型相似、等积模型等。
三、平行四边形模型模型:平行四边形ABCD中,E为AB中点,则:AC、DE互相平分;模型:平行四边形ABCD中,AC、BD交于O,则:AO=CO,BO=DO;模型:平行四边形ABCD中,AC平分角BAD,则:四边形ABCD为菱形。
四、梯形模型模型:梯形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:BE=FE;模型:梯形ABCD中,A、B在直线EF上,则:延长DC交AB延长线于F,则:梯形ABCD面积等于三角形面积的2倍;模型:梯形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:EF=FC。
五、矩形模型模型:矩形ABCD中,E为BC中点,则:AE平分角BAD;模型:矩形ABCD中,E为AD中点,则:AF平分角ABC;模型:矩形ABCD中,AC平分角BAD,则:四边形ABCD为菱形。
六、多边形模型模型:任意多边形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:BF=FE;模型:任意多边形ABCD中,E为AD中点,延长BE交DC延长线于F,则:EF=FC。
七、燕尾模型模型:在三角形ABC中,BD平分角ABC,CE平分角ACB,则:点D、E在BC同旁,则:三角形ADE的面积等于三角形ABC面积的一半。
八、风筝模型模型:在三角形ABC中,点D、E在BC上,且AD平分角BAE,则:三角形ABC与三角形ADE的面积相等。
九、铅笔模型模型:在矩形ABCD中,点E、F分别在AB、CD上,则:EF平行于AD,则:矩形ABFE与矩形EFCD相似。
几何模型大全---第一部分一、全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转模型一:对称全等模型以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
模型二:对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
模型三:旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题(一)旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
(二)自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称(三)共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
(三)中点旋转模型说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
数学几何模块知识点总结一、平面直线几何图形■l t r使用条件:平行线之间°特点:两点在一条平行线,另一点在另一条平行践可以随意移幼,面积不变。
难点;①找等积三角形(苜先找平行线,再根据等积变形的特点找等祺三角形h②已师平行线F画辅助城构造等积三瀚形(常见含有平行线的几何圏形:平行四边形、梯務r 长方形"正方形”③构造平行线°2、等高模型哥祁同:'xt53 - ^icCO特点:三点一线加一点。
难点]辅助线的做法.3、一学模型1)长方形t平行四边形、正方形1:其中’第二个、第四个为重点考察对象2)梯形] 4. 鸟头模型〔共角模型:浦相同或角互补)5. 蝴蝶模型〔风筝模型.肉串模型,四边形中有交叉〉 1>枉意四边形2>梯形(其中AD:HCF :b 、3)任意匹边形IB fj C久比例模型(平行线)平面曲线几何图形主要是求画护,•更韦的方洼为:割皇卜=三、立体几何图形小学数学几何图形十大解法7.燕見模型AH 2 AC 2 11(電电出. WM.於 AE' DE ,M 几"05 EC例妇; 等,..将两个相等的悅方形重合连一起,求俎舎團彩的面巖.(+u :厘采)屮解:将图形分割亦两个全等的梯形。
仪S 組二(7-2+7) > 2-5-2^2=24 (平方厘米)d茨册霸那分画叔⑴常:将圏形分劃成3个三角盘匚S=5x6-5- 2+5> 84-2+ (8-5) xs4-2^= 12. 5+20+7.5^38 (平方星栄)心例: 左图中两个正方霸的边崔分别为8厘奉利6厘耒•*求刖殍部分孫积・解:将阴影部分分割质旳个三朗形。
P5 阴=&;« (8+6) ^2+3X64-2,-=56+24^例: 下列两个正方冊边牡分剧为B 產米柚5摩术.=30 (平方厘来2钢:巴知正方形边甚4度米,人队(k D 走正芳形边上軸中成'P是任盘一贞.朮阴另部分面釈.-C 解:执P 宜冋」十定占潦辅期线,由此看出,阴戢部分 +*r*钳:拮下團乎杆四边搭分屁三角厳和韩祐眄部分,它初面蘇湘差40平方厘奉'平*j ■四連彫咸20」厚来*務&廩采.域形下底走參 少厘米? *解:因为游一粲辅肋线平行于三角形一聚边、发现4。
五大模型(二)知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A B C DO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E AB CD ABCDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。
模型一:等高模型定义:三角形面积的大小,三角形面积的大小,取决于三角形底和高的乘积。
取决于三角形底和高的乘积。
取决于三角形底和高的乘积。
如果固定三角形的如果固定三角形的底(或高)不变,另一者变大(小)n 倍,三角形的面积也就变大(小)n 倍。
六种基本类型:两个三角形高相等,两个三角形高相等,面积比等于底之比;面积比等于底之比;面积比等于底之比;两个三角形底相等,两个三角形底相等,两个三角形底相等,面积比等于高之比面积比等于高之比公式:DC BD S S ADC ABD ;FCED S S ABC ABD 其中,BC=EF 且两三角形的高相等公式:1 DEFABC S S 夹在一组平行线之间的等积变形公式:1 ABD ABC BCD ACDS S S S等底等高的两个平行四边形面积相等(长方形和正方形可看作特殊的平行四边形)公式:1 CDEFABCD S S三角形面积等于与它等底等高的平行四边形面积的一半公式:ABCDEDC S S 21两个平行四边形高相等,面积比等于他们底的比公式:EFAB S S DEFG ABCD 例题:长方形ABCD 的面积为36cm 2,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?5.135.41818543681211836212136212121 BEF BEF BEF DGH BFH BEH CDH BCH ABH DGH BFH BEH CDH BCH ABH ABCD CDH DGH BCH BFH ABH BEH CGHDGH CFH BFH BEHAEH S S BF BE S S S S S S S S S S S S S S S S S S S S S S S S S S S S EBAE HCBH 阴影阴影,,,,同理,、如图,连接模型二:相似模型定义:形状相同,大小不相同的两个三角形,一切对应线段的长度成比例的模型。
【收藏】初中数学经典几何模型大全
中点模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1、直接连接中点;
2、连对角线取中点再相连
【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF 的中点,连接GC、GE.
(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.
角平分线模型
【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形
【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .
手拉手模型
【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD 的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .
邻边相等的对角互补模型
【例】如图,矩形ABCD中,AB=6,AD=5,G为CD中点,DE=DG,FG⊥BE于F,则DF 为 .
半角模型
一线三角模型
弦图模型
最短路径模型
【两点之间线段最短】1、将军饮马
2、费马点【垂线段最短】
【两边之差小于第三边】。