浮法玻璃缺陷产生原因与消除方法
- 格式:docx
- 大小:31.63 KB
- 文档页数:6
浮法玻璃锡缺陷产生的原因及治理措施(论文)浮法玻璃锡缺陷产生的原因及治理措施文摘:锡槽是浮法玻璃生产线的成型设备。
在成型过程中,由于漂浮介质锡液和保护气体氮和氢的污染,玻璃存在与锡相关的缺陷。
我们通常称之为锡缺陷。
主要有光线畸变点、锡石、彩虹和锡渍。
锡槽玻璃板的缺陷不仅影响产品的合格率,而且限制了浮法玻璃在汽车、涂料等深加工玻璃中的应用。
为了生产高档浮法玻璃,除了控制熔化缺陷外,还应采取措施减少与锡槽有关的缺陷。
根据生产实践经验,论述了锡浴、锡石、锡渍、回火彩虹、锡滴、雾点、光畸变点等玻璃缺陷的特点、来源、形成机理及预防措施。
关键词:锡缺陷的预防和解决常用方法1、锡缺陷的形成机理我们认为锡槽是一种动态平衡系统,它由锡槽结构(入口端、出口端和主体)、锡液、保护气体、玻璃带等元素组成。
在设计方面,我们对每个组成元素都有明确的要求,如锡槽的气密性好、锡液的纯度高、保护气体的纯度为PPM、玻璃成分的合理设计等,我们会按照您的要求去做。
但事实上,锡缺陷仍然存在,甚至非常严重。
为什么?原因是我们认为锡浴是一个静态的理想系统。
首先,即使我们满足上述要求,污染仍然存在,而且一直在进行,但污染程度较轻,速度较慢。
随着时间的推移,累积污染也会造成缺陷:更重要的是,作为一个动态平衡系统,锡浴的组成元素也在发生变化,如引入水、氢和硫的引入,等等。
这些后来引入的系统元素,恰恰是造成锡缺陷的主要原因。
一般由锡引起的浮法玻璃外观缺陷统称为锡缺陷,包括顶锡、滴落物、沾锡、锡结石、钢化彩虹、光畸变点等。
纯锡的熔点为232℃,沸点为2271℃,1093℃时的蒸汽压力为0.002lhg。
这表明锡在玻璃形成温度下非常稳定。
然而,当氧和硫存在时,锡很容易与它们发生反应。
以氧气循环为例。
氧气进入锡槽后,虽然与氢发生反应,但仍有一部分溶解在锡液中形成SnO。
蒸发后,在低温下以Sn和SnO2的形式沉积在镀液顶部,如水袋。
当沉积物遇到氢时,发生还原反应形成锡。
浮法玻璃成形缺陷及解决办法熔融的玻璃经流道、流槽进入锡槽,在锡槽中成形后由过渡辊台进入退火窑,在这一过程中玻璃液(板)要与闸板、唇砖、锡液、拉边机、保护气体过渡辊台等直接接触,同时与锡槽水包、顶盖砖、底砖等密切相关,很容易形成与成形相关的各种缺陷,包括锡石、锡点(顶锡)、光畸变点(脱落物)、粘锡、虹彩、雾点、气泡等,除气泡之外的可统称为锡缺陷,这些成形缺陷严重制约着玻璃的质量等级与加工性能。
本文对其成因及防止措施作些探讨,以期有助于改善浮法玻璃质量。
1锡缺陷的成因分析1.1锡与锡槽中锡化合物的性质纯净的锡的熔点是232℃,沸点为2271℃,在600~1050℃的温度范围内锡具有较低的熔点和较高的沸点,较低的饱和蒸汽压,同时还具有较大的密度和容易还原的性质,以及锡液与玻璃液之间具有较大的浸润角(175°)几乎完全不浸润等性质,锡用来作为玻璃成形的良好载体。
氧化锡SnO2,密度6.7~7.0g/cm3,熔点2000℃,高温时的蒸汽压非常小,不溶于锡液,正常生产时在锡槽的温度条件下为固体,往往以浮渣形式出现在低温区的液面上,通常浮渣都聚集在靠近出口端。
如果氧化严重,浮渣会延伸很长,容易形成玻璃板下表面划伤。
氧化亚锡SnO,熔点为1040℃,沸点为1425℃,固体为蓝黑色粉末,能溶解于锡液中,SnO的分子一般为其聚合物(SnO)x形式。
在中性气氛中SnO只有在1040℃以上才是稳定的,1040℃以下会发生分解反应。
在锡槽的还原性气氛中SnO可以存在,它往往溶解于锡液中和以蒸汽形式存在于气氛中。
硫化亚锡SnS,密度5.27g/cm3,固体为蓝色晶体,熔点为865℃,沸点为1280℃,具有较大的蒸汽压,800℃时为81.3Pa,正常生产时,在高温区易挥发进入气氛,低温区易凝聚滴落。
1.2锡槽中的硫、氧污染循环氧的污染主要来源于气氛中的微量氧和水蒸汽以及从锡槽缝隙漏入和扩散的氧。
在锡槽工况下,它们使锡氧化成SnO和SnO2浮渣,SnO溶解于锡液和挥发进入气氛,并在顶盖、水包处冷凝、聚集而落到玻璃表面。
收稿日期:2007-12-11作者简介:禚明(1983-),男,山东省禹城市人,山东轻工业学院材料科学与工程学院硕士研究生,主要从事新型无机功能材料的研究.文章编号:1004-4280(2008)01-0062-03浮法玻璃特有缺陷及其预防措施禚 明,梁忠友,宋秀霞(山东轻工业学院材料科学与工程学院,山东济南250353)摘要:主要介绍了浮法玻璃生产过程中的缺陷,例如虹彩、雾点及压裂等,以及减少、防止出现这些缺陷的措施。
并简要介绍了浮法玻璃的发展史。
关键词:浮法玻璃;缺陷;锡;压裂中图分类号:T Q171 文献标识码:AThe unique defection of float glass and its preventive measureZHUO Ming ,LI ANG Zhong 2y ou ,S ONG X iu 2xia(School of Material Science and Engineering ,Shandong Institute of Light Industry ,Jinan 250353,China )Abstract :This article mainly introduced the defection of float glass from production process ,such as rainbows ,cloud points and com pressive break and s o on.Measures were proposed to reduce and prerent these flaws.This paper als o introduced the history of float glass in brief.K ey w ords :float glass ;defection ;tin ;com pressive break0 引言60年代英国皮尔金顿工业集团在英伦三岛建成世界上首条浮法玻璃生产线,从此先进的浮法玻璃生产工艺很快的取代了传统的垂直引上和平拉法玻璃生产工艺,西方发达国家争相购买其专利技术。
浮法玻璃成型过程中产生的锡缺陷摘要:我国浮法玻璃的制作及运用在国民经济的迅速发展也取得了很好的应用价值。
作为浮法玻璃生产中的主要生产设备锡槽,在浮法玻璃成型过程中有着重要的地位,而其中锡缺陷直接影响了浮法玻璃产品的质量及生产效益,同时也阻碍了浮法玻璃在市场中的有效应用。
因此如何解决锡缺陷,给予浮法玻璃最大的质量保障成为了玻璃企业中最关注的问题。
本文中基于浮法玻璃成型过程中所产生的锡缺陷进行了详细地分析与探索。
关键词:浮法玻璃锡缺陷原因治理措施分析引言:浮法玻璃生产工艺是将熔化、澄清的玻璃液在锡槽中熔融锡液面上进行摊平、抛光成形的工艺,而相较于其他品类的玻璃来讲,浮法玻璃具有较高的平整度以及很好的抛光效果,并且这种工艺没有规模、规格、厚度(0.3-25mm)等方面的生产限制。
目前玻璃的发展领域迅速扩张,其中在电子信息、太阳能等行业的应用,对玻璃的质量缺陷要求越来越高,然而通过对浮法电子玻璃的检测,发现由于锡缺陷导致的不合格玻璃问题严重。
由于锡槽是生产浮法玻璃成型的重要设备,因此当玻璃与锡液融合时难免会产生缺陷,所以加强对浮法玻璃的锡缺陷进行严格的治理,才能生产出更多高质量的产品。
一、浮法玻璃成型过程中锡缺陷的成因在浮法玻璃生产过程中,锡槽是玻璃成型的关键环节,锡槽中熔融状态的玻璃液、锡液和保护气体结合成为了一个多相的复杂系统。
在锡槽中,其各相组分各有不同,而系统则一直处于高温状态,肯定会使各相之间产生氧化还原等作用力。
由于各相之间的反应而导致了各种锡缺陷的产生,同时也就导致了浮法玻璃出现了严重的质量问题。
纠其产生缺陷的主要原因在于都是由锡污染所造成的。
而造成锡污染的主要有害气体包括二氧化硫及氧气。
二氧化硫来源于玻璃自身和过渡辊台处通入的二氧化硫向锡槽的渗入(以电解氨产生的氢气,氨原料中可能带入杂质硫;而氧气主要源自于玻璃本身及应为锡槽密封不严所进入锡槽的氧气。
当有害气体会与锡液反应生成 SnO 2 、SnS 2 、SnO 及 SnS 等,还有锡被氧化后又被部分还原成的单质锡。
27生产经验浮法玻璃锡石缺陷的形成机理和控制措施杨晓鹏(秦皇岛耀华玻璃股份有限公司秦皇岛市066000)摘要关键词中图分类号:TQ171文献标识码:A文章编号:1003-1987(2009)07-0027-03阐述锡石的产生机理,重点分析锡槽中氧、硫、水污染要素的主要途径,提出了锡石的预防、控制方法。
锡石 机理 污染 控制 预防浮法玻璃是在充满惰性气体和还原性保护气氛的锡槽中成形的,锡槽中熔融的玻璃液、锡液和保护气体一起构成了一个多相的、复杂的系统。
由于整个系统处于高温度状态,各相之间发生氧化还原等相互作用是必然的这种相互间的反应直接产生与锡有关的缺陷,我们俗称锡缺陷,主要有光学畸变、锡石、虹彩和沾锡等几大类。
上述缺陷严重影响浮法玻璃的质量和成品质量,造成浮法玻璃的产量和总成品率下降,因此对锡缺陷的预防和控制显得尤为重要本文只是选择其中的锡石缺陷从其形成机理及控制方面进行分析和探讨。
锡石是一种或几种氧化物或硫化物组成的缺陷,主要有氧化锡、氧化亚锡、硫化锡、硫化亚锡等,呈灰色或白色,以点状、团状或线状分布在玻璃表面其晶型有时与斜锆石混淆,在显微镜下观察,该类缺陷呈黑色珊瑚状、粒状、针状等,无消光现象,在正交光下有时呈黄色或颜色较艳的红色。
目前,用于锡槽的保护气体大都是高纯N和H的混合气体,其中H占5%~10%。
该混合气体纯度一般含氧和含硫量在10×10以下,露点为-56℃以下。
但由于锡槽本身密封问题,在生产操作中,槽内不免要渗入一定量的空气,或者随玻璃液带入一定量的氧和硫,这是槽内主要杂质的来源。
当氧气、硫等渗入时,锡液将受到氧化。
锡液在高温下与槽内气体主要发生如下反应:2Sn+O=2SnO。
1锡石的特征2锡石的产生机理2222-62SnO+O=2SnOSn+O=SnOSO+Sn+2H=SnS+2HO氧气的引入主要包括以下几个方面:主要是边封、观察窗、测温控、拉边机与锡槽结合处等密封不严所致。
探究浮法玻璃几种结石缺陷的处理方法065600摘要:浮法玻璃是一种制作工艺,它是指使用漂浮法制作的玻璃,大致原理是把融化的玻璃液倒在比重大于玻璃液的液体(液态锡)表面使玻璃成型。
不过,在整个生产的过程当中,也会因各种因素导致浮法玻璃的质量没办法达到预期要求,比如原料、熔化、成形、退火等。
关键词:浮法玻璃;结石缺陷;处理一、结石1、粉料结石造成粉料结石的原因是由硅质大颗粒和硅质细颗粒过多形成料团,在配合料熔化过程中未完全熔化而在板面上形成了白色小颗粒,显微镜下能看到残余的未熔石英颗粒[1]。
解决办法:建议严格控制硅质料上限粒度范围(>0.6m的为0),加强进厂粒度检验和使用过程中外观的抽查,发现大颗粒立即处理,避免入窑。
加强对硅质料特别是砂岩粉超细粉的控制,并加强水分控制,提高混合效果,防止细粉高水分大的超细粉料团形成。
2、铝硅质结石造成粉料结石的原因是长石大颗粒、或原料中混入黏土砖块等,如熟砂岩中混入黏土砖块,在熔化过程中未完全熔化形成的铝硅质结石,在板面形成白色或灰白色的小颗粒。
显微镜下是刚玉、霞石晶型。
解决办法:长石是难熔物,虽然用量少,但要严格控制它的粒度范围,进厂时加强原料外观的抽查,避免高铝质的砖块和石子混入原料中[2]。
二、波筋的原因由于与主体玻璃成分黏度不同,在玻璃表面形成了条带状宏观变形缺陷。
1、配合料混合严重不均或配错料,多加了硅质料或长石料,少加了纯碱料,都能引起板面上筋,一般还伴随着上硅质浮渣。
2、由于配合料的输送皮带沾料,多数是硅质细粉,清理卫生的废料人窑所致。
3、硅质料、长石料成分、水分波动大未及时变料,多引入了SiO2、Al2O3等在熔化过程中扩散不均形成的。
波筋的解决办法:严格控制原料成分和水分,及时抽查变料,严禁废料入窑,加强配合料的混合与控制,防止错料入窑[3]。
三、气泡的原因硅质原料中超细粉含量过高,细小颗粒在反应初期过于激烈,在颗粒周围形成了一层泡沫层,澄清困难而形成气泡。
浮法玻璃缺陷产生原因与消除方法一. 概述1952年至1959年间英国皮尔金顿兄弟有限公司创造了浮法玻璃生产工艺,可以看作是平板玻璃制造中的一次革命。
开始时还只打算用它来代替当时流行的成本很高的镜面玻璃制造方法。
不久就发现,它完全可以代替全部或绝大部分各种常用的平板玻璃制造方法。
浮法是一种新型的工业制造方法,它本身已具有全自动化生产的可能条件。
我国也于1970年独自研制成功了“洛阳浮法玻璃工艺技术”。
伴随着我国经济腾飞,浮法玻璃也得到迅猛发展,截止到2005年底,我国已建成140多条浮法玻璃生产线。
浮法的原理是:冷却到1100℃的玻璃液,从玻璃熔窑冷却部经流液道进入锡槽。
锡槽用电加热保持所要求的温度。
为了防止锡的表面层氧化,在锡槽空间充满氮气加一定比例氢气的保护气体。
液态玻璃在自身重量的作用下在锡液的表面铺开。
在表面张力的作用下玻璃层的平衡厚度保持在6~7㎜左右。
当要求玻璃带的厚度小于6㎜时,可在玻璃带的两边用拉边机机头将玻璃拉伸。
要求厚度大于7㎜时拉边机头则设置成负角度,将玻璃向中部推,从而堆厚。
玻璃带离开锡槽后则由过渡辊台提升辊引入退火窑。
当生产厚度小于平衡厚度的玻璃时,玻璃带要受拉伸的作用。
与传统的引上法类似,玻璃中存在的化学不均匀或热学不均匀都会显示出特别明显的光学畸变。
玻璃板上的厚度差别,表面不平整或玻璃中存在的不均匀物,都会在透视光或反射光中出现光学的不正常现象。
浮法玻璃的像畸变可分为平行于拉制方向、横向或斜向等类。
属于第一类的有不连续线上的变形。
它是在拉制方向的线上断断续续出现的形变。
有时也在连续的线上出现或只有一段变形(脊形歪痕,英文ridgedistortion),但出现在玻璃带行进的方向上。
横向形变是在横跨玻璃带的线上出现变形区。
斜向畸变(鲱鱼骨型扭曲变形,英文herringbonedistortion)一般出现在玻璃带的两侧而向倾斜的方向发展。
在玻璃带的上面或下面还可能出现线道(拉引线道,英文ream)。
下面有时还出现“冷玻璃线”(粗筋,英文ripple)。
在保护气体(掺有少量氢的氮气)气氛中,虽然在操作的高温下玻璃是不会与锡发生反应的,可是如果有少量的氧或硫进入系统中就会形成SnO或SnS,一部分挥发进入锡槽的气氛中或凝结在槽顶,最后聚积成滴落在玻璃带上面使玻璃变形。
玻璃上的锡滴坑(英文drip crater)就是这样形成的缺陷,它与小滴的锡或锡的化合物有关。
在显微镜下能分辨出,周围有一道有色的反应环,玻璃表面出现轻微的变形。
浮法玻璃带下方在辊子转动时按转动周期有少量锡的化合物附着在玻璃带上形成印纹,还可能造成微裂纹,称为滚轴印纹(英文rollerimprints)或锡印纹(带裂纹的锡渣斑,英文dross spots)。
由于浮法操作的化学变化可能既在玻璃带的下方出现开口气泡,又在上方出现表面气泡,玻璃内部带熔液环的气泡也会使玻璃表面轻微变形。
至于玻璃生产中因原料系统和熔化系统造成的玻璃缺陷,如与平拉法和引上法完全共同的缺陷,像澄清气泡、结石、线道等,限于篇幅,则不在本文讨论之列。
应该说,经过多年的摸索和研究,大部分浮法玻璃的特征缺陷都已在很大程度上解决了,但在浮法研制与发展过程中,有些缺陷还顽固地存在,长期困扰着从事浮法玻璃生产和研究设计的人们。
我们应该感谢浮法玻璃行业的前辈们,由于他们的不懈努力,积累了大量宝贵的经验,才使我们今天能够在面对浮法缺陷的时候能够有成熟的方法消除它,使浮法玻璃的质量日益提高。
二. 浮法玻璃成形缺陷的外观描述、产生原因与消除方法1.锡滴锡滴(英文dripcrater)是指掉落到玻璃带上表面含锡的固态或液态物,通常是SnS、SnO2或Sn,也称为“掉锡点”。
掉锡点一般很小,粒径约为0.1~0.5㎜,大部分在0.3㎜左右,肉眼很难从运行的玻璃带上发现它。
切割之后玻璃板在辊道上输送时,用手触摸会有触感。
对静止的玻璃板仔细观察,可发现小黑点。
在50倍的显微镜下观察,看得非常清晰,呈现出两种形状:一种是亮晶晶的小珠,不打光是小黑珠;另一种是带网格的薄膜,网线发亮。
掉锡点虽小,但能使直径约5~10㎜的周围玻璃表面产生严重的光学扭曲,所以又称“光畸变点”,使玻璃成品成为废品。
掉锡点的形态因在锡槽内所处的温度环境而不同。
900℃温度附近区域落下,形成较圆的珠状体,并嵌入玻璃板中,嵌入深度约为其粒径的三分之一左右,冷却后手指甲抠不掉。
低于800℃部位落下,嵌入玻璃板中较浅,冷却后能用指甲抠去。
低于700℃部位落下在玻璃板上成了边缘体,酷似贴膜,无法抠下来。
产生“掉锡点”要同时具备两个因素,一是锡槽气氛中含有挥发的锡化合物,如氧化锡、硫化亚锡和锡金属的蒸汽等;其二是玻璃带尚未硬化时,其上面空间或锡槽顶盖有低温部位,使含锡及锡化合物的挥发物得以冷凝成液体或固体,然后掉落到玻璃带上表面,从而破坏玻璃的平整度。
如果锡液受氧或硫的污染严重,促进锡化合物的大量挥发,再加上锡槽顶盖在高中温区域有许多较冷的砖缝或孔洞(如顶盖支撑砖及组合砖缝、保护气体进气孔、加热元件引出孔、测温元件孔洞等)或水冷却器等,让挥发物得以大量冷凝或沉积,掉锡点就增加。
Pilkington提出了锡槽中氧污染的循环图和硫污染的循环图,并认为由于SnS的挥发量比SnO 大几十倍,所以掉锡点主要是由于硫的污染而产生的。
预防掉锡点生成,首先是杜绝氧、水汽以及硫等进入锡槽。
硫的来源可能是玻璃带本身含有的硫化物,或者使用氨分解法制取氢气时因氨中含有硫,所制得的氢气中也含有硫。
降低玻璃原料中含硫原料和使用含硫分低的燃料有助于降低玻璃带本身带入锡槽的硫。
而采用电解水的方法制取氢气则可以避免保护气体带入硫。
硫的另外一个来源还有可能是在过渡辊台安装的二氧化硫装置过于靠近锡槽,导致硫扩散到锡槽内。
对于氧的污染,除了玻璃本身是一个可能的污染源之外,更主要的来源是空气漏入锡槽中。
其次,改进锡槽顶盖结构,减少甚至消除局部低温冷却部位,也很有效果。
对于使用铁—铬—铝电加热元件的锡槽,减少顶盖砖缝,把砖缝上下堵严,甚至热电偶的插入孔也应该上下堵严,就可以消除砖缝的冷凝作用;采用三相硅碳棒作加热元件的锡槽,顶盖是由小砖拼装而成,有很多孔洞缝隙,给掉锡点的冷凝提供了极多机会。
采用高压纯氮气对缝隙进行吹扫可以有效消除掉锡点。
方法是采用脉冲振动原理,使存在于锡槽顶盖或内壁上的凝结物受到震动后自动飘落沉降。
具体来说就是利用锡槽保护气体,产生脉冲振动来对锡槽进行吹扫。
其方法是,在锡槽密封的状态下,瞬间增大或减少氮气的供应量,达到一定时间后将增供或减少的氮气量突然减少或增加,如此反复而产生脉冲振动,对锡槽进行吹扫。
该方法对锡槽的吹扫时间短,吹扫效果好,对生产影响时间短,且对环境没有任何污染。
另外,对冷却器进行定期清扫也可以起到预防掉锡点生成的作用。
采取加大保护气体量、分比例供氢并在高温区将锡槽内污染的保护气体导流排空,将污染物迅速排出锡槽外,也是有效的办法。
但其前提是锡槽气密性要好。
国外有报道向锡槽内通入一定浓度的氯气,使锡槽内壁上的锡沉积物在短时间内得以清除。
氯气处理的作用方式取决于浓度和处理时间的长短,0.07m3/h的给气量足以使小的锡沉积物在与气体接触时流到一起并从顶盖滴落下来。
正文浮法玻璃的特征缺陷产生原因与消除方法-2(2007-04-23 14:30:15) 分类:专业技术2.钢化彩虹浮法玻璃钢化彩虹(国外称为“起霜”,英文temperingbloom),是指浮法玻璃在进行钢化或热弯等热加工时,玻璃下表面(成形时与锡液接触的表面)呈现蓝色的荧光,在显微镜下观察是玻璃表面有微皱纹。
它是由玻璃下表面的锡造成的,是一种薄膜干涉现象。
所谓薄膜干涉现象,是指从扩散光源发出的光波,在薄膜两表面反射后相互叠加而产生的干涉现象。
例如太阳光照在肥皂膜或照在漂浮在水面上的油膜时所观察到的彩色条纹,即是薄膜的干涉。
由于微皱纹对光线干涉,反射时呈现蓝色,严重时甚至可使玻璃表面粗糙发毛而不透明。
在生产线上有时从退火窑起直到整个冷端长达几百米的玻璃带都呈现此种蓝色虹彩。
其原因是锡液受到氧的严重污染后,SnO渗透到玻璃下表面内,形成一层很薄的薄膜。
没有钢化时,由于这层膜太薄,在自然光照射下是观察不到彩虹的。
当玻璃板在氧化气氛中再被加热时,SnO吸收氧进一步氧化成SnO2,体积膨胀,使玻璃表面形成皱纹。
反应过程如下:在540~750℃之间,在中性气氛下,SnO发生岐化反应,反应较完全:2SnO=SnO2+Sn在含氧气氛中:SnO+ O2=SnO2由于SnO吸收了空气中的O2,使得局部体积膨胀,薄膜表面产生了折皱,膜厚增加,因而产生干涉,能观察到彩虹。
所以形成皱纹的条件有三个,其一是表面渗入过量的SnO,其二是在氧化气氛中热加工,第三是热处理温度达到玻璃软化的温度。
如果钢化时严格控制温度使之接近软化温度但玻璃表面未软化,也不出现皱纹。
有试验表明含SnO很少的浮法玻璃,即使加热到软化温度也不出现皱纹。
加强锡槽气密性和提高保护气体纯度后,可以保持锡中氧的浓度在一个可以接受的数值。
锡的氧化物在玻璃中一般都以非晶态的形式存在。
钢化彩虹的形成及其严重程度与玻璃表面的渗锡量有直接的关系。
研究表明,浮法玻璃下表面锡的扩散深度可达12~36μm。
随深度增加,渗锡量逐渐变小。
我国现阶段浮法玻璃下表面的渗锡量大约为60~95μg/㎝2,高质量的合资生产线玻璃下表面渗锡量仅为5~6μg/㎝2。
相应地,钢化彩虹出现的程度要比国内轻微或者根本没有。
要避免玻璃出现热加工彩虹,首先要保证保护气体的供应纯度以及加强锡槽密封,先做到锡槽出口段液面没有SnO2浮渣。
另外国外有专利报道用石墨或无定形的碳与锡液和保护气体接触能使保护气体保持还原状态,从而最大限度减少锡液上锡的氧化物含量,可以防止锡被氧化及恢复保护气体的保护性能,因为碳可以先于锡液被氧化,成为一氧化碳,从而不会形成SnO,也就使与锡液接触的玻璃表面不呈现虹彩。
3.沾锡沾锡(英文tinpick-up),浮法玻璃下表面附着肉眼可见的金属锡,小的直径不足1㎜,大的可成线状、片状甚至带状。
它们与玻璃附着的界面呈现银白色金属光泽,像镜子一样,严重时每平方米玻璃表面锡可以以克计。
虽然这些锡可以剥去,但玻璃表面往往残留有轻微痕迹,而且不胜其烦。
沾锡的玻璃属于废品。
沾锡的机理目前尚不清楚。
从原理上说,金属和玻璃在结构键上不同,二者是互不浸润的。
对易于极化的金属,必须在二者的接触界面处有过渡层,即向玻璃一侧的金属原子呈现非金属行为而与玻璃粘附,向金属一侧的金属原子仍呈金属行为,而与金属结合,使金属得以附着在玻璃表面。
浮法玻璃在成形过程中所渗入下表面的SnO,即引起钢化彩虹的SnO,应不是导致沾锡的过渡层。