抛物线与相似综合问题
- 格式:doc
- 大小:141.50 KB
- 文档页数:3
中考复习二次函数抛物线综合大题1..如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.2.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C (3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.3.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC =2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.4.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.5.如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.6.在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.7.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.8.已知抛物线y =ax 2+bx +3经过点A (1,0)和点B (﹣3,0),与y 轴交于点C ,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP 交BC 于点D ,当S △CPD :S △BPD =1:2时,请求出点D 的坐标;(3)如图2,点E 的坐标为(0,﹣1),点G 为x 轴负半轴上的一点,∠OGE =15°,连接PE ,若∠PEG =2∠OGE ,请求出点P 的坐标;(4)如图3,是否存在点P ,使四边形BOCP 的面积为8?若存在,请求出点P 的坐标;若不存在,请说明理由.9.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.10.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.11.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a 的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.12.如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BC,BE,求∠CBE的正切值;(3)在(2)的条件下,点M是抛物线对称轴上且在CE上方的一点,是否存在点M使△DMB和△BCE相似?若存在,求点M坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,﹣6).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.14.如图1,抛物线y=﹣x2+kx+c与x轴交于A和B(3,0)两点,与y轴交于点C(0,3),点D是抛物线的顶点.(1)求抛物线的解析式和顶点D的坐标;(2)点P在x轴上,直线DP将△BCD的面积分成1:2两部分,请求出点P 的坐标;(3)如图2,作DM⊥x轴于M点,点Q是BD上方的抛物线上一点,作QN ⊥BD于N点,是否存在Q点使得△DQN∽△DBM?若存在,请直接写出Q 坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当以B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.16.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)17.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.18.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E.(1)求抛物线的解析式;(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.①求线段PQ的长度n关于m的函数关系式;②连接AP,CP,求当△ACP面积为时点P的坐标;(3)若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.19.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.。
一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)解:∵轴,则,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)解:∵,,∴,∴∵∴当与相似时,存在以下两种情况:∴解得∴∴ ,解得∴【解析】【分析】(1)运用待定系数法解答即可。
(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。
(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。
2.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).(1)AP=________cm(同含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.【答案】(1)(10-5t)(2)解:如图①,当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.(3)解:分三种情况讨论:a)如图②,过点P作PE⊥BD于点E,则PE=3t.当时,.b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则.当时,.c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .综上所述:(4)解:分三种情况讨论.①当NQ∥AB时,如图5,过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.②当AD∥NQ,且Q在BD上时,如图6.∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.③当AD∥NQ,且Q在DC上时,如图7,可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,此时DQ=AB= =6,t= =2.综上所述:或或.【解析】【解答】解:(1)(10-5t);【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得比例式:,则可得关于t的方程,解方程即可求解;(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;c)如图④,当 1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;(4)由题意NQ与△ABD的一边平行可知,有3种情况:①当NQ∥AB;②当AD∥NQ,且Q在BD上时;③当AD∥NQ,且Q在DC上时。
抛物线与相似三角形哎呀,说起抛物线和相似三角形,这可真是让不少同学头疼的知识点呢!但别担心,咱们一起来好好琢磨琢磨。
先来说说抛物线,你想象一下,就像一个调皮的孩子在玩扔球的游戏,球飞出去的轨迹,那就是抛物线。
它的形状弯弯的,有时候高,有时候低,可有意思啦!比如说,咱们去游乐场玩那种打水球的游戏,把水球用力一扔,它在空中划过的那道弧线,就是抛物线。
相似三角形呢,就像是一对对长得很像的“双胞胎”三角形。
它们的角是一样大的,边呢,成比例地放大或者缩小。
这就好比你有两个玩具积木搭成的三角形,一个大一点,一个小一点,但形状特别像,这就是相似三角形啦。
咱们来举个例子啊,有一天我在公园里散步,看到一个小朋友在放风筝。
那风筝线和地面形成的夹角,还有风筝的高度以及小朋友和风筝的距离,这不就构成了一个抛物线和相似三角形的问题嘛!小朋友想知道风筝到底飞多高,咱们就可以用抛物线的知识来算算。
假设风筝线和地面的夹角是 60 度,小朋友离风筝的水平距离是 10 米,而风筝线的长度是 15 米。
那咱们就能通过三角函数算出风筝的高度。
这时候,再想想相似三角形,假如在旁边还有另一个小朋友,他离风筝的距离和第一个小朋友不一样,但是角度相同,咱们就能通过相似三角形的比例关系,算出第二个小朋友看到的风筝高度和第一个小朋友看到的高度之间的关系。
在数学的世界里,抛物线和相似三角形经常会结伴出现。
比如说,一道数学题中,给了你一个抛物线的方程,然后在这个抛物线里面又藏着几个相似三角形。
这时候,咱们就得先把抛物线的图像在脑子里画出来,搞清楚它的对称轴、顶点这些关键的点。
然后再去找那些相似三角形,看看它们的边和角有什么关系。
做题的时候,咱们可以先从简单的入手。
比如说,先找出那些明显的相等的角,或者成比例的边。
就像拼图一样,一块一块地把这些线索拼凑起来,最后就能解开谜题啦!有时候,遇到难题别着急,多画画图,多想想咱们生活中的例子。
比如说,篮球场上投篮的轨迹,是不是也像抛物线?还有建筑工地上的塔吊,它的结构中是不是也能找到相似三角形?总之啊,抛物线和相似三角形虽然有点复杂,但只要咱们多观察,多练习,就一定能把它们拿下!相信自己,加油!。
抛物线及其性质【考纲说明】1、掌握抛物线的简单几何性质,能运用性质解决与抛物线有关问题。
2、通过类比,找出抛物线与椭圆,双曲线的性质之间的区别与联系。
【知识梳理】1.抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线.2.抛物线四种标准方程的几何性质:3.抛物线)0(22>=p px y 的几何性质:(1)范围 因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p xx =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===∙∙ (4) 焦点弦中通径最短长为2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
二次函数与几何图形综合题1、如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO 相似?若存在,求点P的坐标;若不存在,请说明理由.2、如图,抛物线y= 12x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.3、如图,在直角坐标系中有一直角三角形AOB,O为坐标原点, OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线经过点A、B、C.(1)求抛物线的解析式.(2)若点P是第二象限内抛物线上的动点,其横坐标为t.①设抛物线对称轴与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标.②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由.4、已知抛物线y=x2+bx+经过A(2,0).设顶点为点P,与x轴的另一交点为点B.2(1)求b的值,求出点P、点B的坐标;(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.5、6、如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x 轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.(1)求该抛物线的表达式;(2)求点P的坐标;(3)试判断CE与EF是否相等,并说明理由;(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N 的坐标;若不存在,请说明理由.7、如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD 能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?8、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.9、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.10、已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,﹣2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1﹣x2| =8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3)如图(b),点Q为EBF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH•AQ 是否为定值?若是,请求出这个定值;若不是,请说明理由.11、12、如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,)在抛物线上,直线l是一次函数y=kx﹣2(k≠0)的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.13、如图,抛物线y=2517144y x x =-++ 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0)(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N .设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.14、如图,抛物线y=ax 2+bx-3与x 轴交于A ,B 两点,与y 轴交于C 点,且经过点(2,-3a ),对称轴是直线x=1,顶点是M .(1)求抛物线对应的函数表达式;(2)经过C ,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P ,A ,C ,N 为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y 轴的交点是D ,在线段BD 上任取一点E (不与B ,D 重合),经过A ,B ,E 三点的圆交直线BC 于点F ,试判断△AEF 的形状,并说明理由;(4)当E 是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).15、如图,抛物线y = ax2 + bx + c经过A(1,0)、B(5,0)两点,最低点的纵坐标为–4,与y轴交于点C。
抛物线与相似三角形专题精编【例1】 如图,已知△ABC 的三个顶点坐标分别为A (-4,0)、B (1,0)、C (-2,6).(1)求经过A 、B 、C 三点的抛物线解析式;(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE =CE ;(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F ,试问:以A 、B 、F 为顶点的三角形与△ABC 相似吗?点拨: 以数助形,通过计算证明.对于(3),只需证明:AB BC BF AB=.【例2】如图1,已知抛物线()20y ax bx a =+≠经过A (3,0)、B (4,4)两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3)如图2,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).图1 图2点拨: 对于(3),点B (4,4)、D (2,-2)的坐标隐含了什么关系?条件∠NBO =∠ABO 怎样运用?如何将△POD ∽△NOB 转化为相似三角形的基本图形?P 点的位置能否大致确定?这是解决问题的关键.归纳总结: 构造即依据问题的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质.例2(3)可通过几何变换,构作基本相似形,化一般为特殊,使得点P 得以定位,提高解题的境界.【例3】 如图,抛物线2y ax bx c =++的顶点坐标为(2,-1),并且与y 轴交于点C (0,3),与x 轴交于两点A 、B .(1)求抛物线的解析式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 是直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求出E 点的坐标;若不存在,请说明理由.点拨: 对于(3),因△BCO 是等腰直角三角形,故△DEF 也是等腰直角三角形,但相似对应关系不确定(或直角顶点不确定),应全面讨论.归纳总结: 审题的关键是在弄清字句含义的基础上,明晰数学意义,挖掘隐含条件,建立条件与结论之间的数学联系.对于例3,揭示△BOC 的形状、直线AD 与BC 的位置关系,为点的定位创造条件是解题的关键.审题的本质是从问题本身去获取从何处入手、向何方前进的信息与启示,是从问题得到“如何解这道题”的逻辑起点.“磨刀不误砍柴工”,认真审题,成也审题,败也审题.针对训练:1、如图,已知抛物线2y ax bx c =++的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为()3,3-.(1)求抛物线的解析式;(2)在抛物线上求点P ,使=2POA AOB S S △△.(3)在抛物线上是否存在点Q ,使△AQO 与△AOB 相似?如果存在,请求出Q 点的坐标;如果不存在,请说明理由.2、如图,已知二次函数()()12+48y x ax b =+的图象过点A (-4,3)、B (4,4). (1)求抛物线的解析式;(2)求证:△ACB 是直角三角形;(3)若点P 在第二象限,且是抛物线上的一动点,过点P 作PH ⊥x 轴于H ,是否存在以P 、H 、D 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.3、如图,已知抛物线的方程()()()1120C y x x m m m=-+->:与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧.(1)若抛物线1C 过点M (2,2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H ,使BH +EH 最小,并求出点H 的坐标;(4)在第四象限内,抛物线1C 上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.4、如图,已知抛物线()2111444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.本节总结:点的运动既能改变图形相关的数量关系,又能改变图形的形状及位置,从而造就相似三角形,抛物线与相似三角形的结合是抛物线上几何架构的重要表现形式.由相似三角形的性质确定动点位置,从定性到定量(点的坐标的确定),因点的运动或对应关系的不确定而进行的讨论,是解这类问题的关键.在中考综合题中,动点的运动既会影响图形相关的数量关系,又会改变图形的位置及形状,从而生成特殊三角形、特殊四边形、相似三角形,解题的关键是把图形的几何性质与点的坐标有机结合.。
常考二次函数综合题整理 题型一最短路径问题1、如图,抛物线y=﹣12x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【变式】如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;题型二最大面积(线段最长)问题2、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?并求出这个最大值.3、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH△x轴于点H,与BC交于点M,连接PC,求线段PM的最大值.【变式】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,过点P作PE△y轴于点E,连接AE.求△PAE面积S的最大值;题型三 存在点构成等腰三角形问题4、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.5、如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【变式】已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【变式】如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点()0,2C -,点A 的坐标是()2,0,P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线1x =-.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且14PE OD =,求PBE ∆的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的下方,是否存在点M ,使BDM ∆是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.题型四 存在点构成直角三角形问题6、如图,抛物线2y ax bx 4=+-经过()A 3,0-,()B 5,4-两点,与y 轴交于点C ,连接AB ,AC ,BC .()1求抛物线的表达式;()2求证:AB 平分CAO ∠;()3抛物线的对称轴上是否存在点M ,使得ABM V 是以AB 为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.【变式】如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.●题型四存在点构成等腰直角三角形问题7、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P作x轴的垂线,交线段AB于点D,再过点P做PE△x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.●题型四存在点构成平行四边形问题8、如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.()B-,对称轴为直线l,点M是线段AB的中点.0,5(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.9、如图,已知抛物线y=12x2+bx+c与直线AB:y=12x+12相交于点A(1,0)和B(t,52),直线AB交y轴于点C.(1)求抛物线的解析式及其对称轴;(2)设点M是抛物线对称轴上一点,点N在抛物线上,以点A、B、M、N为顶点的四边形是否可能为矩形?若能,请求出点M的坐标,若不能,请说明理由.10、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.11、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在x轴下方且在抛物线对称轴上,是否存在一点Q,使△BQC=△BAC?若存在,求出Q点坐标;若不存在,说明理由.12、如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.连接AC,当直线AM与直线BC的夹角等于△ACB 的2倍时,请直接写出点M的坐标【变式】如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【变式】如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE△BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与△CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.【变式】如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.题型七 存在点使三角形相似问题13、如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.14、如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【变式】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求△ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE△AC,当△DCE 与△AOC相似时,求点D的坐标.【变式】如图,抛物线y=12x2+bx+c与直线y=12x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ△PA交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.题型七二次函数与圆结合问题15、如图,△E的圆心E(3,0),半径为5,△E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与△E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.16、如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+53x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣13x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【变式】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP△x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.。
有关相似的综合题(一) 班级 姓名1.如图, P 为正方形 ABCD 的对称中心, A (0, 3) , B (1, 0) , 直线 OP 交 AB 于 N , DC 于 M , 点 H 从原点 O 出发沿 x 轴的正半轴方向以 1 个单位每秒速度运动, 同时, 点 R 从 O 出发沿 OM 方向以 2 个单位每秒速度运动,运动时间为 t 。
求:yD MRP NxB H O AC(2)当 t 为何值时,△ANO 与△DMR 相似? (3)△HCR 面积 S 与 t 的函数关系式;并求以 A 、B 、C 、R 为顶点的四边形是梯形时 t 的值及 S 的最大值。
(1) C 的坐标为 ▲ ;2.如图,Rt△ABC 中,∠C=90°, BC=6, AC=8.点 P, Q 都是斜边 AB 上的动点,点 P 从 B 向A 运动(不与点 B 重合),点 Q 从 A 向 B 运动, BP=AQ.点 D, E 分别是点 A, B 以 Q, P 为对称中心的对称点,HQ⊥AB 于 Q,交 AC 于点 H.当点 E 到达顶点 A 时, P, Q 同时停止运动.设BP 的长为 x,△HDE 的面积为 y.(1)求证:△DHQ∽△ABC;(2)求 y 关于 x 的函数解析式并求 y 的最大值;(3)当 x 为何值时,△HDE 为等腰三角形?BPEDQH A(第 24 题)C有关相似的综合题(二)班级 姓名3. 如图, 把含有 30°角的三角板 ABO 置入平面直角坐标系中, A , B 两点坐标分别为 (3, 0) 和(0, 3 3 ) .动点 P 从 A 点开始沿折线 AO-OB-BA 运动, 点 P 在 AO , OB , BA 上运动的速度分别为 1, 3, 2 (长度单位/秒) ﹒一直尺的上边缘 l 从 x 轴的位置开始以 (长度单位/秒)的速度向上平行移动 (即移动过程中保持l ∥x 轴),且分别与 OB , AB 交于 E , F 两点 ﹒ 设动点 P 与动直线 l 同时出发,运动时间为 t 秒,当点 P 沿折线 AO-OB-BA 运动一周时,直线 l 和动点 P 同时停止运动.请解答下列问题: (1) 过 A , B 两点的直线解析式是 ▲ ;(2) 当 t ﹦ 4 时,点 P 的坐标为 ▲ ;当 t ﹦ ▲ ,点 P 与点 E 重合;(3) ① 作点 P 关于直线 EF 的对称点 P ′. 在运动过程中,若形成的四边形 PEP ′F 为菱形,则 t 的值是多 少?② 当 t ﹦ 2 时,是否存在着点 Q , 使得△FEQ ∽△BEP ?若存在, 求出点 Q 的坐标;若不存在,请说 明理由.y BE F lO P A x( 第 24 题3 34. 如图 1、在平面直角坐标系中, O 是坐标原点, □ABCD 的顶点 A 的坐标为 (-2, 0) , 点 D 的坐标为 (0,2 3 ),点 B 在x 轴的正半轴上,点 E 为线段 AD 的中点,过点 E 的直线l 与x 轴交于点 F ,与射线 DC 交于点 G 。
2023年九年级数学中考复习:二次函数综合压轴题(相似三角形问题)1.如图,抛物线2y x bx c=-++与x轴的两个交点分别为A(3,0),D(﹣1,0),与y轴交于点C,点B在y轴正半轴上,且OB=OD.(1)求抛物线的解析式;(2)如图1,抛物线的顶点为点E,对称轴交x轴于点M,连接BE,AB,请在抛物线的对称轴上找一点Q,使∠QBA=∠BEM,求出点Q的坐标;(3)如图2,过点C作CF∠x轴,交抛物线于点F,连接BF,点G是x轴上一点,在抛物线上是否存在点N,使以点B,F,G,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2.已知,抛物线23y ax bx=++(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=12.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是∠ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12PAC ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与∠ACD相似,直接写出点M的坐标.3.如图∠,在平面直角坐标系中,二次函数y=﹣13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P 从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,∠APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使∠PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图∠,点N的坐标为(﹣32,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.4.在平面直角坐标系中,函数22y ax bx =++的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)点Q 是直线AC 上方的抛物线上一动点,过点Q 作QE 垂直于x 轴,垂足为E .是否存在点Q ,使以点B 、Q 、E 为顶点的三角形与△AOC 相似?若存在,直接写出点Q 的坐标;若不存在,说明理由;(4)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.5.如图,二次函数22y ax bx =++的图像与x 轴交于点A ()1,0-、B ()4,0,与y 轴交于点C .(1)=a ;b = ;(2)点P 为该函数在第一象限内的图像上的一点,过点P 作PQ BC ⊥于点Q ,连接PC , ∠求线段PQ 的最大值;∠若以P 、C 、Q 为顶点的三角形与ABC ∆相似,求点P 的坐标.6.如图:已知正方形OABC 的边OC 、OA 分别在x 轴和y 轴的正半轴上,点B 坐标为(4,4).二次函数216y x bx c =-++的图象经过点A 、B ,且与x 轴的交点为E 、F .点P 在线段EF 上运动,过点O 作OH⊥AP 于点H ,直线OH 交直线BC 于点D ,连接AD . (1)求b 、c 的值;(2)在点P 运动过程中,当∠AOP 与以A 、B 、D 为顶点的三角形相似时,求点P 的坐标;(3)在点P运动到OC中点时,能否将∠AOP绕平面内某点旋转90°后使得∠AOP的两个顶点落在x轴上方的抛物线上?若能,请直接写出旋转中心M的坐标;若不能,请说明理由.7.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∠y轴,分别与x轴和直线CD交于点M、N.∠连结PC、PD,如图1,在点P运动过程中,∠PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;∠连结PB,过点C作CQ∠PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.8.已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH,AE,求证FH∥AE;(3)如图2,直线AB分别交x轴,y轴于C,D两点,点P从点C出发,沿射线CD方向个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.9.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得∠POC∠∠MOB?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象经过点(3,0)A ,(1,0)B -,(0,3)C -,顶点为D .(1)求这个二次函数的解析式及顶点坐标.(2)在y 轴上找一点P (点P 与点C 不重合),使得90APD ∠=︒,求点P 坐标. (3)在(2)的条件下,将APD △沿直线AD 翻折,得到AQD ,求点Q 坐标.11.如图1,二次函数y=ax 2A (3,0),G (﹣1,0)两点. (1)求这个二次函数的解析式;(2)若点M 时抛物线在第一象限图象上的一点,求∠ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E (0,x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得∠FEQ∠∠BEP ?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.12.如图,抛物线()222=-+-(其中m>1)顶点为P,与y轴相交于点A(0,y a x m mm-1).连接并延长P A、PO分别与x轴、抛物线交于点B、C,连接BC,将∠PBC绕点P逆时针旋转得PB C''△,使点C′正好落在抛物线上.(1)该抛物线的解析式为__________(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段BC'上,求此时m的值.13.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C (0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.∠若M在y轴右侧,且△CHM∠∠AOC(点C与点A对应),求点M的坐标;∠若∠M M的坐标.14.如图,已知抛物线2y ax bx c=++的对称轴为直线1x=,(0a≠),且经过(1,0)A-、(0,3)C-两点,与x轴交于另一点B,设D是抛物线的对称轴1x=上的一动点,且90DCB∠=︒.(1)求这条抛物线所对应的函数关系式.(2)求点D的坐标.(3)探究坐标轴上是否存在点P,使得P、A、C为顶点的三角形与BCD△相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.15.如图,已知抛物线24 3y ax x c=++与x轴交于A,B两点,与y轴交于点C,点D 在抛物线上,且A(-1,O),D(2,2).(1)求这条抛物线的解析式;(2)在y轴上是否存在点P,使以O,B,P为顶点的三角形与∠AOC相似,若存在,请求出点P的坐标;若不存在,请说明理由;(3)小明在探索该图时提出了这样一个猜想:“直线AD平分∠CAB",你认为小明的猜想正确吗?请说明理由.,16.如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE∠x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与∠DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.17.如图,已知一次函数y=0.5x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=0.5x2+bx+c的图象与一次函数y=0.5x+1的图象交于点B、C两点,与x轴交于D、E 两点,且D点坐标为(1,0).(1)求二次函数的解析式;(2)在在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在动点P,使得∠PBC是以P为直角顶点的直角三角形?若存在,求出点P运动时间t的值;若不存在,请说明理由;(3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与∠ABD相似?若存在,求a的值;若不存在,说明理由.18.如图,已知直线y=﹣x+3的图象分别交x轴于A点,交y轴于B点,抛物线y=﹣x2+bx+c经过点A、B两点,并与x轴交于另一点D,顶点为C.(1)求C、D两点的坐标;(2)求tan∠BAC;(3)在y轴上是否存在一点P,使得以P、B、D三点为顶点的三角形与∠ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.19.已知:如图1,直线364y x=+与x轴、y轴分别交于点A、C两点,点B的横坐标为2.(1)求A、C两点的坐标和抛物线的函数关系式;(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△P AD,求点P的坐标;(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q 的坐标.20.已知如图1,抛物线y=﹣38x2﹣34x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(2)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,直接写出CP的值.参考答案:1.(1)2y x 2x 3=-++;(2)Q 的坐标为(1,1)或(1,14);(3)N的坐标为(12)或(12)或(1+2)或(12)或(1,4).2.(1)2y x 2x 3=-++,顶点D (1,4);(3)P352,;(4)(0,0)或(9,0)或(0,﹣13). 3.(1)b=13 ,c=4;(2)∠APQ 不可能是直角三角形,(3)(4)Q′(67 ,227). 4.(1)224233y x x =--+; (2)P (32-,52); (3)Q 点坐标为(−2,2)或 (−34,218); (4)1Q (−5,0),2Q (−1,0),3Q0),4Q0).5.(1)1322a b =-=,; (2)∠PQ∠P 的坐标为()3,2或325,28⎛⎫ ⎪⎝⎭ 6.(1)234b c ⎧=⎪⎨⎪=⎩(2)P 1(2,0);P 2(0);P 3(2﹣0).(3)(2,2),(1916 ,3116),(﹣116,4116); 7.(1)2318355y x x =-+;(2)∠ 102940;∠ 存在,((2,95)或(349,5527-).8.(1)y =12x 2-12x秒9.(1)y=2x 2﹣3x ;(2)C (1,﹣1);(3)(4564,316)或(﹣316,4564). 10.(1) D 的坐标为(1,4)-;(2) (0,1)P -;(3) (4,3)Q -11.(1)抛物线的解析式为y=2(2)∠ABM 面积的最大值是8;(3)存在; Q 的坐标为(﹣2323). 12.(1)221()22m y x m m m -=-+-(3)2m =13.(1)y=x 2﹣x ﹣2;(2)32;(3)∠M (1,﹣2),M′(73,109);②(2,0)或(﹣3,10).14.(1)223y x x =--;(2)(1,4)D -;(3)(0,0),10,3⎛⎫ ⎪⎝⎭,(9,0) 15.(1)224233y x x =-++ ;(2)()()330,0,0,60,622⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭、、、 ; (3)小明的猜想不正确,理由见解析.16.(1)y=﹣43x 2﹣83x+4;(2)PG=﹣43m 2﹣83m+4﹣4=﹣43m 2﹣83m (﹣2<m <0);(3)在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与∠DEH 相似,此时m 的值为﹣1或﹣2316. 17.(1)解析式为:213122=-+y x x ; (2)t =1或3;(3)当a 时,∠APQ 与∠ABD 相似 18.(1)D (﹣1,0)(2)13(3)存在P (0,0),(0,﹣13) 19.(1)A (-8,0),C (0,6),239684y x x =--+; (2)(163-,0) (3)(167-,0)或(967-,0). 20.(1)N 点的横坐标为:-2115;(2)CP 的值为:1034245−4.。
相似三角形与抛物线的面积比例相似三角形与抛物线是几何学中常见的两个概念。
在本文中,我们将探讨相似三角形与抛物线之间的面积比例关系。
一、什么是相似三角形?相似三角形指的是具有相同形状但不同大小的三角形。
换句话说,它们的内角相等,对应边的比例相等。
根据相似三角形的性质,我们可以得出两个重要结论:1.对应边长的比例:如果两个三角形ABC和DEF相似,则它们对应边的长度比例为AB/DE = AC/DF = BC/EF。
2.面积的比例:如果两个三角形ABC和DEF相似,则它们的面积比例为(△ABC的面积)/(△DEF的面积) = (AB²/DE²) = (AC²/DF²) = (BC²/EF²)。
二、什么是抛物线?抛物线是平面上的一条特殊曲线,它可以由一个或多个焦点和直线(称为准线)上的点的位置关系定义。
抛物线具有以下重要特征:1.焦点和准线:每个抛物线都有一个焦点和一条准线。
焦点是离抛物线最近的点,而准线则是与抛物线关联的一条直线。
2.对称性:抛物线具有对称性。
也就是说,抛物线上任意一点关于焦点的投影到准线上的距离相等。
3.焦准定理:焦距的长度等于焦点到抛物线上任意一点的距离的垂直平方。
三、相似三角形与抛物线的面积比例关系现在我们来探讨相似三角形与抛物线之间的面积比例关系。
假设有一个抛物线和在其上的一个三角形。
我们可以利用相似三角形的性质推导出它们的面积比例。
1.建立坐标系:我们可以在平面上建立一个坐标系,使准线成为x 轴,焦点为原点。
2.确定抛物线方程:假设抛物线的方程为y = ax^2。
3.确定三角形的顶点坐标:假设三角形顶点为(0, a),(x1, y1),(x2, y2),其中x1和x2分别为抛物线上两点的横坐标,y1和y2为抛物线上对应点的纵坐标。
4.计算三角形的面积:通过计算三角形的底边和高,我们可以得到抛物线和三角形的面积。
∆ABC的底边长为x2 - x1,高为a - y,所以∆ABC的面积为(1/2) * (x2 - x1) * (a - y)。
抛物线与相似三角形结合的动点问题一、概述在数学中,抛物线与相似三角形是两个重要的概念。
抛物线具有很多有趣的性质,而相似三角形则是几何学中的重要概念之一。
本文将探讨抛物线与相似三角形结合的动点问题,通过具体的案例分析和推导,探讨这两个概念之间的通联,从而深入理解这一数学问题。
二、抛物线的基本性质1. 抛物线的定义抛物线是平面上所有到定点的距离等于其到定直线的距离的点的轨迹。
在直角坐标系中,抛物线的标准方程为 y=ax^2+bx+c,其中 a、b、c为常数,且a≠0。
2. 抛物线的焦点和准线抛物线的焦点是定点 F,准线是定直线 l。
对于标准方程 y=ax^2 的抛物线来说,焦点的横坐标为 0,纵坐标为 1/(4a),准线的方程为 y=-1/(4a)。
3. 抛物线的对称性抛物线具有关于焦点的对称性。
即便不考虑直角坐标系下的图像,只需考虑焦点和抛物线上另一点的连线和准线的位置关系即可。
三、相似三角形的基本概念1. 相似三角形的定义相似三角形是指它们的对应角相等,并且对应边成比例。
两个三角形相似的简化表述是它们的形状相似,但尺寸不同。
2. 相似三角形的性质相似三角形的边长之比等于它们的对应边上的线段之比。
并且,对于两个相似三角形来说,它们的面积之比等于它们的相似边长之比的平方。
3. 相似三角形的判定方法判定两个三角形相似的方法有AAA判定法、AA判定法、SAS判定法、SSS判定法等。
通过这些判定方法,可以判断两个三角形是否相似。
四、抛物线与相似三角形结合的动点问题1. 问题描述考虑一个抛物线 y=ax^2 上的动点 P(x,y),将 P 连接到抛物线的焦点F,将 P 到抛物线的准线的垂直距离记作 h,P 到抛物线的焦点的距离记作 d。
如何根据 P 的位置来求出 h 和 d 之间的关系呢?2. 问题分析我们可以通过抛物线 y=ax^2 的标准方程求解出焦点 F 的坐标,以及准线的方程。
我们可以通过 P 的坐标求出 h 和 d 之间的关系。
中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx经过点A(2,0)和点B(−1,m),顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与x轴交于点P如果点C在x轴上且△ABC与△ABP相似求点C的坐标.2.如图在平面直角坐标系中点A(1,2)B(5,0)抛物线y=ax2−2ax(a>0)交x轴正半轴于点C连结AO AB.(1)求点C的坐标和直线AB的表达式(2)设抛物线y=ax2−2ax(a>0)分别交边BA BA延长线于点D E.①若△CDB与△BOA相似求抛物线表达式②若△OAE是等腰三角形则a的值为______(请直接写出答案即可).3.如图拋物线经过A(4,0),B(1,0),C(0,−2)三点.(1)求出抛物线的解析式(2)若在直线AC上方的抛物线上有一点D使得△DCA的面积最大求出点D的坐标(3)若P是抛物线上一动点过P作PM⊥x轴垂足为M使得以A,P,M为顶点的三角形与△OCA相似请直接写出符合条件的点P的坐标.x2+bx+c与x轴交于A B(4,0)两点与y轴交于点C(0,2)连4.如图抛物线y=−12接BC交抛物线的对称轴于点D连接AC.(1)求抛物线的表达式(2)若点E在对称轴上①当AE+CE的值最小时求点E的坐标②以C D E为顶点的三角形与△ABC相似时求点E的坐标.5.如图已知A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4).点P是第一象限内抛物线上的一点连接AC BC.M为OB上的动点过点M作PM⊥x轴交抛物线于点P交BC于点Q.(1)求抛物线的函数表达式(2)过点P作PN⊥BC垂足为点N设点M的坐标为(m,0)请用含m的代数式表示线段PN的长并求出当m为何值时PN有最大值最大值是多少?(3)试探究M在运动过程中是否存在这样的点Q使得以O M Q为顶点的三角形与△AOC相似.若存在请求出此时点Q的坐标若不存在请说明理由.6.在平面直角坐标系xOy中已知抛物线y=ax2+bx+c(a≠0)的图像经过点B(4,0) D(5,3)设它与x轴的另一个交点为A(点A在点B的左侧)且△ABD的面积是3.(1)求该抛物线的表达式和顶点坐标(2)求∠DAB的度数(3)若抛物线与y轴相交于点C直线CD交x轴于点E点P在线段AD上当△APE与△ABD相似时求AP的长.7.如图抛物线y=−12x2+32x+2与x轴交于A B两点(点A在点B的左边)与y轴交于点C连接BC.(1)求点A B C的坐标(2)设x轴上的一个动点P的横坐标为t过点P作直线PN⊥x轴交抛物线于点N交直线BC于点M.①当点P在线段AB上时设MN的长度为s求s与t的函数关系式②当点P在线段OB上时是否存在点P使得以O P N三点为顶点的三角形与△COB相似?若存在请求出点P的坐标若不存在请说明理由.8.如图在同一直角坐标系中抛物线L1:y=ax2+bx+8与x轴交于A(−8,0)和点C 且经过点B(−2,12)若抛物线L1与抛物线L2关于y轴对称点A的对应点为A′点B的对应点为B′.(1)求抛物线L2的表达式(2)现将抛物线L2向下平移后得到抛物线L3抛物线L3的顶点为M 抛物线L3的对称轴与x轴交于点N 试问:在x轴的下方是否存在一点M 使△MNA′与△ACB′相似?若存在请求出抛物线的L3表达式若不存在说明理由.9.抛物线y=−x2+bx+3与x轴交于A(−3,0),B(1,0)两点与y轴交于点C点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标S△ACD求点P的坐标(2)在直线AC上方的抛物线上找一点P使S△ACP=12(3)在坐标轴上找一点M使以点B C M为顶点的三角形与△ACD相似直接写出点M 的坐标.(x+2)(ax+b)的图象过点A(−4,3),B(4,4).10.如图已知二次函数y=148(1)求二次函数的解析式(2)请你判断△ACB是什么三角形并说明理由.(3)若点P在第二象限且是抛物线上的一动点过点P作PH垂直x轴于点H试探究是否存在以P H D为顶点的三角形与△ABC相似?若存在求出P点的坐标.若不存在请说明理由.11.如图直线y=−x+4与x轴交于点A与y轴交于B抛物线y=−x2+bx+c经过A B两点与x轴负半轴交于点C连接BC抛物线对称轴与x轴交于点F P为y轴右侧抛物线上的动点直线BP交对称轴于点D.(1)求抛物线的解析式(2)当BD=3PD时求点P的坐标(3)作PQ⊥AB垂足为Q当△BPQ与△BCO相似时直接写出点Q的坐标.12.在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-3 0)B (1 0)两点与y轴交于点C.(1)求这个二次函数的解析式(2)点Q是线段AC上方的抛物线上一动点过点Q作QE垂直于x轴垂足为E.是否存在点Q使以点B Q E为顶点的三角形与△AOC相似?若存在求出点Q的坐标若不存在说明理由(3)点M为抛物线上一动点在x轴上是否存在点Q使以A C M Q为顶点的四边形是平行四边形?若存在直接写出点Q的坐标若不存在说明理由.13.如图① 抛物线y=ax2+bx+c(a≠0)经过点A(−4,0)点B(2,0)和点C(0,−4)它的对称轴为直线l顶点为D.(1)求该抛物线的表达式(2)如图② 点P是直线AC下方该抛物线上的一个动点连接AP CP AC当△APC的面积取得最大值时求点P的坐标(3)如图③ 点E是直线AD下方该抛物线上的一个动点过E点作EF⊥直线l于F连接DE当以D E F为顶点的三角形与△BOC相似时求点E的坐标.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3 0)B(1 0)两点与y轴交于点C(0 ﹣3m)(m>0)顶点为D.(1)如图1 当m=1时①求该二次函数的解析式②点P为第三象限内的抛物线上的一个动点连接AC OP相交于点Q求PQ的最大值OQ(2)如图2 当m取何值时以A D C为顶点的三角形与∠BOC相似.15.如图1 在平面直角坐标系中抛物线y=ax2+bx+c经过A(−2,0)B(8,0)C(0,4)三点.(1)求抛物线y=ax2+bx+c的表达式(2)如图2 设点P是抛物线上在第一象限内的动点(不与B C重合)过点P作PD⊥BC 垂足为点D点P在运动的过程中以P D C为顶点的三角形与△AOC相似时求点P 的坐标(3)在y轴负半轴上是否存在点N使点A绕点N顺时针旋转后恰好落在第四象限抛物线上的点M处且使∠ANM+∠ACM=180°若存在请求N点坐标若不存在请说明理由.(请在备用图中自己画图)16.抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点(A在B的左边)C是抛物线的顶点.(1)当m=2时直接写出A B两点的坐标:(2)点D是对称轴右侧抛物线上一点∠COB=∠OCD①如图(1)求线段CD长度②如图(2)当m>2T(t,0)(t>0)P为线段OC上一点.若△PCD与△POT相似并且符合条件的点P有2个求t和m之间的数量关系.17.如图1 抛物线y=−x2+bx+c经过A(0,3)和B(72,−94)两点直线AB与x轴相交于点C P是直线AB上方的抛物线上的一个动点PD⊥x轴交AB于点D抛物线与x轴的交点为F G.(1)求该抛物线的表达式.(2)当点P的坐标为(2,3)时求四边形APGO的面积.(3)如图2 若PE∥x轴交AB于点E且点P在直线AB上方求PD+PE的最大值.(4)若以A P D为顶点的三角形与△AOC相似请直接写出所有满足条件的点P的坐标.18.如图1 抛物线y=ax2+23x+c(a≠0)与x轴交于A(−2,0)B两点与y轴交于点C(0,4).(1)求抛物线的解析式(2)若点D是第一象限内抛物线上的一点AD与BC交于点E且AE=5DE求点D的坐标(3)如图2 已知点M(0,1)抛物线上是否存在点P使锐角∠MBP满足tan∠MBP=1若2存在求出点P的坐标若不存在说明理由.19.如图1 平面直角坐标系xOy中抛物线y=ax2+bx+c过点A(−1,0)B(2,0)和C(0,2)连接BC点P(m,n)(m>0)为抛物线上一动点过点P作PN⊥x轴交直线BC于点M交x 轴于点N.(1)直接写出抛物线和直线BC的解析式(2)如图2 连接OM当△OCM为等腰三角形时求m的值(3)当P点在运动过程中在y轴上是否存在点Q使得以O P Q为顶点的三角形与以B C N为顶点的三角形相似(其中点P与点C相对应)若存在直接写出点P和点Q的坐标若不存在请说明理由.20.如图(1)在平面直角坐标系中抛物线y=ax2+bx−4(a≠0)与x轴交于A B两点(点A在点B的左侧)与y轴交于点C点A的坐标为(−1,0)且OC=OB点D和点C关于抛物线的对称轴对称.(1)分别求出a b的值和直线AD的解析式(2)直线AD下方的抛物线上有一点P过点P作PH⊥AD于点H作PM平行于y轴交直线AD 于点M交x轴于点E求△PHM的周长的最大值(3)在(2)的条件下 如图2 在直线EP 的右侧 x 轴下方的抛物线上是否存在点N 过点N 作NG ⊥x 轴交x 轴于点G 使得以点E N G 为顶点的三角形与△AOC 相似?如果存在 请直接写出点G 的坐标 如果不存在 请说明理由.参考答案1.(1)解:∠抛物线y =x 2+bx 经过点A (2 0) ∠22+2b =0 解得:b =−2 ∠抛物线解析式为y =x 2−2x 当x =−1 时 y =3 ∠点B 的坐标为B (−1,3)设直线AB 的解析式为y =kx +m (k ≠0) 把A (2 0) B (−1,3) 代入得: {2k +m =0−k +m =3 解得:{k =−1m =2 ∠直线AB 的解析式为y =−x +2 (2)如图 连接BD AD∠y =x 2−2x =(x −1)2−1 ∠点D 的坐标为D (1,−1) ∠A (2 0) B (−1,3)∠AB 2=(−1−2)2+32=18,AD 2=(2−1)2+(−1)2=2,BD 2=(−1−1)2+(−1−3)2=20∠AB 2+AD 2=BD 2 ∠∠ABD 为直角三角形 ∠tan∠ABD =ADAB =√2√18=13(3)设直线BD 的解析式为y =k 1x +b 1(k 1≠0) 把点D (1,−1) B (−1,3)代入得:{k 1+b 1=−1−k 1+b 1=3 解得:{k 1=−2b 1=1∠直线BD 的解析式为y =−2x +1当y =0 时 x =12 ∠点P 的坐标为P (12,0) 当∠ABP ∠∠ABC 时 ∠ABC =∠APB如图 过点B 作BQ ∠x 轴于点Q 则BQ =3 OQ =1∠∠ABP ∠∠ABC∠∠ABD =∠BCQ由(2)知tan∠ABD =13∠tan∠BCQ =13 ∠BQ CQ =13∠CQ =9∠OC =OQ +CQ =10∠点C 的坐标为C (−10,0)当∠ABP ∠∠ABC 时 ∠APB =∠ACB 此时点C 与点P 重合∠点C 的坐标为C (12,0)综上所述 点C 的坐标为C (−10,0)或(12,0).2.(1)解:∠x =−b 2a =1∠O C 两点关于直线x =1对称∠C (2,0)设直线AB :y =kx +b (k ≠0)把A (1,2) B (5,0) 代入得{k +b=25k +b=0解得{k =−12b =52则y =−12x +52 (2)①设D 的坐标为(p,q ) 则BD AB =q 2 若△CDB 与△BOA 相似 则BD AB =BC BO∠q 2=BC BO =35∠q =65 ∠D (p,q )在直线AB 上∠D (135,65) 代入抛物线解析式可得a =1013∠抛物线解析式为y =1013x 2−2013x .②∠A (1,2) B (5,0) O (0,0)∠OA =√5 OB =5 AB =2√5∠OA 2+AB 2=OB 2∠∠OAB=90°∠∠OAE=90° 设E 的坐标为(m,n )∠△OAE 是等腰三角形∠AE =AO =√5∠BE =3√5∠S △BEO =12BE ⋅OA =12BO ⋅n ∠12×3√5×√5=12×5n∠n =3∠E (m,n )在直线AB 上∠3=−12m +52 ∠m =−1又∠E (−1,3)在抛物线上∠3=a +2a故答案为:1.3.解:(1)设抛物线的解析式为y =a (x −4)(x −1)∵点C (0,−2)在抛物线上∴−4×(−1)a =−2∴a =−12∴抛物线的解析式为y =−12(x −4)(x −1)=−12x 2+52x −2(2)如图当点D 在抛物线上 且使△DCA 的面积最大 必有平行于直线AC 的直线DE且和抛物线只有一个交点设直线AC 解析式为y =kx +m∵A (4,0) C (0,−2)∠{4k +m =0m =−2解得{k =12m =−2∴直线AC 解析式为y =12x −2设直线DE 解析式为y =12x +b ①∵抛物线的解析式为y =−12x 2+52x −2②联立①②化简得 x 2−4x +4+2b =0∴ Δ=16−4(4+2b )=0∴b =0∴x 2−4x +4=0∴x =2∴D (2,1)过点P 作PM ⊥OAA (4,0) C (0,−2)∴OA =4 OC =2∴ OA OC =2设点P (p,ℎ)∴AM =|4−p|.PM =|ℎ| ℎ=−12p 2+52p −2③∵∠APM =∠AOB =90°∵以A P M 为顶点的三角形与△OAC 相似∴ PM AM=OA OC =2 ① ∴ |ℎ||4−p|=2④联立③④解得{p =4ℎ=0 (舍)或{p =5ℎ=−2或{p =−3ℎ=−14 ∴P (−3,−14)或(5,−2)②PM AM=OC OA =12 ∴ |ℎ||4−p|=12⑤联立③⑤解得 {p =2ℎ=1 或{p =4ℎ=0 (舍)或{p =0ℎ=−2∴P (2,1)或(0,−2)综上 得到点P (−3,−14)或(5,−2)或(2,1)或(0,−2).4.(1)解:将点B C 的坐标代入抛物线表达式得:{c =2−12×16+4b +c =0解得:{b =32c =2故抛物线的表达式为:y =−12x 2+32x +2(2)解:①∵B 是点A 关于抛物线对称轴的对称点 连接BC 交抛物线对称轴于点E 则点E 为所求点则点D E 重合设BC 的解析式为y =kx +b将B(4,0) C(0,2)代入解析式可得{0=4k +b b =2解得{k =−12b =2∴直线CB 的表达式为:y =−12x +2 由y =−12x 2+32x +2知 点D 的横坐标为−b 2a =32把x =32代入y =−12x +2 可得y =54∴E (32,54)②令y =−12x 2+32x +2=0 解得:x =−1或4 则点A(−1,0)由点A B C 的坐标得 AB =5 AC =√5 BC =√20∵AB 2=AC 2+BC 2∴△ABC 为直角三角形 且∠ACD =90°∵以C D E 为顶点的三角形与△ABC 相似则△CDE 为直角三角形当∠CE ′D 为直角时 如图则点E ′的坐标为E ′(32,2)当∠ECD 为直角时 如图∵∠ACB 为直角∴A,C,E 三点共线设AC 的解析式为y =k 1x +b 1把A (−1,0),C (0,2)代入可得{2=b 0=−x +b 解得{k =2b =2∴直线AC 的表达式为:y =2x +2当x =32时 y =2x +2=5即点E(32,5)综上点E的坐标为:(32,2)或(32,5).5.(1)解:∵A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4)∴c=4{4a−2b+4=016a+4b+4=0解得{a=−12 b=1∴抛物线解析式为y=−12x2+x+4(2)解:设直线BC的解析式为y=kx+b1∵点C的坐标为(0,4)B点坐标为(4,0)∴{4k1+b=0b=4∴{k1=−1b=4∴直线BC的解析式为y=−x+4∴点P的坐标为(m,−12m2+m+4)点Q的坐标为(m,−m+4)∴PQ=−12m2+m+4−(−m+4)=−12m2+2m=−12(m−2)2+2∵OC=OB=4∴∠B=45°∠BQM=∠PQN=45°∴PN=√22PQ=−√22m2+√2m=−√22(m−2)2+√2∴当m=2时PN有最大值√2(3)解:存在Q(43,83)或Q(83,43)理由:如图所示OC=4OA=2Q的坐标为(m,−m+4)∠COA=∠OMQ=90°当△OAC∽△MOQ时MQOM =OCOA=2即−m+4m=2解得m=43此时Q的坐标为(43,83)当△OAC∽△MQO时MQOM =OAOC=12即−m+4m=12解得m=83此时Q的坐标为(83,43)综上Q点坐标为(43,83)或(83,43).6.解:(1)设A(m,0)∵B(4,0),D(5,3)∴AB=4−m AB边上的高为3则由ΔABD的面积是3可得:12(4−m)×3=3解得m=2∴A(2,0)设抛物线解析式为y=a(x−2)(x−4)将D(5,3)代入得:3a=3解得a=1∴y=(x−2)(x−4)=x2−6x+8∵y=x2−6x+8=(x−3)2−1∴顶点坐标为(3,−1)故该抛物线的表达式为y=x2−6x+8顶点坐标为(3,−1)(2)如图过点D作DF⊥x轴于点F∵A(2,0),B(4,0),D(5,3)∴DF =3,AF =5−2=3,AB =4−2=2∴DF =AF∴∠DAB =∠DAF =45°(3)如图∵抛物线的表达式为y =x 2−6x +8令x =0 则y =8∴ C(0,8)设直线CD 解析式为y =kx +b将C(0,8),D(5,3)代入得{b =85k +b =3解得{k =−1b =8直线CD 解析式为:y =-x +8当y =0时 −x +8=0 解得x =8∴E(8,0)∵A(2,0),B(4,0),D(5,3)∴AB =4−2=2 AD =√(5−2)2+32=3√2,BD =√(5−4)2+32=√10 ①若ΔADB ∽ΔAPE 则AP AE =AD AB∴AP =AE⋅AD AB =3√2×62=9√2>AD∵点P 在线段AD 上∴此种情形不存在 不合题意②若ΔADB ∽ΔAEP 则AP AB =AE AD∴AP =AE ⋅AB AD =3√2=2√2 综上所述 AP 的长为2√2.7.(1)解:当x =0时 y =2当y =0时 即−12x 2+32x +2=0 解得:x 1=−1 x 2=4∠A(−1,0) B(4,0) C(0,2)(2)解:①设直线BC 的解析式为y =kx +b (k ≠0)把B(4,0) C(0,2)代入 得{4k +b =0b =2解得:{k =−12b =2∠直线BC 的解析式为y =−12x +2 ∠点P 的横坐标为t∠M (t,−12t +2) N (t,−12t 2+32t +2) 当点P 在y 轴的左侧 即−1≤t <0时由题意得:s =−12t +2−(−12t 2+32t +2)=−12t +2+12t 2−32t −2=12t 2−2t 当点P 在y 轴的右侧(包含原点) 即0≤t ≤4时 由题意得:s =−12t 2+32t +2−(−12t +2)=−12t 2+32t +2+12t −2=−12t 2+2t 综上 s ={12t 2−2t (−1≤t <0)−12t 2+2t (0≤t ≤4)②如图 当△OP 1N 1∽△COB 时可得OP 1CO =N 1P 1BO 即t 2=−12t 2+32t+24∠−t 2+3t +4=4t整理得:t 2+t −4=0 解得:t 1=−1+√172 t 2=−1−√172(不合题意 舍去)当△OP2N2∽△BOC时可得OP2BO =N2P2CO即t4=−12t2+32t+22∠−2t2+6t+8=2t整理得:t2−2t−4=0解得:t3=1+√5t4=1−√5(不合题意舍去)综上点P的坐标为(−1+√172,0)和(1+√5,0).8.解:(1)将A(−8,0)B(−2,12)分别代入y=ax2+bx+8中得{a×(−8)2−8b+8=0a×(−2)2−2b+8=12解得{a=−12 b=−3∴抛物线L1的解析式为y=−12x2−3x+8=−12(x+3)2+252则:顶点为(−3,252)∵抛物线L1与抛物线L2关于y轴对称顶点也关于y轴对称开口方向及大小均相同即二次项系数相同∴抛物线L2的顶点为(3,252)∴抛物线L2的解析式为y=−12(x−3)2+252=−12x2+3x+8.故抛物线L2的解析式为y=−12x2+3x+8.(2)如图存在点M 使△MNA′与△ACB′相似.由题意得:A′(8,0) B′(2,12) C (2,0) N (3,0) ∴ AC =10 B′C =12 A′N =5 ∵ ∠A′NM =∠ACB′=90°∴ △A′MN 与△AB′C 相似 可以分两种情况: ①当△AB′C ∽△A′MN 时 则MNNA′=B′C AC=1210=65∴ MN =6 即点M (3,−6)此时 抛物线L 3的表达式为y =−12(x −3)2−6=−12x 2+3x −212.②当△AB′C ∽△MA′N 时 同理可得:点M (3,−256)此时 抛物线L 3的表达式为y =−12(x −3)2−256=−12x 2+3x −263故:函数L 3的解析式为:y =−12x 2+3x −212或y =−12x 2+3x −263.9.解:(1)将A(−3,0),B(1,0)代入抛物线解析式中得:{9a −3b +3=0a +b +3=0解得:{b =−2c =3∠抛物线解析式为y =−x 2−2x +3=−(x 2+2x)+3 =−(x 2+2x +1−1)+3=−(x +1)2+4 当x =−1时 y =4 ∠顶点D(−1,4)(2)当x =0时 ∠点C 的坐标为(0,3)∠AC =√32+32=3√2,CD =√12+12=√2,AD =√22+42=2√5 ∠AC 2+CD 2=AD 2∠△ACD 为直角三角形 ∠ACD =90°. 设直线AC 的解析式为y =kx +b 根据题意得:{−3k +b =0b =3解得:{k =1b =3∠直线AC 的解析式为y =x +3 ∠A(−3,0) D(−1,4)∠线段AD 的中点N 的坐标为(−2,2) 过点N 作NP//AC 交抛物线于点P 设直线NP 的解析式为y =x +c 则−2+c =2 解得:c =4 ∠直线NP 的解析式为y =x +4由y =x +4,y =−x 2−2x +3联立得:−x 2−2x +3=x +4 解得:x 1=−3−√52,x 2=−3+√52∠P (−3−√52,5−√52)或(−3+√52,5+√52)(3)分三种情况: ①△CMB ∽△ACD∴CM CB =ACAD ∴CM √10=3√22√5∴CM =3此时M 恰好为原点 M(0,0) ②△MCB ∽△ACD∴MC AC =CBCD∴3√2=√10√2 ∴CM =3√10设M(x,0)∵OM 2+OC 2=CM 2 ∴x 2+32=(3√10)2∴x 2=81∴x =−9或x =9(舍去) 此时M(−9,0) ③△CBM ∽△ACD∴CB AC =CM AD∴√103√2=CM2√5 ∴CM =103设M(x,0)∴|CM −OC |=103−3=13∴x =−13或x =13(舍去)此时M 在y 轴负半轴上 M (0,−13)综上所述 点M 的坐标为(0,0)或(−9,0)或(0,−13).10.(1)解:由题意得 函数图象经过点A (﹣4 3) B (4 4) 故可得:{3=148(−4+2)(−4a +b )4=148(4+2)(4a +b )解得:{a =13b =−20故二次函数关系式为: y =148(x +2)(13x −20)=1348x 2+18x −56.故答案为:y =1348x 2+18x −56.(2)解:△ACB 是直角三角形 理由如下: 由(1)所求函数关系式y =1348x 2+18x −56当y =0时 0=1348x 2+18x −56解得x 1=−2 x 2=2013∠点C 坐标为(﹣2 0) 点D 坐标为(2013 0) 又∠点A (﹣4 3) B (4 4) ∠AB =√(4+4)2+(4−3)2=√65 AC =√(−2+4)2+(0−3)2=√13BC =√(4+2)2+(4−0)2=2√13∠满足AB 2=AC 2+BC 2 ∠△ACB 是直角三角形. (3)解:存在 点P 的坐标为(−50133513)或(−1221328413).设点P 坐标为(x 148(x +2)(13x ﹣20)) 则PH =148(x +2)(13x ﹣20) HD =﹣x +2013 若∠DHP ∠∠BCA 则PH AC=DH BC即148(x+2)(13x−20)√13=−x+20132√13解得:x =−5013或x =2013(因为点P 在第二象限 故舍去) 代入可得PH =3513即P 1坐标为(−50133513)若∠PHD ∠∠BCA 则PH BC=HD AC即148(x+2)(13x−20)2√13=−x+2013√13解得:x =−12213或 x =2013(因为点P 在第二象限 故舍去). 代入可得PH =28413即P 2坐标为:(−1221328413).综上所述 满足条件的点P 有两个 即P 1(−50133513)或P 2(−1221328413).11.(1)解:∠直线y =−x +4与x 轴交于点A 与y 轴交于B ∴当x =0时 y =4 当y =0时 ∴A (4,0) B (0,4)又抛物线y =−x 2+bx +c 经过A B 两点 把A (4,0) B (0,4)代入得:{−16+4b +c =0c =4解得:{b =3c =4∠抛物线的解析式是y =−x 2+3x +4 (2)解:作PE ⊥AC 垂足为E 如图所示∠∠DFA =∠PEA =∠BOA =90° ∠DF ∥PE ∥BO由(1)得:抛物线的解析式是y =−x 2+3x +4 抛物线对称轴是x =−b2a =−32×(−1)=32 ∠BD =3PD①当P 在对称轴右侧时 OF ∶OE =BD ∶BP =3∶4 点P 的横坐标是2 y =−4+6+4=6 ∠点P 的坐标是(2,6)②当P 在对称轴左侧时 OF ∶OE =BD ∶BP =3∶2 点P 的横坐标是1 y =−1+3+4=6 ∠点P 的坐标是(1,6)∠点P 的坐标是(2,6)或(1,6)(3)解:∠抛物线对称轴与x轴交于点F对称轴是x=−b2a =−32×(−1)=32∠F(32,0)∠点A C关于对称轴对称∠CF=AF=4−32=52∠C(−1,0)∠A(4,0)B(0,4)∠OC=1OA=OB=4∠△ABO是等腰直角三角形∠∠BAO=∠ABO=45°设P(t,−t2+3t+4)过点P作PM∥y轴交直线AB于点M过点M作MN⊥y轴于点N 当点P在AB上方点Q在点B的右侧时如图所示则M(t,−t+4)MN=t∠PM=−t2+3t+4−(−t+4)=−t2+4t∠△BMN是等腰直角三角形∠BM=√2MN=√2t∠∠PMQ=∠ABO=45°∠PQM=90°∠△PMQ是等腰直角三角形∠PQ=MQ=√22PM=√22(−t2+4t)∠BQ=BM−MQ=√2t−√22(−t2+4t)=√22t2−√2t若△BPQ∼△BCO则PQOB =BQOC∠√22(−t 2+4t )4=√22t 2−√2t 1解得:t 1=0(舍) t 2=125当t 2=125时 −t 2+3t+4=−(125)2+3×125+4=13625∠P (125,13625) M (125,85) ∠PM =13625−85=9625过点Q 作QK ⊥PM 轴于点K 则QK =12PM =12×9625=4825∠点Q 的横坐标为125−4825=1225 纵坐标为−1225+4=8825 ∠Q (1225,8825)若△BPQ ∼△CBO 则PQ OC =BQOB ∠√22(−t 2+4t )1=√22t 2−√2t 4解得:t 1=0(舍) t 2=185当t 2=185时 −t 2+3t+4=−(185)2+3×185+4=4625∠P (185,4625) M (185,25) ∠PM =4625−25=3625 同理可得:Q (7225,2825)当点P 在AB 上方 点Q 在点B 的左侧时 如图所示则M (t,−t+4) MN =t∠PM =−t 2+3t+4−(−t+4)=−t 2+4t同理可得:PQ =MQ =√22PM =√22(−t 2+4t ) BM =√2MN =√2t∠BQ =BM −MQ =−√22t 2+√2t 若△BPQ ∼△CBO 则PQOB =BQOC ∠√22(−t 2+4t )4=−√22t 2+√2t 1解得:t 1=0(舍) t 2=43当t 2=43时 −t 2+3t+4=−(45)2+3×43+4=569∠P (43,569)同理可得:Q (−49,329) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22(−t 2+4t )1=−√22t 2+√2t 4解得:t 1=0(舍) t 2=143(舍去)当点P 在AB 下方 对称轴左侧的抛物线上时 则t <0 如图所示∠PM =−t+4−(−t 2+3t+4)=t 2−4t ME =−t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =−√2t∠BQ =MQ −BM =√22t 2−√2t若△BPQ ∼△CBO 则PQOB =BQOC ∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQOC =BQOB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当点P 在AB 下方 对称轴右侧的抛物线上时 则t>4 如图所示∠PM =t 2−4t ME =t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =√2t∠BQ =BM+MQ =√22t 2−2√2t+√2t =√22t 2−√2t若△BPQ ∼△CBO 则PQOB=BQ OC∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当t 2=143时 −t 2+3t+4=−(143)2+3×143+4=−349∠P (143,−349)同理可得:Q (569,−209)综上所述:点Q 的坐标为Q 1(7225,2825),Q 2(1225,8825),Q 3(569,−209),Q 4(−49,409) 12.解:(1)∠抛物线y =ax 2+bx +2过点A (-3 0) B (1 0)∠{9a −3b +2=0a +b +2=0 解得:{a =−23b =−43∠二次函数的关系解析式为y =−23x 2−43x +2.(2)存在点Q (-2 2)或(−34,218)使以点B Q E 为顶点的三角形与△AOC 相似.理由如下:如图①设点E 的横坐标为c 则点Q 的坐标为(c −23c 2−43c +2)∠BE =1-c QE =−23c 2−43c +2①OA 和BE 是对应边时 ∠∠BEQ ∠∠AOC ∠OA BE=OC QE即31−c =2−23c 2−43c+2整理得 c 2+c -2=0 解得c 1=-2 c 2=1(舍去)此时 −23×(−2)2−43×(−2)+2=2点Q (-2 2)②OA 和QE 是对应边时 ∠∠QEB ∠∠AOC ∠OA QE=OC BE 即3−23c 2−43c+2=21−c整理得 4c 2-c -3=0解得c 1=−34 c 2=1(舍去)此时−23×(−34)2−43×(−34)+2=218点Q(−34,21 8)综上所述存在点Q(-2 2)或(−34,218)使以点B Q E为顶点的三角形与∠AOC相似.(3)①如图2当MC//AQ且MC=AQ时M与C关于对称轴x=-1对称∠AQ=MC=2∠Q1(-1 0)Q2(-5 0)②如图3当AC//MQ且AC=MQ时因为平行四边形是中心对称图形并且中心对称点在x轴上所以点M到x轴的距离为2.设M(m23m2−43m+3)∠2 3m2−43m+3=-2∠m2+2m-6=0∠m=-1±√7∠QG=3∠Q 3(2+√7 0) Q 4(2−√7 0).综上所述 满足条件的点Q 的坐标为:Q 1(-5 0) Q 2(-1 0) Q 3(2+√7 0) Q 4(2−√7 0).13.解:(1)将点A (−4,0) 点B (2,0) 点C (0,−4)代入y =ax 2+bx +c得{c =−416a −4b +c =04a +2b +c =0∠{a =12b =1c =−4∠y =12x 2+x −4(2)如图 过P 点作x 轴垂线交AC 于点Q设直线AC 的解析式为y =kx +b∠{−4k +b =0b =−4∠{k =−1b =−4∠y =−x −4设P (t,12t 2+t −4) 则Q (t,−t −4) ∠PQ =−t −4−12t 2−t +4=−12t 2−2t∠S △ACP =12×4×(−12t 2−2t)=−t 2−4t =−(t +2)2+4∠当t =−2时 S △ACP 有最大值∠P (−2,−4)(3)抛物线的对称轴为x =−1 顶点D (−1,−92)设E (m,12m 2+m −4) 则F (−1,12m 2+m −4)∠EF =−1−m DF =12m 2+m −4+92=12m 2+m +12∠点E 是直线AD 下方该抛物线上的一个动点∠−4<m <−1∠B (2,0) C (0,−4)∠OB =2 OC =4∠tan∠OCB =12当∠EDF =∠OCB 时 △EDF ∼△BCO∠EF FD =12∠2(−1−m)=12m 2+m +12解得m =−1(舍)或m =−5(舍)当∠FED =∠OCB 时 △EDF ∼△DBO∠EF FD =2∠2(12m 2+m +12)=−1−m解得m =−1(舍)或m =−2∠E (−2,−4)综上所述:当以D E F 为顶点的三角形与△BOC 相似时 E 点坐标(−2,−4).14.(1)解:①由m =1可知点C (0 ﹣3)∵抛物线与x 轴交点为A(−3,0) B(1,0)∴抛物线解析式为:y =a(x +3)(x −1)将点C(0,−3)代入上式 得a ×3×(−1)=−3∴a =1∴抛物线的解析式为:y =(x +3)(x −1)=x 2+2x −3②由①可知抛物线解析式为y =x 2+2x −3 则设P(x,x 2+2x −3) 设直线AC 的解析式为y =kx +b由题意可得{−3k +b =0b =−3解得{k =−1b =−3∴直线AC 的解析式为y =−x −3如图1 过点P 作PN ⊥x 轴 交AC 于N 则PN//OC∴点N(x,−x −3)∴PN =(−x −3)−(x 2+2x −3)=−x 2−3x∵PN//OC∴△PQN ∽△OQC∴ PQ OQ =PN OC∴ PQ OQ =−x 2−3x 3=−(x+32)2+943 ∴当x =−32时 PQ OQ 的最大值为34 (2)解:∵y =mx 2+2mx −3m =m(x +1)2−4m∴顶点D 坐标为(−1,−4m)如图2 过点D 作DE ⊥x 轴于点E 则DE =4m OE =1 AE =OA −OE =2 过点D 作DF ⊥y 轴于点F 则DF =1 CF =OF −OC =4m −3m =m由勾股定理得:AC2=OC2+OA2=9m2+9CD2=CF2+DF2=m2+1AD2=DE2+AE2=16m2+4∵ΔACD与ΔBOC相似且ΔBOC为直角三角形∴ΔACD必为直角三角形i)若点A为直角顶点则AC2+AD2=CD2即:(9m2+9)+(16m2+4)=m2+1整理得:m2=−12∴此种情形不存在ii)若点D为直角顶点则AD2+CD2=AC2即:(16m2+4)+(m2+1)=9m2+9整理得:m2=12∵m>0∴m=√2 2此时可求得ΔACD的三边长为:AD=2√3CD=√62AC=3√62ΔBOC的三边长为:OB=1OC=3√22BC=√222两个三角形对应边不成比例不可能相似∴此种情形不存在iii)若点C为直角顶点则AC2+CD2=AD2即:(9m2+9)+(m2+1)=16m2+4整理得:m2=1∵m>0∴m=1此时可求得ΔACD的三边长为:AD=2√5CD=√2AC=3√2ΔBOC的三边长为:OB=1OC=3BC=√10∵ADBC =ACOC=CDOB=√2∴满足两个三角形相似的条件∴m=1.综上所述当m=1时以A D C为顶点的三角形与ΔBOC相似.15.(1)解:将A(−2,0),B(8,0),C(0,4)三点坐标代入y=ax2+bx+c中得{4a−2b+c=0c=464a+8b+c=0解得{a=−14b=32c=4所以抛物线表达式为:y=−14x2+32x+4.(2)解:根据题意得:∵A(−2,0),B(8,0),C(0,4)∠OA=2,OB=8,OC=4∴AOOC=COBO=12又∠AOC=∠COB=90°∴△AOC∽△COB∴∠ACO=∠CBO∴∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°当△AOC∽△PDC时∴∠ACO=∠PCD∵∠ACO+∠OCB=90°∴∠PCD+∠OCB=90°∴PC⊥OC∴点P的纵坐标为4当y=4时有−14x2+32x+4=4解得x=6或x=0(舍)∴点P的坐标为(6,4)当△AOC∽△CDP时∠P′CD′=∠CAO作P′G⊥y轴于点G过点P′作P′H∥y轴交BC于点H如图∴∠P′HC=∠BCO∵AOOC=COBO=12,∠AOC=∠BOC=90°∴△AOC∽△COB∴∠OCB=∠OAC∴∠P′CH=∠P′HC∴P′C=P′H设直线BC的解析式为y=k′x+b′把点B(8,0),C(0,4)代入得:{8k ′+b′=0b′=4解得:{k′=−12b′=4∠直线BC的解析式为y=−12x+4设P′(m,−14m2+32m+4)则H(m,−12m+4)∴P′C=P′H=−14m2+32m+4−(−12m+4)=−14m2+2m在Rt△P′GC中由勾股定理得P′C2=P′G2+GC2即(−14m2+2m)2=m2+(−14m2+32m)2解得m=3∴P′(3,254)综上点P的坐标为:(6,4)或(3,254).(3)解:过N作NF⊥MC交MC于点F过N点作NG⊥AC交CA的延长线于点G则∠G=∠CFN=90°∴∠ACM+∠GNF=180°设CM与x轴交于K由旋转得:AN=MN∵∠ANM+∠ACM=180°∴∠ANM=∠GNF∴∠ANG=∠MNF∵∠G=∠MFN=90°∴△NGA≌△NFM∴NG=NF∴NC平分∠ACM∵CO⊥AB ∴OK=OA=2∴K(2,0)∴CK的解析式为:y=−2x+4∴−2x+4=−14x2+32x+4解得:x1=0,x2=14∴M(14,−24)设N(0,n)∵AN=MN∴(−2)2+n2=142+(−24−n)2解得:n=−16所以点N坐标为(0,−16).16.解:(1)∠抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点∠当m=2∠y=−x2+4x∠x1=0x2=4∠A(0,0)B(4,0).(2)①∠y=−x2+2mx−m2+2m∠对称轴x=−b2a=m∠顶点坐标C(m,2m)延长CD交x轴于点E设点E(a,0)a>m∠∠COB=∠OCD∠|OE|=|CE|∠a2=(a−m)2+(2m)2解得:a=52m∠点E的坐标为:(52m,0)设直线CE的解析式为:y=k1x+b1(k≠0)∠{2m=km+b 0=52mk+b解得:{k=−43b=103m∠y=−43x+103m∠−43x+103m=−x2+2mx−m2+2m解得:x1=m(舍)x2=m+43∠点D(m+43,2m−169)∠CD=209.②设直线OC的解析式为:y=k1x(k≠0)∠y=2x∠设点P(b,2b)∠OP=√b+24b2=√5b CP=√(m−b)2+(2m−2b)2=√5(m−b)当△OPT∼△CDP∠OP CD =OTCP∠√5b×920=√5(m−b)整理得:9b2−9mb+4t=0∠Δ>0∠81m2−4×9×4t>0∠9m2−16t>0当△OTP∼△CDP∠OT CD =OPCP∠t×920=√5b√5(m−b)整理得:b =9tm 20+9t∠仅存在一个点P∠不符合题意∠综上 t 和m 之间的数量关系为:9m 2−16t >0.17.(1)解:∵抛物线y =−x 2+bx +c 经过A (0,3)和B (72,−94)两点∴将A (0,3)和B (72,−94)代入y =−x 2+bx +c 得{c =3−(72)2+72b +c =−94 解得{b =2c =3 ∴抛物线的解析式为y =−x 2+2x +3(2)解:在 y =−x 2+2x +3中 当y =0时 −x 2+2x +3=0 解得x =3或x =−1 ∠G(3,0)∠OG =3∠A(0,3),P(2,3)∠OA =3,AP =2,AP ∥x 轴∠S 四边形APGO =AP+OG 2⋅OA =2+32×3=7.5(3)解:设直线AB 的解析式为y =kx +n 把A (0,3)和B (72,−94)代入得{n =372k +n =−94解得{k =−32n =3∴直线AB 的解析式为y =−32x +3 在y =−32x +3 当y =0时 −32x +3=0 解得x =2 ∴C (2,0)联立{y =−x 2+2x +3y =−32x +3 解得x 1=0 x 2=72 ∵PD ⊥x 轴 PE ∥x 轴∴∠ACO =∠DEP∴Rt △DPE ∽Rt △AOC∴ PD PE =OA OC =32 即PE =23PD∴PD +PE =53PD设点P (a,−a 2+2a +3) 0<a <72 则D (a,−32a +3)∴PD =(−a 2+2a +3)−(−32a +3)=−(a −74)2+4916 ∴PD +PE =−53(a −74)2+24548∵−53<0 抛物线开口向下 PD +PE 有最大值 0<a <72 ∴当a =74时 PD +PE 有最大值为24548(4)解:∵PD ⊥x 轴∴PD ∥y 轴 即∠OAC =∠PDA根据题意 分两种情况:①当△AOC ∽△DPA 时∴∠DPA =∠AOC =90°∵PD ⊥x 轴 ∠DPA =90° A (0,3)∴点P 纵坐标是3 横坐标x >0 即−x 2+2x +3=3 解得x =2∴点D 的坐标为(2,0)∵PD ⊥x 轴∴点P 的横坐标为2∴点P (2,3)②当△AOC ∽△DAP 时∴ ∠APD =∠ACO过点A 作AG ⊥PD 于点G 如图所示:∴△APG ∽△ACO∴ PG AG =OC AO设点P (n,−n 2+2n +3) 则D (n,−32n +3) 则−n 2+2n+3−3n =23 解得n =43 ∠P (43,359)综上所述 P (2,3)或P (43,359).18.(1)解:把点A(−2,0) C(0,4)代入y =ax 2+23x +c (a ≠0)得:{4a −43+c =0c =4 解得:{a =−23c =4 ∠抛物线的解析式为y =−23x 2+23x +4 (2)解:过点D 作DF∥AB 交BC 于点F当y =0时 有−23x 2+23x +4=0 解得x 1=−2,x 2=3∠B (3,0)设直线BC 的解析式为:y =kx +b代入B (3,0) C(0,4)得:{3k +b =0b =4解得{k =−43b =4∠直线BC 的解析式为:y =−43x +4 设点D 的横坐标为t 则D (t ,−23t 2+23t +4) ∠F (12t 2−12t,−23t 2+23t +4) ∠DF =t −(12t 2−12t)=−12t 2+32t∠A(−2,0) B(3,0)∠AB =5∠DF∥AB∠△DEF∽△AEB∠DF AB =DE AE∠−12t 2+32t 5=DE 5DE =15 ∠−12t 2+32t =1解得:t 1=1 t 2=2∠点D 的坐标为(1,4)或(2,83)(3)解:存在点P 使tan∠MBP =12 ①当PB 在MB 上方时 过点M 作IM ⊥PB 交PB 于I 过I 作IJ ⊥y 轴于J则tan∠MBI =MI MB =12∠∠JMI +∠JIM =90° ∠JMI +∠OMB =90°∠∠JIM =∠OMB又∠∠IJM =∠MOB =90°∠△MIJ∽△BMO∠IJ MO=JM OB =IM MB ∠IJ 1=JM 3=12 ∠IJ =12 JM =32∠OJ =JM +OM =52∠I (12,52)设直线BI 的解析式为:y =mx +n代入B(3,0) I (12,52)得:{3m +n =012m +n =52 解得:{m =−1n =3∠直线BI 的解析式为:y =−x +3联立{y =−23x 2+23x +4y =−x +3解得:{x =−12y =72或{x =3y =0 (不合题意 舍去)∠此时点P 的坐标为(−12,72)②当PB 在MB 下方时 过点M 作KM ⊥P ′B 交P ′B 于K 过K 作KL ⊥y 轴于L 同理可得 点P 的坐标为(−3114,−7398)综上所述 点P 的坐标为(−12,72)或(−3114,−7398).19.(1)解:∠抛物线y =ax 2+bx +c 过点A (−1,0) B (2,0)∠抛物线的表达式为y =a (x +1)(x −2)将点C (0,2)代入y =a (x +1)(x −2) 得:2=−2a解得:a =−1∠抛物线的表达式为y =−(x +1)(x −2) 即y =−x 2+x +2设直线BC 的表达式为y =kx +t 过点B (2,0) C (0,2)∠{2k +t =0t =2解得:{k =−1t =2∠直线BC 的表达式为y =−x +2(2)∠点M 在直线BC 上且P (m,n )(m >0) PN ⊥x 轴 C (0,2)∠M (m,−m +2) OC =2∠CM 2=(m −0)2+(−m +2−2)2=2m 2 OM 2=m 2+(−m +2)2=2m 2−4m +4 当△OCM 为等腰三角形时①若CM =OM 则CM 2=OM 2即2m 2=2m 2−4m +4解得:m =1②若CM =OC 则CM 2=OC 2即2m2=4解得:m=√2或m=−√2(舍去)③若OM=OC则OM2=OC2即2m2−4m+4=4解得:m=2或m=0(舍去)综上所述m=1或m=√2或m=2(3)∠B(2,0)C(0,2)∠COB=90°∠OC=OB=2∠∠OCB=∠OBC=45°CB=√OC2+OB2=√22+22=2√2∠点P与点C相对应P(m,n)(m>0)∠△POQ∽△CBN或△POQ∽△CNB①若点P在点B的左侧则∠CBN=45°BN=2−m CB=2√2∠CNB=∠CON+∠OCN=90°+∠OCN>90°如图当△POQ∽△CBN即∠POQ=45°时∠P(m,m)此时直线OP的表达式为y=x∠直线OP:y=x与抛物线y=−x2+x+2交于点P(m,m)(m>0)∠−m2+m+2=m解得:m=√2或m=−√2(负值舍去)∠OP=√(√2)2+(√2)2=2∠OP BC =OQBN即2√2=2−√2解得:OQ=√2−1∠P(√2,√2)Q(0,√2−1)如图当△POQ∽△CNB即∠PQO=45°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−m2+m+2∠PQ=KPsin∠PQO =msin45°=√2m OQ=KQ−KO=m−(−m2+m+2)=m2−2∠PQ CB =OQNB即√2m2√2=m2−22−m解得:m=1+√133或m=1−√133(负值舍去)∠P(1+√133,7+√139)Q(0,4−2√139)②若点P在点B的右侧则∠CBN=135°BN=m−2如图当△POQ∽△CBN即∠POQ=135°时过点P作PK⊥y轴于K点∠P(m,−m)此时直线OP的表达式为y=−x PK=KQ=m KO=−(−m2+m+2)=m2−m−2∠m2−m−2=m解得:m=1+√3或m=1−√3(负值舍去)∠OP=PKsin∠POK =msin45°=√2m=√2(1+√3)=√2+√6∠OP BC =OQBN即√2+√62√2=1+√3−2解得:OQ=1∠P(1+√3,−1−√3)Q(0,1)如图当△POQ∽△CNB即∠PQO=135°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−(−m2+m+2)=m2−m−2∠PQ=KPsin∠PQK =msin45°=√2m OQ=KO−KQ=m2−m−2−m=m2−2m−2∠PQ CB =OQNB即√2m2√2=m2−2m−2m−2解得:m=1+√5或m=1−√5(负值舍去)∠P(1+√5,−3−√5)Q(0,−2)综上所述P(√2,√2)Q(0,√2−1)或P(1+√133,7+√139)Q(0,4−2√139)或P(1+√3,−1−√3)Q(0,1)或P(1+√5,−3−√5)Q(0,−2).20.解:(1)∵点A的坐标为(−1,0)∴OA=1.令x=0则y=−4∴C(0,−4)OC=4∵OC=OB∴OB=4∴B(4,0)设抛物线的解析式为y=a(x+1)(x−4)∵将x=0y=−4代入得:−4a=−4解得a=1∴抛物线的解析式为y=x2−3x−4∴a=1b=−3∵抛物线的对称轴为x=−−32×1=32C(0,−4)∵点D和点C关于抛物线的对称轴对称∴D(3,−4)设直线AD的解析式为y=kx+b.∵将A(−1,0)D(3,−4)代入得:{−k+b=03k+b=−4解得k=−1b=−1∴直线AD的解析式y=−x−1(2)∵直线AD的解析式y=−x−1∴直线AD的一次项系数k=−1∴∠BAD=45°.∵PM平行于y轴∴∠AEP=90°∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+√22MP+√22PM=(1+√2)PM.设P(a,a2−3a−4)则M(a,−a−1)则PM=−a−1−(a2−3a−4)=−a2+2a+3=−(a−1)2+4.∴当a=1时PM有最大值最大值为4.∴△MPH的周长的最大值=4×(1+√2)=4+4√2(3)在直线EP的右侧x轴下方的抛物线上存在点N过点N作NG⊥x轴交x轴于点G使得以点E N G为顶点的三角形与△AOC相似理由如下:设点G的坐标为(a,0)则N(a,a2−3a−4)①如图2.1若OAOC =EGGN时△AOC∠△EGN.则a−1−a2+3a+4=14整理得:a2+a−8=0.得:a=−1+√332(负值舍去)∴点G为(−1+√332,0)②如图2.2若OAOC =GNEN时△AOC∠△NGE则a−1−a2+3a+4=4整理得:4a2−11a−17=0得:a=11+√3938(负值舍去)∴点G为(11+√3938,0)综上所述点G的坐标为(−1+√332,0)或(11+√3938,0).。
认识美丽的抛物线解决关键的压轴题黄陂区实验中学方铭2012年5月18日认识美丽的抛物线解决关键的压轴题黄陂区实验中学方铭抛物线是初中数学中很重要的一个知识点,也是学好高中数学的基础。
不但如此,它更是一根轴,能够把初中数学很多重要的知识点带动起来。
因此,近些年,在全国各地的中考试题中,抛物线经常作为重点题和压轴题,来全面考察学生的数学知识和学习潜力。
因此,针对这种情况,我们师生都必须引起高度的重视,认识抛物线,攻克压轴题。
下面,我就简要谈谈抛物线的备考思路。
一、熟悉抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a,顶点坐标( -b/2a ,(4ac-b2)/4a )2.a、b、c的几何含义。
a的符号确定抛物线的开口方向,|a|的大小确定抛物线的开口程度;a与b的符号共同确定对称轴的位置;c的符号确定抛物线与y轴交点的位置。
3.抛物线与X轴的交点。
Δ= b2-4ac>0时,抛物线与x轴有2个交点。
Δ= b2-4ac=0时,抛物线与x轴有1个交点。
Δ= b2-4ac<0时,抛物线与x轴没有交点。
4.抛物线的增减性。
当a>0时,在对称轴的左侧y随x的增大而减小,在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a,在对称轴的右侧y随x的增大而增大。
当a<0时,在对称轴的左侧y随x的增大而增大,在x= -b/2a 处取得最大值f(-b/2a)=4ac-b2/4a,在对称轴的右侧y随x的增大而减小。
二、了解抛物线解析式的求法1、已知三点坐标,选择一般式y=ax2+bx+c已知抛物线过A(1,-4)、B(2,-3)、C(4,5),求其解析式分析:y=x2-2x-32、已知顶点坐标,选择顶点式已知抛物线y=ax2-2ax+b的最低点纵坐标是-9,且过点(-2,0)分析:y=a(x-1)2-9过(-2,0) ∴a=1,即y=x2-2x-8在抛物线的平移、旋转和翻折过程中,要熟练运用顶点式求解析式。
相似抛物线模型总结2(比例式、等积式的
常见证明方法)
相似抛物线模型总结2(比例式、等积式的常见证明方法)
1. 比例式证明方法
比例式证明方法是一种常见的证明相似抛物线模型的方法。
该方法通过建立两个相似抛物线模型之间的比例关系来进行证明。
具体步骤如下:
1. 首先,确定两个抛物线模型的特征参数,如焦点位置、准线方程等。
2. 然后,根据这些特征参数,建立起两个抛物线模型的比例关系。
3. 接下来,利用比例关系以及已知的特征参数,求解未知参数的值。
4. 最后,对比两个抛物线模型的参数值,如果它们满足比例关系,就可以得出它们是相似的结论。
比例式证明方法简单直观,适用于一些简单的抛物线模型。
2. 等积式证明方法
等积式证明方法是另一种常见的证明相似抛物线模型的方法。
该方法通过建立两个抛物线模型的面积相等的等式来进行证明。
具体步骤如下:
1. 首先,确定两个抛物线模型的特征参数,如焦点位置、准线
方程等。
2. 然后,根据这些特征参数,计算两个抛物线模型的面积。
3. 接下来,将两个抛物线模型的面积相等的等式进行展开化简。
4. 最后,通过求解等式中的未知参数,判断它们是否相等。
等积式证明方法相对比较复杂,需要进行面积计算和等式推导,适用于一些复杂的抛物线模型。
综上所述,比例式证明方法和等积式证明方法是常见的用于证
明相似抛物线模型的方法。
根据具体情况选择合适的方法进行证明,可以更好地理解和应用相似抛物线模型的性质和特点。
2023年九年级中考数学专题: 二次函数综合题(相似三角形问题)1.如图1,抛物线()221y x m m =--+(m 为常数)与x 轴交于A B 、两点(点B 在点A 右侧),与y 轴交于点C .(1)下列说法:①抛物线开口向上,①点C 在y 轴正半轴上;①12m >;①抛物线顶点在直线21y x =-+上,其中正确的是_______;(2)如图2,若直线21y x =-+与该抛物线交于M N 、两点(点M 在点N 下方),试说明:线段MN 的长是一个定值,并求出这个值;(3)在(2)的条件下,设直线21y x =-+与y 轴交于点D ,连接BM BN BD 、、,当:1:2DN MN =时,求此时m 的值,判断MBN △与MDB △是否相似,并说明理由.2.在平面直角坐标系xOy 中,抛物线()260y ax ax c a =-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),顶点为C ,直线AC 交y 轴于点D ,连接BD ,且ABD △与ABC 的面积之比为1:2.(1)顶点C 的横坐标为__________; (2)求点B 的坐标;(3)连接CO ,将BCO 绕点C 按逆时针方向旋转一定的角度后,点B 与点A 重合,此时点O 恰好也在y 轴上,求抛物线的表达式.3.如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点D 作DE x ⊥轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标; (3)如图2,设AB 的中点为点N ,过点D 作DF BC ⊥于点F ,连接CD 、CN ,使得以C 、D 、F 三点为顶点的三角形与CNO 相似,请直接写出点D 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.5.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:①ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;①点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.6.在平面直角坐标系xOy 中,已知抛物线L 与x 轴交于,A B 两点,且经过点(0,2)C -,抛物线的顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭.(1)求抛物线L 的函数表达式;(2)如图1,点E 为第四象限抛物线L 上一动点,过点E 作EG BC ⊥于点G ,求EG 的最大值,及此时点E 的坐标;(3)如图2,连接,AC BC ,过点O 作直线//l BC ,点,P Q 分别为直线l 和抛物线L 上的点.试探究:在第一象限是否存在这样的点,P Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标;(2)过点A 作AP ①CB 交抛物线于点P ,求四边形ACBP 的面积;(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ①x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与①PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.8.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为'B .(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA '与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.9.如图,在平面直角坐标系中,抛物线26y ax bx =++与x 轴交于点(1,0),(3,0)A B -,与y 轴交于点C ,点P 是第一象限内抛物线上的动点. (1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当:PD OD 的值最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使90CMN ∠=︒,且CMN △与BOC 相似,若存在,请直接写出点M 的坐标.10.如图,已知抛物线23y ax bx =+-与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于C 点,设抛物线的顶点为D .过点D 作DE x ⊥轴,垂足为E .P 为线段DE 上一动点,(),0F m 为x 轴上一点,且PC PF ⊥.(1)求抛物线的解析式:(2)①当点P 与点D 重合时,求m 的值;①在①的条件下,将COF 绕原点按逆时针方向旋转90︒并平移,得到111C O F △,点C ,O ,F 的对应点分别是点1C ,1O ,1F ,若COF 的两个顶点恰好落在抛物线上,直接写出点1F 的坐标; (3)当点P 在线段DE 上运动时,求m 的变化范围.11.综合与实践如图1,抛物线y =﹣83x 2﹣94x +6与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .(1)求直线AC 的表达式;(2)点E 在抛物线的对称轴上,在平面内是否存在点F ,使得以点A ,C ,E ,F 为顶点的四边形是矩形?若存在,请直接写出点E 的坐标;若不存在,请说明理由;(3)如图2,设点P 从点O 出发以1个单位长度/秒的速度向终点A 运动,同时点Q 从点A 出发以54个单位长度/秒的速度向终点C 运动,运动时间为t 秒,当①OPQ 的平分线恰好经过OC 的中点时,求t 的值.12.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)在直线AC 上方的抛物线上找一点P ,使12ACPACDSS =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD △相似,直接写出点M 的坐标.13.如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,tanB 4=,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结,AC DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当DEF 和ABC 相似时,请直接写出平移后得到抛物线的表达式.14.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2)3,和(312)--,. (1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.15.如图1,在平面直角坐标系中,抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作直线MN x ⊥轴交抛物线于点N ,是否存在点M ,使得AMN 与OBC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于()1,0A -,()4,0B 两点,与y 轴交于点()0,2C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值; (3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点,试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标xoy 系中,已知抛物线y =-12x 2+bx +c 与x 轴交于点A (﹣4,0)、B(2,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图2,沿直线AC 平移抛物线y =-12x 2+bx +c ,使得A 、C 两点的对应点E 、F 始终在直线AC上.①设在平移过程中抛物线与y 轴交于点M ,求点M 纵坐标的最大值;①试探究抛物线在平移过程中,是否存在这样的点E ,使得以A 、E 、B 为顶点的三角形与①ABF 相似.若存在,请求出此时点E 的坐标;若不存在,请说明理由.18.如图,已知二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (4,0),E (1,3),与y 轴交于点C .(1)求该二次函数表达式;(2)判断△ABC 的形状,并说明理由;(3)P 为第一象限内该二次函数图象上一动点,过P 作PQ ∥AC ,交直线BC 于点Q ,作PM ∥y 轴交BC 于M .①求证:△PQM ∽△COA ; ②求线段PQ 的长度的最大值.19.如图,直线y x n =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(m,0)E 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若BPD ∆直角三角形,求点E 的坐标;①点E 在x 轴的正半轴上运动,若45PBD CBO ∠+∠=︒.请直接写出m 的值.20.如图,点A ,B 都在x 轴上,过点A 作x 轴的垂线交抛物线24y x x =-+于点C ,过点B 作x 轴的垂线交该抛物线于点D ,点C ,D 都在第一象限,点D 在点C 的右侧,DE AC ⊥于点E ,连结CD ,BE ,//CD EB .(1)若2OA =,求AB 的长.(2)若点A 是线段OB 的中点,求点E 的坐标.(3)根据(2)的条件,连结OD ,动点P 在线段OB 上,作PQ OD ⊥交OD 于点Q ,当PDQ 与CDE △相似时,求OQOD的值.答案1.(1)①①①;(3)m =3,相似;m =1,不相似2.(1)3;(2)(5,0);(3)2y 3.(1)2y x 2x 3=-++;(2)()2,3D ;(3)57,24D ⎛⎫ ⎪⎝⎭或315,24⎛⎫ ⎪⎝⎭4.(1)214y x x =-或21(2)14y x =--;(2)点C 的坐标为(6,3)或51,4⎛⎫- ⎪⎝⎭;(3)164t t --+;12C x ≥ 5.(1)(2)①9;①(4,6)D 或25(3,)4D .6.(1)213222y x x =--;(2)max ()=EG E 的坐标为(2,3)-;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭. 7.(1)A (-1,0),B (1,0),C (0,-1);(2)四边形ACBP 的面积为4;(3)M 点的坐标为(-2,3)或(43,79)或(4,15). 8.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-. 9.(1)2 246y x x =-++;(2)点P 的坐标为315,22⎛⎫ ⎪⎝⎭;(3)存在,点M 的坐标为939,48⎛⎫ ⎪⎝⎭. 10.(1)2134y x x =--;(2)①4;①1(2,9)16或13(6-,49)144;(3)748m ≤≤ 11.(1)直线AC 的表达式为364y x =+;(2)点E 1的坐标为20(3,)3--;点E 2的坐标为(3,10)-;点E 3的坐标为(3,3-+;点E 4的坐标为(3,3--;(3)t 的值为5.12.(1)223y x x =--+;(1,4)D -;(2)⎝⎭P 或⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭. 13.(1)16(1,)3-;(2)(2,4)-;(3)242()433y x =-++或241()4312y x =--+ 14.(1)2y x 2x 3=-++;(2)存在,点D 的坐标分别为3944⎛⎫ ⎪⎝⎭,或(12),; (3)当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠;当25p x <<时,锐角PCO ACO ∠>∠.15.(1)223y x x =--+,()1,4-;(2)()2,3P -;(3)存在,()2,0-或2,03⎛⎫ ⎪⎝⎭16.(1)213222y x x =--;(2)45;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭17.(1)2142y x x =--+;(2)①6;①存在,E (62--或(62--18.(1)二次函数表达式为:213222y x x =-++ ;(2)△ABC 为直角三角形;(3); 19.(1)234y x x =-++;(2)①(2,0)或(3,0);①7m =或134.20.(1;(2)1296,749E ⎛⎫ ⎪⎝⎭;(3)2或4932。
2023年中考数学高频考点专题训练--二次函数与动态几何综合题1.如图,已知抛物线y=−43x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.2.如图,抛物线y= 12x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求∥PCE面积最大时P点的坐标;(3)在(2)的条件下,若点D为OA的中点,点M是线段AC上一点,当∥OMD为等腰三角形时,连接MP、ME,把∥MPE沿着PE翻折,点M的对应点为点N,直接写出点N的坐标.3.已知抛物线y=−12x2+mx+m+12与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,−52),点P为抛物线在直线AC上方图象上一动点.(1)求抛物线的解析式;(2)求∥PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个交点,求图象M的顶点横坐标n的取值范围.4.如图,抛物线y= −14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52).直线y=kx−32过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y= −14x2+bx+c与直线y=kx −32的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE∥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN∥AD于点N,设∥PMN的周长为l,点P的横坐标为x,求l与x 的函数关系式,并求出l的最大值.5.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P是直线BC下方的抛物线上一点,且S∥PBC=2S∥ABC时,求点P的坐标;(3)点P(﹣2,﹣3),点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使∥MNO为等腰直角三角形,且∥MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∥AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∥APO=∥CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得∥MAD∥∥AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C 在x轴的下方,且OA=OC=5.(1)求抛物线对应的函数解析式;(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F 为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.10.综合与探究如图,已知抛物线y=ax2+2x+c(a≠0)与x轴负半轴交于点A(−1,0),与y轴交于点C(0,3),抛物线的顶点为D,直线y=x+b与抛物线交于A,F两点,过点D作DE∥y轴交直线AF于点E.(1)求抛物线和直线AF的解析式;(2)在直线AF上方的抛物线上有一点P,使S△PAE=3S△PDE,求点P的坐标;(3)若点M为抛物线上一动点,试探究在直线AF上是否存在一点N,使得以D,E,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的对称轴为x=2,与y轴交于点A与x轴交于点E、B,且点A(0,5),B(5,0),过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的点,且在AC的上方,作PD平行于y轴交AB于点D.(1)求二次函数的解析式;(2)当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)在抛物线上是否存在点Q,使得以点A、C、D、Q为顶点的四边形为平行四边形,如果存在,请写出点Q,D的坐标,如果不存在,请说明理由.12.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.13.已知抛物线y=−12x2+32x+2,与x轴交于两点A,B(点A在点B的左侧),与y轴交于点C.(1)求点A,B和点C的坐标;(2)已知P是线段BC上的一个动点.①若PQ⊥x轴,交抛物线于点Q,当BP+PQ取最大值时,求点P的坐标;②求√2AP+PB的最小值.14.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE ⊥x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.15.如图,抛物线y=12x2+32x+2与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标.(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN∥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt∥COB 相似时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM∥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN∥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:将A(0,4),B(3,0)代入抛物线的解析式得:{c=4−12+3b+c=0,解得:b=83,c=4.∴抛物线的解析式为:y=−43x2+83x+4.(2)解:①如图1所示:∵令y=0,−43x2+83x+4=0解得:x1=−1,x2=3,∴C(−1,0).∴BC=4,AB=√32+42=5.∵D、E分别为AC、AB的中点,∴DE//BC.∴ADDC=AFFO=1.∴PQ=FO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当PQQN=ABCB或POQN=CBAB时,△PQN与△ABC相似.∵当PQQN=ABCB时,2QN=54,解得:QN=8 5.∵QNQB=OAAB=45,∴QB=54QN=54×85=2.∴OQ=3−2=1.∴点P的坐标为(1,2).当PQQN=CBAB时,2QN=45,解得:QN=2.5.∵QNQB=OAAB=45,∴QB=54QN=54×52=258.∴OB−BQ=−1 8,∴点P的坐标为(−18,2).综上所述点P的坐标为:(1,2)或(−18,2).②如图2所示:∵PQ=QN,PQ=2,∴QN=2.∵QN⊥AB,∴∠QNB=90°,∵由(2)可知OA=4,AB=5,∴sin∠ABO=4 5.∴QNQB=45,即2QB=45,解得:QB=52.∴OQ =OB −QB =3−52=12. ∴P(12,2) .2.【答案】(1)解:根据题意得:{c =−42+2b +c =0 , 解得: {b =1c =−4,所以该抛物线的解析式为:y= 12x 2+x ﹣4;(2)解:令y=0,即 12 x 2+x ﹣4=0,解得x 1=﹣4,x 2=2,∴A (﹣4,0),S ∥ABC = 12 AB•OC=12设P 点坐标为(x ,0),则PB=2﹣x . ∵PE∥BC ,∴∥BPE=∥BAC ,∥BEP=∥BCA , ∴∥PBE∥∥BAC ,∴S △PBE S △ABC=( PB AB )2,即 S△PBE 12 =( 2−x 6 )2,化简得:S ∥PBE = 13(2﹣x )2. S ∥PCE =S ∥PCB ﹣S ∥PBE = 12 PB•OC ﹣S ∥PBE = 12 ×(2﹣x )×4﹣ 13 (2﹣x )2=﹣ 13 x 2﹣ 23 x+ 83 =﹣ 13 (x+1)2+3∴当x=﹣1时,S ∥PCE 的最大值为3. (3)解:由(2)已知A (﹣4,0), ∵点D 为0A 中点, ∴D (﹣2,0),设直线AC 的解析式为y=mx+n ,把A (﹣4,0)、C (0,﹣4)分别代入得: {−4m +n =0n =−4 ,解得 {m =−1n =−4 ,∴直线AC 的解析式为y=﹣x ﹣4.∵PE∥AC ,所以可设直线PE 的解析式为y=﹣x+a , 将P (﹣1,0)代入y=﹣x ﹣a 得a=﹣1,所以直线PE 的解析式为y=﹣x ﹣1. 设直线BC 的解析式为y=kx+a′,将B (2,0)、C (0,﹣4)代入y=kx+a′得 {2k +a′=0a′=−4 ,解得k=2,a′=﹣4.所以直线BC 的解析式为y=2x ﹣4.由2x ﹣4=﹣x ﹣1得x=1,将x=1代入y=2x ﹣4得y=﹣2, ∴E 点坐标为(1,﹣2). ①当MD=OD 时,如图1:∵AD=MD=AD ,OA=OC ,∥DAM=∥OAC , ∴∥ADM∥∥AOC ,∴∥ADM=∥AOC=90°,即DM∥x 轴,∴M 的横坐标为﹣2,将x=﹣2代入y=﹣x ﹣4,得y=﹣2. 所以此时M 的坐标为(﹣2,﹣2); ∵M 和E 点纵坐标相等, ∴ME∥x 轴, ∴∥PEM=45°.由翻折得∥ENM=2∥PEM=90°,即NE∥y 轴, ∴EN=ME=3, ∵E (1,﹣2), ∴N (1,1).②当DM=OM 时,过点M 作MG∥x 轴交于点,如图2:易知DG=OG=1,即G点与P点重合,M的横坐标为﹣1,将x=﹣1代入y=﹣x﹣4,得y=﹣3.∴M(﹣1,﹣3).∵ME= √(−1−1)2+(−3+2)2= √5,EB= √(1−2)2+22= √5,∴ME=EB,∵PB=3,PM=3,即PB=PM,又∵PE=PE,∴∥BPE∥∥MPE,∴∥BEP=∥MEP,∴点N与点B重合,∴N(2,0);③当OD=OM时,设点O到AC的最短距离为h,则OA•OC=h•AC∵AC= √OA2+OC2= √42+42=4 √2,∴h= 4×44√2=2 √2,∵h>OD,∴OD≠OM.此时等腰∥OMD不存在.综上所述,N点的坐标分别为(1,1)或(2,0).3.【答案】(1)解:将点C(0,−52)代入抛物线解析式得:m+12=−52,解得:m=−3,∴抛物线解析式为:y=−12x2−3x−52;(2)解:∵抛物线与x轴交于A、B两点,∴令0=−12x2−3x−52,解得:x1=−5,x2=−1,∴A、B坐标分别为:A(−5,0),B(−1,0),设直线AC的解析式为:y=kx+b(k≠0),将A(−5,0)和C(0,−52)代入得:{−5k+b=0b=−52,解得:{k=−12b=−52,∴直线AC的解析式为:y=−12x−52,如图所示,过P点作PQ∥x轴,交AC于Q点,∵P点在位于直线AC上方的抛物线上,∴设P(a,−12a2−3a−52),则Q(a,−12a−52),其中−5<a<0,∴PQ=y P−y Q=−12a2−3a−52−(−12a−52)=−12a2−52a,∵S△PAC=12PQ(x C−x A),∴S△PAC=12(−12a2−52a)×[0−(−5)]=−54(a+52)2+12516,∵−54<0,∴抛物线开口向下,当a=−52时,S△PAC取得的最大值,最大值为12516,此时,将a=−52代入抛物线解析式得:y=158,∴当P(−52,158)时,S△PAC取得的最大值,最大值为12516;(3)解:如图所示,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G .由(1)可知,原抛物线顶点坐标为(−3,2),∴沿x 轴向下翻折后,图象G 的顶点坐标为(−3,−2),图象G 的解析式为:y =12x 2+3x +52;∵图象G 沿着直线AC 平移,∴作直线BS∥AC ,交PC 于S 点,则随着平移过程,点B 在直线BS 上运动, 分如下情况讨论:①当图象G 沿直线AC 平移至B 点恰好经过S 点时,如图中M 1所示, 此时,平移后的图象M 恰好与线段PC 有一个交点,即为S 点,由(2)知,P(−52,158),以及直线AC 的解析式为y =−12x −52,∴设直线BS 的解析式为:y =−12x +b ,将B(−1,0)代入得:b =−12,∴直线BS 的解析式为:y =−12x −12;设直线PC 的解析式为:y =kx +b(k ≠0),将P(−52,158),C(0,−52)代入得:{−52k +b =158b =−52,解得:{k =−74b =−52,∴直线PC 的解析式为:y =−74x −52;联立{y =−12x −12y =−74x −52,解得:{x =−85y =310,即:S 点的坐标为S(−85,310),∴此时点B(−1,0)平移至S(−85,310),等同于向左平移35个单位,向上平移310个单位,即:当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向左平移35个单位,向上平移310个单位, ∵原图像G 的顶点坐标为:(−3,−2), ∴平移后图象M 1的顶点的横坐标n =−3−35=−185; ②当图象G 沿直线AC 平移至恰好经过C 点时,如图中M 2所示,设图象G 与直线AC 的交点为R ,联立{y =12x 2+3x +52y =−12x −52,解得:{x =−5y =0或{x =−2y =−32, ∴点R 的坐标为:R(−2,−32),由R(−2,−32)平移至C(0,−52),等同于向右平移2个单位,向下平移1个单位,∴当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向右平移2个单位,向下平移1各单位,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 2的顶点的横坐标n =−3+2=−1;∴当图象G 在M 1和M 2之间平移时,均能满足与线段PC 有且仅有一个交点, 此时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1; ③当图象G 沿直线AC 平移至A 点恰好经过C 点时,如图中M 3所示,此时,由A(−5,0)平移至C(0,−52),等同于向右平移5个单位,向下平移52个单位,即:原图像G 向右平移5个单位,向下平移52个单位,得到图象M 3,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 3的顶点的横坐标n =−3+5=2;综上所述,当新的图象M 与线段PC 只有一个交点时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1或n =2. 4.【答案】(1)解:∵y= −14x 2+bx+c 经过点A (2,0)和B (0, 52 ),∴由此得 {−1+2b +c =0c =52, 解得 {b =−34c =52. ∴抛物线的解析式是y= −14x 2﹣ 34 x+ 52 ,∵直线y=kx ﹣ 32 经过点A (2,0)∴2k ﹣ 32 =0,解得:k= 34,∴直线的解析式是y= 34 x ﹣ 32(2)解:设P 的坐标是(x , −14 x 2﹣ 34 x+ 52 ),则M 的坐标是(x , 34 x ﹣ 32 )∴PM=( −14 x 2﹣ 34 x+ 52 )﹣( 34 x ﹣ 32 )=﹣ 14 x 2﹣ 32 x+4,解方程 {y =−14x 2−34x +52y =34x −32得: {x =−8y =−712, {x =2y =0 , ∵点D 在第三象限,则点D 的坐标是(﹣8,﹣7 12 ),由y= 34 x ﹣ 32得点C 的坐标是(0,﹣32), ∴CE=﹣ 32 ﹣(﹣7 12)=6,由于PM∥y 轴,要使四边形PMEC 是平行四边形,必有PM=CE ,即﹣ 14 x 2﹣ 32 x+4=6解这个方程得:x 1=﹣2,x 2=﹣4, 符合﹣8<x <2,当x=﹣2时,y=﹣ 14 ×(﹣2)2﹣ 34 ×(﹣2)+ 52=3,当x=﹣4时,y=﹣ 14 ×(﹣4)2﹣ 34 ×(﹣4)+ 52= 32 ,因此,直线AD 上方的抛物线上存在这样的点P ,使四边形PMEC 是平行四边形,点P 的坐标是(﹣2,3)和(﹣4, 32) (3)解:在Rt∥CDE 中,DE=8,CE=6 由勾股定理得:DC= √82+62 ∴∥CDE 的周长是24, ∵PM∥y 轴, ∵∥PMN=∥DCE , ∵∥PNM=∥DEC , ∴∥PMN∥∥CDE ,∴△PMN 的周长△CDE 的周长 = PM DC ,即 l 24 = −14x 2−32x+410, 化简整理得:l 与x 的函数关系式是:l=﹣ 35 x 2﹣ 185 x+ 485,l=﹣ 35 x 2﹣ 185 x+ 485 =﹣ 35(x+3)2+15,∵﹣ 35<0,∴l 有最大值,当x=﹣3时,l 的最大值是15.5.【答案】(1)解:∵y =ax 2+bx+2(a≠0)与x 轴交于A (﹣1,0)、B (4,0), ∴{a −b +2=016a +4b +2=0 ,解得 {a =−12b =32 , ∴抛物线的解析式为:y =−12 x 2+32x+2.(2)解:∵A (﹣1,0)、B (4,0), ∴AB =5,由抛物线的解析式可得,C (0,2),∴OC =2,l BC :y =−12x+2.∴S ∥PBC =2S ∥ABC =2 ×12•AB•OC =5×2=10.在x 轴上取点M (﹣6,0),则MB =10,∴S ∥MBC =12 •MB•OC =12×2×10= 10.过点M 作BC 的平行线MN ,交抛物线于点P 1,P 2,∴l MN :y =−12 x ﹣3.联立 {y =−12x 2+32x +2y =−12x −3, 解得 {x =2+√14y =−4−√142 ,或 {x =2−√14y =−4+√142,∴P 1(2 +√14 ,﹣4 −√142 ),P 2(2 −√14 ,﹣4 +√142).(3)解:由抛物线解析式可得,抛物线对称轴为直线x =32.∵点F 是抛物线对称轴上一点, ∴设点F 的坐标为( 32,t ).若以点B 、P 、E 、F 为顶点的四边形是平行四边形,需要分以下两种情况: ①当BP 为边时,如图,由平行四边形的性质可知,E1(32+6,t+3),E2(32−6,t﹣3),∵点E在抛物线y =−12x2+32x+2上,∴t+3 =−12×(32+6)2+32×(32+6)+2,解得t =−1438,t﹣3 =−12×(32−6)2+32×(32−6)+2,解得t =−1378,∴F的坐标为(32,−1438)或(32,−1378).②当BP为对角线时,BP的中点为(1,−3 2),∵F(32,t),∴E(−12,﹣t﹣3),∴﹣t﹣3 =−12×(−12)2+32×(−12)+2,解得t =−338,∴F(32,−338).综上,点F的坐标为(32,−1438)或(32,−1378)或(32,−338).6.【答案】(1)解:抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=- 2 3,故抛物线的表达式为:y=- 23x2- 43x+2,则点C(0,2),函数的对称轴为:x=1(2)解:连接OP,设点P(x,- 23x2- 43x+2),则S=S四边形ADCP=S∥APO+S∥CPO-S∥ODC= 12×AO×y P+ 12×OC×|x P|- 12×CO×OD = 12×3×(- 23x2- 43x+2) +12×2×(-x)- 12×2×1=-x2-3x+2,∵-1<0,故S有最大值,当x=- 32时,S的最大值为174(3)解:存在,理由:∥MNO为等腰直角三角形,且∥MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(∥M1N1O):设点N1的坐标为(x,- 23x2- 43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∥FN1O+∥M1N1E=90°,∥M1N1E+∥EM1N1=90°,∴∥EM1N1=∥FN1O,∥M1N1E=∥N1OF=90°,ON1=M1N1,∴∥M1N1E∥∥N1OF(AAS),∴M1E=N1F,即:x+1=- 23x2- 43x+2,解得:x=−7±√734(舍去负值),则点N1( −7+√734,−3+√734);N2的情况(∥M2N2O):同理可得:点N 2( −1−√734 , −3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4,同理可得:点N 3、N 4的坐标分别为:( −7−√734 , −3−√734 )、( −1+√734 , −3−√734); 综上,点N 的坐标为:( −7+√734 , −3+√734 )或( −1−√734 , −3+√734 )或( −7−√734, −3−√734 )或( −1+√734 , −3−√734). 7.【答案】(1)解:令 4x −12=2x 2−8x +6 ,解得 x 1=x 2=3 ,当 x =3 时, 4x −12=2x 2−8x +6=0 ,∴y =ax 2+bx +c 必过 (3,0) ,又∵y =ax 2+bx +c 必过 (−1,0) ,∴{a −b +c =09a +3b +c =0,⇒,{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,即 4x −12≤ax 2−2ax −3a ,即可看成二次函数 y =ax 2−2ax −3a 与一次函数 y =4x −12 仅有一个交点,且整体位于 y =4x −12 的上方∴a >0 ,∴ 4x −12=ax 2−2ax −3a 有两个相等的实数根∴ Δ=0∴(2a +4)2−4a(12−3a)=0 ,∴(a −1)2=0 ,∴a =1 ,∴b =−2 , c =−3 ,∴y =x 2−2x −3 .(2)解:由(1)可知: A(3,0) , C(0,−3) ,设 M(m ,m 2−2m −3),N(n ,0) ,①当 AC 为对角线时, {x A +x C =x M +x N y A +y C =y n +y N∴{3+0=m +n 0+(−3)=m 2−2m −3+0,解得 m 1=0 (舍), m 2=2 , ∴n =1 ,即 N 1(1,0) .②当AM为对角线时,{x A+x M=x C+x Ny A +yM=yC+yN∴{3+m=0+n0+m2−2m−3=−3+0,解得m1=0(舍)m2=2,∴n=5,即N2(5,0).③当AN为对角线时,{x A+x N=x C+x My A +yN=yC+yM∴{3+n=0+m0+0=−3+m2−2m−3,解得m1=1+√7,m2=1−√7,∴n=√7−2或n=−2−√7,∴N3(√7−2,0),N4(−2−√7,0).综上所述:N点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).8.【答案】(1)解:过点A作AD∥OB于点D,过点C作CE∥OB于点E,∵AO=AB,∴AD是∥AOB的中线,∴OD= 12OB=2,∵tan∥AOB=2,∴ADOD=2,∴AD=4,∵CE∥AD,点C是AO的中点,∴CE是∥AOD的中位线,∴CE= 12AD=2,OE=12OD=1,∴C的坐标为(1,2);(2)解:由(1)可知:CE=2,BE=3,A的坐标为(2,4),∴tan∥CBE= CEBE=23,∵∥APO=∥CBO,∴tan∥APO=tan∥CBO= 23, ∴AD PD = 23, ∴PD=6,设P 的坐标为(x ,0),∵D (2,0),∴PD=|x ﹣2|,∴|x ﹣2|=6,∴x=8或x=﹣4,∴P (8,0)或(﹣4,0);当P 的坐标为(8,0)时,把A (2,4)和(8,0)代入y=ax 2+bx ,∴{4=4a +b 0=64a +8b, 解得: {a =−13b =83, ∴抛物线的解析式为:y=﹣ 13 x 2+ 83x , 当P 的坐标为(﹣4,0)时,把A (2,4)和P (﹣4,0)代入y=ax 2+bx ,∴{4=4a +2b 0=16a −4b ,解得: {a =13b =43, ∴抛物线的解析式为:y= 13 x 2+ 43x , 综上所述,抛物线的解析式为:y=﹣ 13 x 2+ 83 x 或y= 13 x 2+ 43x ; (3)解:∵M 为圆心,N 为切点,∴MN∥OA ,∵D 点是A 点关于MN 的对称点,∴∥MAD 是等腰三角形,MA=MD当∥MAD∥∥AOB 时,∵∥AOB 是等腰三角形,∴∥MAD=∥AOB ,当抛物线的解析式为y=﹣ 13 x 2+ 83x 时,如图2,①若点N在A的上方时,此时∥MAN=∥AOB,∴AM∥x轴,∴M的纵坐标为4,∴把y=4代入y=﹣13x2+ 83x,解得:x=2(舍去)或x=6,∴M的坐标为(6,4),②当点N在点A的下方时,此时∥MDA=∥AOB,∴DM∥x轴,过点A作AE∥DM于点E,交于x轴于点F,设D点横坐标为a,∴DE=2-a,∵tan∥MDA=tan∥AOB=2,∴AE=2DE=4-2a,∴点M的纵坐标为2a,∴由勾股定理可知:AD= √5(2-a),OA=2 √5,∴OADM=OBAD,解2√5DM=4√5(2−a),∴DM= 5(2−a)2,设M的横坐标为x,∴x-a= 5(2−a)2∴x= 10−3a2,∴M(10−3a2,2a)把M(10−3a2,2a)代入y=﹣13x2+ 83x,得:2a=- 13×(10−3a2)2+ 83×(10−3a2)解得:a=2或a=- 10 3,∴当a=2时,M(2,4)舍去当a=- 103时,M(10,-203)当抛物线的解析式为y= 13x2+ 43x时,如图4,若点N在点A的上方时,此时∥MAN=∥AOB,延长MA交x轴于点F,∵∥MAN=∥OAF,∴∥AOB=∥OAF,∴FA=FO,过点F作FG∥OA于点G,∵A(2,4),∴由勾股定理可求得:AO=2 √5,∴OG= 12AO= √5 , ∵tan∥AOB= CF OG∴GF=2 √5 ,∴由勾股定理可求得:OF=5,∴F 的坐标为(5,0),设直线MA 的解析式为:y=mx+n ,把A (2,4)和F (5,0)代入y=mx+n ,∴{4=2m +n 0=5m +n, 解得: {m =−43n =203, ∴直线MA 的解析式为:y=﹣ 43 + 203, 联立 {y =13x 2+43x y =−43x +203, ∴解得:x=2(舍去)或x=﹣10,把x=﹣10代入y=﹣ 43 + 203, ∴y=20,∴M (﹣10,20),若点N 在点A 的下方时,此时∥MAN=∥AOB ,∴AM∥x 轴,∴M 的纵坐标为4,把y=4代入y= 13 x 2+ 43x , ∴x=﹣6或x=2(舍去),∴M (﹣6,4),综上所述,存在这样的点M (6,4)或(10,- 203)或(﹣10,20)或(﹣6,4),使得∥MAD∥∥AOB9.【答案】(1)解:由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y=x 2+bx+c 过点A ,点C ,∴{25−5b +c =0c =−5,∴抛物线对应的函数解析式为y=x 2+4x ﹣5;(2)解:∵y=x 2+4x ﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x 2+4x ﹣5与x 轴交于点A ,B ,∴点A ,B 关于直线x=﹣2对称.连结AC ,交对称轴于点P ,此时PB+PC 的值最小.设直线AC 的解析式为y=mx+n ,则 {−5m +n =0n =−5,解得 {m =−1n =−5 , ∴直线AC 的解析式为y=﹣x ﹣5,当x=﹣2时,y=﹣3,∴点P 的坐标为(﹣2,﹣3)(3)解:在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),∵四边形PEFM 为正方形,∴E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM=PE ,∴|x+2|=|x 2+4x ﹣5+3|,∴x 2+4x ﹣2=x+2,或x 2+4x ﹣2=﹣x ﹣2,整理得x 2+3x ﹣4=0,或x 2+5x=0,解得x 1=﹣4,x 2=1,x 3=0,x 4=﹣5,∴M (﹣4,﹣3)或M (1,﹣3)或M (0,﹣3)或M (﹣5,﹣3)10.【答案】(1)解:将A(−1,0)和C(0,3)代入y =ax 2+2x +c(a ≠0),得{a −2+c =0c =3,∴抛物线解析式为y=−x2+2x+3,将A(−1,0)代入y=x+b,得:-1+b=0,解得b=1,∴直线AF的解析式为y=x+1(2)解:y=−x2+2x+3=−(x−1)2+4,∴D(1,4),对于直线y=x+1,令x=1,则y=2,故E(1,2),∴DE=4-2=2.过点P作x轴的垂线,交AF于点H,过点P作PG∥AF于点G,过点P作PK∥DE于点K,连接PA和PD,如图所示:设P(m,−m2+2m+3),则H(m,m+1),∴PH=(−m2+2m+3)−(m+1)=−m2+m+2,对于直线y=x+1,令x=0,则y=1,由交点得出∥FAB=45°,∴∥PHG=45°,即∥PHG为等腰直角三角形,故有PG=√22PH=√22(−m2+m+2),延长DE交x轴于点Q,则Q(1,0),∴AQ=2,即AE=√2AQ=2√2,∴S△PAE=12AE⋅PG=12×2√2×√22(−m2+m+2)=−m2+m+2,∵P(m,−m2+m+3),K(1,−m2+m+3),∴PK=|1−m|,∴S△PDE=12DE⋅PK=12×2×|1−m|=|1−m|,由S△PAE=3S△PDE,得−m2+m+2=3|1−m|,解得m1=2−√3,m2=2+√3(不合题意,舍去),m3=−1+√6,m4=−1−√6(不合题意,舍去),将m1=2−√3代入−m2+2m+3,得−m2+2m+3=2√3,则得点P的坐标为P(2−√3,2√3);将m3=−1+√6代入−m2+2m+3,得−m2+2m+3=4√6−6,则得点P的坐标为P(−1+√6,4√6−6);综上所述,点P的坐标为P(2−√3,2√3)或P(−1+√6,4√6−6)(3)解:存在,N1(0,1),N2(2,3),N3(1+√172,3+√172),N4(1−√172,3−√172)11.【答案】(1)解:∵抛物线y=ax2+bx+c的对称轴为x=2,∴−b2a=2,∴b=−4a,∴抛物线解析式为y=ax2−4ax+c,∵点A(0,5),B(5,0),∴{c=525a−5b+c=0,∴{a=−1c=5,∴二次函数的解析式为y=−x2+4x+5;(2)解:∵AC//x轴,点A(0,5),当y=5时,−x2+4x+5=5,∴x1=0,x2=4,∴C(4,5),∴AC=4,设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),由点A、B的坐标得,直线AB的解析式为y=−x+5;设P(m,−m2+4m+5),∴D(m,−m+5),∴PD=−m2+4m+5+m−5=−m2+5m,∵AC=4,∴S四边形APCD =12AC⋅PD=2(−m2+5m)=−2(m−52)2+252∴当m=52时,四边形APCD的面积最大,∴即点P(52,354)时,四边形APCD的面积最大为252;(3)解:(3)设P(n,−n2+4n+5)则D(n,−n+5)①当AC为平行四边形的边,如图,∴AC∥DQ,AC=DQ,∴点Q的纵坐标为−n+5,又∵点Q在抛物线上,∴−x2+4x+5=−n+5,解得x=2±√4+n,∴点Q的坐标为(2+√4+n,−n+5)或(2−√4+n,−n+5),当Q点坐标为(2+√4+n,−n+5)时,∵AC =4,∴DQ =2+√4+n −n =4, ∴4+n =(n +2)2, 解得n =0或n =−3,∵点P 在第一象限,且在AC 的上方, ∴0<n <4, ∴此时不符合题意;当Q 点坐标为(2−√4+n ,−n +5)时, ∵AC =4,∴DQ =n −2+√4+n =4,∴4+n =(6−n)2,即n 2−13n +32=0解得n =13+√412或n =13−√412,∵点P 在第一象限,且在AC 的上方, ∴0<n <4,∴n =13−√412∴D 点坐标为(13−√412,√41−32),Q 点坐标为(2−√42−2√412,√41−32)②AC 为平行四边形的对角线时,如图,连接DQ 交AC 于点M , ∴AM =CM ,DM =QM , ∵A(0,5),C(4,5), ∴M 的坐标为(2,5),设点Q 的坐标为(t ,−t 2+4t +5),∴{t+n2=2−t 2+4t+5−n+52=5,解得{t =1n =3或{t =4n =0,同理可得0<n <4, ∴{t =1n =3, ∴点D 的坐标为(3,2),点Q 的坐标为(1,8);综上所述,存在Q 使得以A 、C 、D 、Q 为顶点的四边形为平行四边形,此时D 、Q 的坐标分别为(13−√412,√41−32),(2−√42−2√412,√41−32)或(3,2),(1,8). 12.【答案】(1)解:由题意得 {a −b −4a =0−4a =4 ,解得 {a =−1b =3.∴抛物线的解析式:y =﹣x 2+3x+4.(2)解:由B (4,0)、C (0,4)可知,直线BC :y =﹣x+4;如图1,过点P 作PQ//y 轴,交直线BC 于Q ,设P (x ,﹣x 2+3x+4),则Q (x ,﹣x+4);∴PQ =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;S ∥PCB = 12 PQ•OB = 12 ×(﹣x 2+4x )×4=﹣2(x ﹣2)2+8;∴当P (2,6)时,∥PCB 的面积最大; (3)解:存在.抛物线y =﹣x 2+3x+4的顶点坐标E (32,254) ,直线BC :y =﹣x+4;当 x =32 时,F (32,52) ,∴.EF =154.如图2,过点M 作MN∥EF ,交直线BC 于M ,设N (x ,﹣x 2+3x+4),则M (x ,﹣x+4);由题意点N 在第一象限,∴MN =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;当EF 与NM 平行且相等时,四边形EFMN 是平行四边形, 由﹣x 2+4x =154时,解得 x 1=52,x 2=32 (不合题意,舍去).当 x =52 时, y =−(52)2+3×52+4=214,∴N ( 52, 214 ).∴点N 坐标为( 52, 214 ).13.【答案】(1)令 y =0 ,则 −12x 2+32x +2=0 ,解得 x 1=−1 , x 2=4 .∴A 点坐标为 (−1,0) ,B 点坐标为 (4,0) . 令 x =0 ,则 y =2 . ∴C 点坐标为 (0,2) .(2)①设: l BC :y =mx +n ,将 B(4,0) , C(0,2) 分别代入得, {0=4m +n 2=n ,解得 {m =−12n =2,故 l BC :y =−12x +2 .可设 P(t,−12t +2) , 0≤t ≤4 ,则 Q(t,−12t 2+32t +2) ,且Q 在P 上方.所以 PQ =−12t 2+32t +2−(−12t +2)=−12t 2+2t .又 BP =√(4−t)2+(−12t +2)2=√52(4−t) .故 BP +PQ =√52(4−t)+(−12t 2+2t)=−12t 2+(2−√52)t +2√5 .当 t =2−√52 时取得最大值,此时 P(2−√52,1+√54) .②如图,延长AC至点D,使得CD=CB,连接BD,作DE⊥y轴于点E,过点P作PH⊥BD于点H.由AC2=12+22=5,BC2=22+42=20,AB2=(−1−4)2=25,所以AC2+BC2=AB2,∠ACB=90°.则△BDC是等腰直角三角形,∠CBD=45°.√2AP+PB=√2(AP+PBsin45°)=√2(AP+PH),由垂线段最短可知,当A,P,H共线时(AP+PH)取得最小值.∵∠BCD=∠DEC=∠COB=90°,∵∠DCE+∠BCO=∠BCO+∠CBO=90°,∴∠DCE=∠CBO.∴△CDE≌△BCO.∴DE=CO=2,CE=BO=4.可得点D的坐标为(2,6).∴BD=√(2−4)2+(6−0)2=2√10,=12BD⋅AH,代入可得12×5×6=12×2√10⋅AH,S△ABD=12AB⋅yD,故有√2AP+PB=√2(AP+PH)≥√2AH=3√5.解得AH=3√102所以√2AP+PB的最小值为3√5.14.【答案】(1)解:当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)解:∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x 2+2x+3,且C(0,3), 当x=0时,-x 2+2x+3=0, 解得x=-1,或x=3, ∴B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中,得: {3k +b =0b =3 ,解得 {k =−1b =3,∴直线AB 的解析式为y=-x+3;(3)解:点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,∴DF=-x 2+2x+3-(-x+3)=-x 2+3x= −(x −32)2+94,∴当 x =32 时,DF 最大,为 94 ,此时D 的坐标为( 32,154 ).15.【答案】(1)解:∵点A 、B 、C 在二次函数图象上 ∴把x=0代入 y =12x 2+32x +2 ,得y=2把y=0代入 y =12x 2+32x +2 ,得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),C (0,2);(2)解:设直线BC 的解析式为y=kx+b (k≠0),把B (4,0),C (0,2)代入,得 {4k +b =0b =2 , {k =−12b =2 ∴直线BC 的解析式为 y =12x +2∵OP=t∴P (t ,0),M (t ,﹣ 12 t+2),N (t ,﹣ 12 t 2+ 32 t+2),如图,∴S 1=N 1P 1﹣M 1P 1=﹣ 12 t 2+ 32 t+2﹣(﹣ 12 t+2)=﹣ 12t 2+2t (0<t <4),S2=M2P2﹣N2P2=﹣12t+2﹣(﹣12t2+ 32t+2)= 12t2﹣2t(﹣1<t<0),(3)解:如图,①若∥OPN∥∥OCB,当OP与OC是对应边时,则OPOC=NPBO,即t2=−12t2+32t+24化简得:t2+t﹣4=0,解得:t1=−1+√172,t2=−1−√172(不合题意,舍去)②若∥OPN∥∥OBC,当OP与OB是对应边时,则OPOB=PNCO,即t4=−12t2+32t+24化简得:t2﹣2t﹣4=0解得:t3=1+ √5,t4=1﹣√5(不合题意,舍去)∴符合题意的点P的坐标为(−1+√172,0)和(1+ √5,0).16.【答案】(1)解:由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax ﹣12a,即:﹣12a=4,解得:a=﹣1 3,则抛物线的表达式为y=−13x2+13x+4,(2)设点P(m,﹣13m2+ 13m+4),则点Q(m,﹣m+4),∵OB=OC,∴∥ABC=∥OCB=45°=∥PQN,PN=PQsin∥PQN=√22(﹣13m2+ 13m+4+m﹣4)=﹣√26(m﹣2)2+ 2√23,∵﹣√26<0,∴PN有最大值,当m=2时,PN的最大值为2√23.(3)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4 √2 ,∥OBC =∥OCB =45°, 将点B (4,0)、C (0,4)的坐标代入一次函数表达式:y =kx+b 得 {0=4k +b b =4 解得 {k =−1b =4∴直线BC 的解析式为y =﹣x+4…①, 设直线AC 的解析式为y=mx+n把点A (﹣3,0)、C (0,4)代入得 {0=−3m +n n =4解得 {m =43n =4∴直线AC 的表达式为:y = 43x+4,设直线AC 的中点为K (﹣ 32 ,2),过点M 与CA 垂直直线的表达式中的k 值为﹣ 34 ,设过点K 与直线AC 垂直直线的表达式为y =﹣ 34 x+q把K (﹣ 32 ,2)代入得2=﹣ 34 ×(﹣ 32 )+q解得q= 78∴y =﹣ 34 x+ 78 …②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3),②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4 √2﹣5,则QM=MB=8−5√22,故点Q(5√22,8−5√22).③当CQ=AQ时,联立①②,{y=−x+4y=−34x+78,解得,x=252(舍去),综上所述点Q的坐标为:Q(1,3)或Q(5√22,8−5√22).。
抛物线与相似综合问题
【典型例题】如图①,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D .
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?;
(3)探究坐标轴上是否存在点p ,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点p的坐标;若不存在,请说明理由.
123
1.如图①,抛物线y=-x2 +b x +c与直线y=x+5 交于坐标轴上B、C两点,抛物线交x轴于另一点A.
(1)求抛物线的解析式;
(2)点P在抛物线上,PN⊥x轴,垂足为N点,交BC于M点,BC将△PBN的面积分成相等的两部分,求P点坐标;
(3)在(2)中,点K在抛物线上,且在第四象限,KE⊥y轴,垂足为E,是否存在这样的点K,使△PBN∽△OKE(BN与EK为对应边),若存在,求出K点坐标.
1
2
2.在平面直角坐标系xoy 中,已知抛物线y=-
9
4(x -2)2 +c 与x 轴交于A 、B 两点,(点A 在
点B 左侧),交y 轴的正半轴于点C ,其顶点为M ,MH ⊥x 轴于点H ,MA 交y 轴于点N ,sin ∠MOH=
5
52.
(1)求此抛物线的函数表达式;
(2)过H 的直线与y 轴相交于点P ,过O 、M 两点作直线PH 的垂线,垂足分别为F 、E ,若
HF
HE =2
1时,求点P 的坐标;
(3)将(1)中的抛物线沿y 轴折叠,使点A 落在点D 处,连接MD ,Q 为(1)中的抛物线上的一动点,直线NQ 交x 轴于点G ,当Q 点在抛物线上运动时,是否存在点Q ,使△
ANG 与△ADM 相似?若存在,求出所有符合条件的直线QG 的解析式;若不存在,请说明理由.
3.已知:如图,一次函数y=
2
1x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y=
2
1x 2 +b x +c 的图象与一次函数y=2
1
x +1的图象交于
B 、
C 两点,与x 轴交于
D 、
E 两点,且D 点坐标为(1,0).
(1)求二次函数解析式;
(2)求四边形BDEC 的面积S ; (3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.
4.设抛物线y=a x 2 +b x -2与x 轴交于两个不同的点A (-1,0) 、B (m ,0) ,与y 轴交于点C.且∠ACB=90o.
(1)求m 的值;
(2)求抛物线的解析式,并验证点D (1,-3) 是否在抛物线上;
(3)已知过点A 的直线y=x +1交抛物线于另一点E. 问:在x 轴上是否存在点P ,使以点P 、B 、D 为顶点的三角形与△AEB 相似?若存在,请求出所有符合要求的点P 的坐标;若不存在,请说明理由.
5.如图①,在平面直角坐标系中,有点M (0,-m) 、D (-4
2
m ,0) ,且∠BMD=90o
,(m>0),
抛物线y=a x 2
+(a +4)x +4过点B ,与x 轴交于A 点,与y 轴交于点C.
(1)求抛物线的解析式;
(2)点P 在抛物线上,直线PC 交直线MD 于N ,若有MN=MB ,求P 点的坐标;
(3)如图②,点E 在第四象限,且∠AEB=90o,对称轴交x 轴于S 点,直线y=x +1交抛物线对称轴于F 点,连EF ,BK 平分∠ABE 交EF 于K ,KG ⊥AB 于G ,则EF
KG
+AS 的值是
否发生变化,若不变,求其值.
6.如图①,已知抛物线的顶点为A(2,1) ,且经过原点O ,与x 轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求一点M ,使得△AOM 的内心正好在直线y=-x 上;
(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点坐标;若不存在,说明理由.
1
2
1
2
N。