600MW机组协调控制系统优化
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
超临界机组协调控制策略之给水控制优化摘要:超临界机组蓄热能力差,是多输入的控制系统,且输入的耦合性高,运行参数的线性度差。
在实际运行中,超临界机组的协调控制策略不尽相同,部分存在需要优化的地方,本文通过优化机组给水控制逻辑,提高了煤水比在机组负荷变化过程中的稳定度,使机组在动态过程中过热度保持在合理范围内,同时主汽压力、温度、负荷等调节品质得到改善,同时对给水的优化控制基本上解决了给水超调滞后问题、幅度欠缺问题,使机组的低负荷阶段同样能满足AGC速度要求。
火电厂协调控制是自动化控制理论在火电过程控制中的最深度运用。
实现了厂内汽轮机、锅炉围绕调度下发的AGC负荷指令协调运行。
在汽包炉机组中,CCS控制策略运用已经较为成熟,对负荷的控制效果比较理想。
在超临界机组中,协调的控制策略种类繁多,实际运用中效果也表现不尽完美,需要进一步研究机组运行工艺,优化控制策略。
本文介绍了某电厂600MW超临界机组协调控制系统特点,并对机组给水自动进行优化,控制总给水流量,过程中维持锅炉燃烧过程中给水与燃料输入量之间合理关系,保证机组运行参数稳定。
超临界机组即直流炉,相对于汽包炉,直流炉没有汽包对机组运行工质进行缓冲存储,其蓄热能力较低。
直流炉中,给水及给煤发生变化时,水冷壁等受热面的热交换将发生变化,汽水分界面也随之变化,导致锅炉出口蒸汽压力、流量和温度都随之变化。
因此,直流炉的给水不能独立进行控制,要考虑着重考虑机组燃烧系统。
直流炉的多输入信号相互耦合。
表现为:给煤、给水、主气调门之间存在深度的耦合性。
如:调门的开度变化影响锅炉出口压力及蒸汽温度变化;给煤加大会使蒸汽压力、温度、流量均加大;给水加大,会在短时内加大锅炉主气流量、压力,经过延时后主气温度又开始下降,使主气压力及汽机功率有所降低。
直流炉运行参数非线性特性很强。
在机组滑参数运行时,随之机组运行负荷变化,机组的运行参数大幅变化,线性度很差。
在煤水比调节的温度对象中,在负荷于300~600MW负荷变化范围内,对象特性时间常数的变化也有近3倍,汽温响应特性惯性增加,时问常数和延迟时间增加,因此,从控制角度考虑,直流炉需要设计较汽包炉更为复杂化的控制手段,才能适应对象复杂特性的控制要求。
对火电厂600MW超临界机组协调控制系统的分析作者:曾有琪韦培元马军来源:《城市建设理论研究》2012年第30期摘要:就国内火电厂的火电机组发展现状来看,大规模、高效率的超临界机组已经形成了市场化规模,600MW超临界机组比传统的亚临界机组有着压倒性的性能优势。
超临界机组对煤耗量的大幅度降低,有效缩减了火电厂的运营投资,在减少能源消耗、缩减运营成本的同时,也减少了污染物向环境中的排放。
文章就600MW超临界机组内容进行了简单的概述,介绍了600MW超临界机组协调控制策略,阐述了600MW超临界机组协调控制系统。
关键词:600MW超临界机组;控制策略;控制对象;协调控制系统Abstract: Considering the development situation of the domestic thermal power units of thermal power plants, the large-scale, high-efficiency supercritical unit has formed the marketization scale, and600 MW supercritical units have the overwhelming performance advantages compared with conventional subcritical units. Supercritical units contribute to the huge reduction in the amount of coal consumption, effectively reducing the investment in thermal power plant operators, which also can reduce the pollution emission to environment. In this paper, the content of 600MW supercritical units is described simply, coordinated control system strategy of the 600MW supercritical units are introduced, as well as its coordinated control system.Key words: 600 MW supercritical units; control strategy; controlled object; coordinated control system中图分类号:F407.61 文献标识码:A 文章编号:2095-2104(2012)随着国内对火电机组内容研究的不断深入,以及火电机组相关技术、系统在近几年内的高速发展,高效率、大规模的超临界机组在火电厂中的应用越来越广泛和普及。
对我国大型火电机组协调控制系统的分析摘要:目前我国火电站领域的技术具有快速的发展,单元机组的容量已从300mw发展到600mw,外高桥电厂单元机组容量已达到900mw。
dcs系统在火电站的成功应用,大大提高了电站控制领域的自动化投入水平。
本文主要对大型火电机组的两种主要炉型-汽包炉和直流炉机组的协调控制系统的设计机理进行概要性的说明。
关键词:火电站;汽包炉;汽轮机一、协调控制系统的功能和主要含义协调控制系统是我国在80年代引进的火电站控制理念,主要设计思想是将锅炉和汽机作为一个整体,完成对机组负荷、锅炉主汽压力的控制,达到锅炉风、水、煤的协调动作。
对于协调控制系统而言包含三层含义:机组与电网需求的协调、锅炉汽轮机协调以及锅炉风、水、煤子系统的协调。
锅炉汽轮机的协调被认为是机组的协调,主要是协调控制锅炉与汽轮机,提高机组对电网负荷调度的响应性和机组运行的稳定性。
从协调控制系统而言,对汽包锅炉和直流锅炉都具有相同的控制概念,但由于两种炉型在汽水循环上有很大的差别,导致控制系统具有很大的差别。
二、汽包锅炉机组的协调控制系统汽轮机、锅炉协调控制系统概念的引出,主要在于汽轮机和锅炉对于机组的负荷与压力具有完全不同的控制特性,汽轮机以控制调门开度实现对压力、负荷的调节,具有很快的调节特性,而锅炉利用燃料的燃烧产生的热量使给水流量变为蒸汽,其控制燃料的过程取决于磨煤机、给煤机、风机的运行,对压力、负荷的调节具有很慢的调节特性。
因此协调控制系统就是要以优良的控制策略实现对锅炉-汽轮机的统一控制。
以达到锅炉-汽轮机组对负荷响应的快速性和对压力控制的稳定性。
协调控制系统的设计包含了两种协调控制方式,一种是以炉跟机为基础的协调控制系统,这种协调控制方式是建立在锅炉控制压力、汽机控制功率的基础上,具有负荷响应快的优点。
另一种是以机跟炉为基础的协调控制系统,这种协调控制方式是建立在汽机控制压力、锅炉控制功率的基础上。
对于炉跟机为基础的协调控制系统有必要提到80年代中期引用的直接能量平衡控制系统,该控制系统的引用,使汽包锅炉机组的协调控制系统从探索趋于成熟,使汽轮机-锅炉协调控制系统趋于简单、响应性快、稳定性高。
托电公司600MW机组RB功能解析及改进策略发布时间:2021-06-18T09:10:24.468Z 来源:《河南电力》2021年2期作者:高宝宏丰升彬张明军[导读] 当机组在比较高的负荷工况下运行时,若由于某种原因造成部分重要辅机跳闸,导致机组不能继续维持高负荷运行时,通过模拟控制回路和联锁保护控制回路相结合,自动计算出当前机组所能保证的安全稳定运行的最大负荷,并将此作为目标负荷,协调机组各个控制系统,来保证机组在允许的参数范围内继续运行的控制系统,称为RUNBACK,简称RB。
概况为重要辅机跳闸后快速减负荷运行。
(内蒙古大唐国际托克托发电有限责任公司内蒙古托克托 010206)摘要:在火力发电厂中,当机组处于高负荷运行时,重要辅机跳闸后,会触发RB功能,RB控制功能是对于机组重要辅机跳闸后的快速自适应过程,使机组负荷快速降到当前运行中的辅机能够满足的工况,因此,RB控制策略至关重要,设置不当时,会造成机组参数运行超限,甚至锅炉灭火、汽机跳闸等非停事件。
关键词:RB;协调控制;滑压1 RB概述当机组在比较高的负荷工况下运行时,若由于某种原因造成部分重要辅机跳闸,导致机组不能继续维持高负荷运行时,通过模拟控制回路和联锁保护控制回路相结合,自动计算出当前机组所能保证的安全稳定运行的最大负荷,并将此作为目标负荷,协调机组各个控制系统,来保证机组在允许的参数范围内继续运行的控制系统,称为RUNBACK,简称RB。
概况为重要辅机跳闸后快速减负荷运行。
托电公司1-8号机组为600MW机组,设置了一次风机、送风机、引风机、磨煤机、给水泵RB,托电公司给水泵配置了2台50%容量的汽动变速给水泵和一台30%容量的电动变速给水泵。
2 RB控制特性从控制过程来看,RB控制属于机组联锁保护控制范畴,是在机组的重要辅机发生故障时,为防止故障扩大而联锁相关设备动作,以保证机组安全可靠运行。
但从控制结果看,RB控制又属于机组负荷控制范畴,是在机组异常工况下的负荷控制。
第二章协调控制一、协调控制概述协调控制系统关键在于处理机组的负荷适应性与运行的稳定性这一矛盾。
既要控制汽机充分利用锅炉蓄能,满足机组负荷要求;又要动态超调锅炉的能量输入,补偿锅炉蓄能,要求既快又稳。
超临界机组中的锅炉都是直流锅炉,作功工质占汽-水循环总工质的比例增大,锅炉惯性相对于汽包炉大大降低;超临界机组工作介质刚性提高,动态过程加快。
超临界直流炉大型机组的协调控制需要更快速的控制作用,更短的控制周期,以及锅炉给水、汽温、燃烧、通风等之间更强的协同配合。
二、协调控制的主要策略(1)锅炉、汽机之间功率平衡信号与汽机相比,锅炉系统动态响应慢、时滞大;对直流炉来说,合理地选择功率平衡信号,才能适应直流炉对快速控制的要求。
因此功率平衡信号的选择,对整个机组动态特性的影响极大。
依照实际的P1(或MW)信号出现后,再反馈到锅炉侧,因此是基于反馈的锅炉跟踪汽机设计.根据MWD,控制锅炉侧,因此是一种前馈控制.控制策略思想比P1信号慢,相差一个汽机/发电机时间常数τ.比MWD 信号慢,相差一个锅炉侧时间常数τB 。
时间上MWD 信号出现最早.时间关系机组的实发电功率.当前发电汽机实际消耗的功率.机组为达到一定负荷应当需要的功率.特点当前的机组发电功率代表了当前机组承担的负荷,也即锅炉应产生的负荷功率。
汽机第一级压力P1可换算为汽机侧当前实际消耗的蒸汽量,也即锅炉侧当前应提供的蒸汽功率。
机组负荷指令(MWD)代表了机组应发的功率,也代表了锅炉侧应提供的蒸汽功率。
物理意义第三方案机组实发功率(MW)第二方案汽机第一级压力(P1)第一方案机组负荷指令(MWD)需求信号MWD信号在快速性及时间上具有优势,前苏联及日本一般采用MWD信号。
下图为前苏联设计的协调系统示意框图。
图1 所示的前苏联协调控制方案,则是简单地采用了主汽压力Pt的动态微分来抵消锅炉侧的内扰,虽可以发挥一定的作用,但未能考虑到主汽压力与额定(设定)值之间的偏差,例如主汽压力已低于设定值,主汽压力升高过程中,锅炉侧反会减负荷,是其设计不合理之处。
双细则考核下漳山电厂600MW机组协调控制优化作者:景杰等来源:《华中电力》2014年第02期摘要:本文结合漳山电厂600MW机组设备构成和CCS系统设计特点,全面阐述了影响CCS负荷响应滞后时间和响应速率慢的因素,并通过大量的试验和一系列调整措施,对协调控制方案进行分析和优化,很好的满足了电网的双细则标准要求。
关键词:双细则;协调控制;优化1.概述漳山电厂600MW机组DCS控制系统采用的是ABB公司的SYMPHONY分散控制系统。
为满足电网调度快速准确等要求,目前该厂单元机组CCS方案设计是以锅炉跟随为基础,采用负荷指令信号间接平衡,主要特点在于负荷指令经幅值限制、速率限制等处理后同时作用于汽机主控、锅炉主控和压力定值形成回路,使负荷要求变化时,机、炉协调动作;为有效拟合机、炉热力系统的特性差异,保证机、炉动作从时间上匹配,锅炉通过控制磨煤机的出力,在上述回路中采用微分环节和多级惯性环节补偿一次风量,通过给煤机机转速控制煤量改变锅炉负荷,维持主汽压力,以适应汽机的能量需求;汽机在负荷响应起始阶段,通过调汽门动态过开,利用锅炉的蓄热,快速响应负荷,在负荷响应过程中,维持汽机能量需求量与机组负荷要求相平衡。
2. 影响机组协调控制控制系统适应性原因2.1 漳山电厂锅炉和汽机的负荷响应分析针对目前电网双细则考核的要求,CCS的适应性的问题主要体现在以下两个方面:一是CCS负荷响应滞后时间和响应速率不能满足电网的要求;二是CCS的控制品质不能适应机组的运行工况和热力系统特性的变化。
其主要影响因素如下:a)锅炉负荷的滞后时间影响因素主要是由磨煤机的制粉环节形成的,而惯性则与锅炉的热惯性表现有关;b)锅炉本体负荷响应的滞后时间为60s左右,主汽压力响应滞后时间为100s左右;c)在负荷响应动态过程中,通过改变调汽门开度,这等于无限释放锅炉有限的蓄热,机组负荷变化很小,反而会造成主汽压力波动,影响机组的稳定运行。
600MW火力发电厂控制室及电子间布置优化为了节约工程投资,根据厂区布置、主厂房布置方式、控制方式,综合考虑投资、运行、维护、环境、人文等各方面因素,优化集中控制室布置、优化电子设备间布置,确定本工程推荐方案,为电厂的运行维护提供了可靠保障,为电厂以后的经济可靠运行创造了必要条件。
标签:分散控制系统(DCS)布置电子设备间集中控制室1 前言以往300MW及以上多台机组的火电厂的控制模式多数采用两机一控的模式,集中控制室多数布置在两炉之间的集中控制楼,集控室附近布置电子设备间,机组所有相关电子机柜布置在电子设备间内。
近年来,随着技术发展和技术创新,集控楼和电子设备间的大小、位置,产生了新方案。
为节约电缆,电子设备间大多采用物理分散,就近分散布置于靠近被控对象的地方,电子设备间大小、数量、位置各工程有所不同。
如何综合考虑工程投资、运行维护,合理地布置控制楼和电子设备间,减少工程投资,降低工程造价,提高电厂运行管理水平,是每个工程首先要考虑的问题。
2.工程概况2.1厂址概述2.1.1锡林浩特市概况锡林浩特市东靠赤峰市、通辽市和兴安盟;南望张家口、北京和承德地区;西连乌兰察布市;北与蒙古人民共和国相邻,现有人口17.7万,是我国重要的能源、畜牧业生产基地。
煤电及畜牧业是区内主体经济。
伴随着改革开放不断深入,区内经济结构发生了重大变化,以畜牧业、煤炭、石油、电力、稀有及有色金属、旅游业为经济发展框架,形成了门类比较齐全、布局较为合理的具有地方特色的民族工业体系。
2.1.2胜利煤田概况胜利煤田位于内蒙古自治区锡林郭勒盟锡林浩特市西北部的胜利苏木境内,距锡林浩特市3km。
整个煤田呈北东~南西条带状,走向长45km,平均宽7.6km,含煤面积342km2,地质储量为22442Mt,其中精查储量1941Mt,详查储量3546Mt,普查储量16955Mt。
大唐东二矿位于划定的胜利煤田大唐东二矿区,呈北东~南西走向不规则的四边形。
600MW机组协调控制系统优化
作者:孙涛
来源:《硅谷》2011年第18期
摘要:阐述河北国华沧东发电有限责任公司一期工程2×600MW机组采用的协调控制系统的原理,分析机组在进行升降负荷时锅炉与汽轮机之间能量平衡关系,针对机组投运初期协调控制系统在负荷升降过程中存在的主汽压力和负荷相互适应能力差的问题以及投入AGC后升降负荷速度慢的情况进行深入分析,找出问题的根本原因,通过采取有效的优化措施,并进行AGC方式下负荷升降试验,验证优化工作取得良好效果。
关键词:协调;控制;AGC;优化
中图分类号:TK39 文献标识码:A 文章编号:1671-7597(2011)0920193-01
1 机组概况
河北国华沧东发电有限责任公司一期工程为两台600MW亚临界燃煤发电机组。
汽机岛由上海汽轮机厂供货,锅炉岛由上海锅炉厂供货。
2 协调控制系统控制原理
协调控制的设计方案是以锅炉跟随为基础的协调控制系统,原设计机组采用定-滑-定运行方式,从0到27%为定压方式运行,27%到77%负荷区间为滑压运行方式,77%以上为定压运行方式。
锅炉主控输出指令由以下几个部分组成:1)机组负荷指令给定值信号;2)机组负荷指令给定值的微分信号;3)机组负荷指令目标值的微分信号;4)机组滑压设定值的微分信号;5)频差信号;6)压力设定值与实际值偏差的微分信号;7)锅炉主汽压力PID调节器输出信号。
其中,机组负荷指令给定值信号为锅炉主控制器的主前馈信号,其他微分前馈用于在机组负荷升降过程中提高锅炉主控制器的响应速度,压力设定值与实际值偏差的微分信号用于在主汽压力与设定值偏差过大时快速动作锅炉主控制器帮助调节主汽压力。
在机组负荷指令变化的初期汽机侧调门是基本不变的,因为送到汽机控制器的机组负荷指令要经过一个四阶滞后,延时时间t为锅炉产生蒸汽时间的0.2倍。
经过四阶惯性环节延迟后的负荷指令还要加上压力拉回回路计算的结果,再与实际负荷值进行偏差运行,偏差值经PID 回路计算后做为汽机主控的输出送往DEH控制系统控制阀门开度。
汽机主控输出指令由以下
几个部分组成:1)机组负荷指令给定值经过四阶惯性延迟;2)锅炉主控送来的机组负荷指令给定值的一阶微分信号;3)频差信号;4)主汽压力偏差信号即压力拉回回路;5)实际负荷值。
以上信号1-4相加后同实际负荷求偏差送入汽机主控PID调节器,PID调节器的输出来控制汽轮机调速汽门的开度。
压力拉回回路就是计算设定压力与实际压力的偏差,当偏差值超过规定值后(原设计为±1.8%),就将这个偏差值经过处理放大后叠加到负荷命令回路中。
举例来说,当升负荷时,根据滑压曲线首先要增大压力设定值,如果在升负荷过程中,实际压力比设定压力低出太多,超过规定值,就会产生一个负数加到负荷命令上,从而减小负荷命令,减小调门开度,以便于增大实际压力,当实际压力与设定压力偏差小于规定值时,该值输出为0。
降负荷时也起到同样道理,因为该回路具有将压力拉回作用,因此称之为压力拉回回路。
一次调频功能就是当电网频率低于或高于某个限值时,不通过协调控制回路产生命令,直接将信号作用到汽机控制器负荷调节回路,使机组负荷迅速变化以响应电网需要。
3 存在问题
#1、#2机组协调控制系统在2007年机组投入商业运营后基本能满足现场生产的需要,但是在负荷升降和遇到机组吹灰或燃料等扰动的情况下,主汽压力、温度的摆动幅度过大,导致汽包水位剧烈波动。
同时快速负荷变化能力差,负荷命令变化后机组实际负荷响应慢,达不到调度中心对投运AGC机组的要求。
AGC投入合格标准:1)AGC机组负荷调节速率(MW/分钟)不小于机组额定出力的1.5%;2)机组投入AGC控制时,出力调整迟延时间应小于30秒(从调度中心侧命令发出至调度中心监视到命令完成的时间)。
协调投入情况:从负荷指令开始变化到机组实际负荷开始变化时间比较长,约为2-3分钟,且在负荷变化过程中主蒸汽压力与设定值偏差比较大,最大处达到0.7MPa。
这说明目前的调节系统在利用锅炉蓄热快速响应负荷和锅炉主控的调节能力上存在不足,需要对锅炉主控和汽机主控进行优化调整。
4 原因分析
1)从控制方案设计来看,没有利用锅炉的蓄热,当负荷命令变化后不是立即改变汽机调门的开度以响应负荷要求。
再就是对压力要求太高,不仅在锅炉测设计了压力拉回回路,而且在汽机控制器内部当压力偏差太大时就会切除负荷调节回路转而去调整压力;2)机组正常运行中,AGC负荷调整区间正是机组滑压运行区间,在此区间主蒸汽压力要对应负荷从11MPA 变化到16.7MPA,虽然机组滑压可以减少节流损失,对于经济运行是有利的,但对于投运AGC确是极其不利的。
因为升负荷时不仅要快速加强燃烧多发电,同时还要提高主蒸汽压力,这会更加导致锅炉燃烧跟不上汽轮机对能量的要求;同理,降负荷时不仅要快速减少燃烧,少发电,同时还要降低主蒸汽压力,这会更加导致锅炉燃烧远远超过汽轮机对能量的要求。
5 协调控制优化改造试验
5.1 提高汽机主控的快速响应能力。
从机组主控送来的汽机负荷指令要经过一个四阶延时后在同实际负荷进行偏差运算后作为汽机主控的输入,为了提高汽机主控的响应,利用锅炉的蓄热,我们缩短了四阶惯性环节的延时时间,从原来的10.5秒减少到8.3秒。
同时,对汽机功率调节器的调节参数进行优化,加强调节作用。
5.2 优化锅炉主控,提高主蒸汽压力的稳定性。
锅炉在负荷升降过程中,由于煤量匹配不合理,造成在升负荷初期压力提升过慢,滞后于压力设定值,但是到了负荷变化的后期,压力迅速提升,超过设定值,造成过调现象。
此种现象表明在变负荷全过程中,给煤量变化的不合理,在前期给煤量增加的量不够,后期给煤量又显得过多,造成整个主汽压力的调节在变负荷过程中呈现阶段性变化。
为此,我们采用MATLAB建立了锅炉主控的前馈调节模型,通过模型分析采取以下措施:1)增大机组负荷指令给定值信号的微分时间,适当减少系数;2)增大机组负荷指令目标值信号的微分作用,适当减少系数;3)适当减弱负荷变化过程中锅炉主控PID调节器的调节作用;4)修改逻辑使得机组压力设定值偏差拉大过程中和压力设定值偏差缩小过程中的积分时间分别控制。
通过以上几项方针,我们现场进行了实际的逐步调整,根据调节效果逐步修改调节参数,最终达到AGC投入合格标准。
6 结束语
通过对机组协调控制系统汽机主控、锅炉主控以及锅炉燃料风量调节系统的优化调整,提高了机组对负荷指令的响应速度,使锅炉和汽机之间的匹配关系更加合理,既充分利用了锅炉的蓄热,又保证了机组主要参数的稳定。
进而保证了AGC投入的可靠性,取得了很好的效果。
参考文献:
[1]李生泉、黄润泽、左世春、张丽,600MW机组甩负荷试验分析,热能动力工程,2003年,第04期.
[2]伍宇忠,台山电厂600 MW机组低负荷经济运行协调控制系统优化研究,广东电力,2009年,第12期.
[3]吴克锋,600MW超临在界机组模拟量控制系统工程实践与优化,华北电力大学(河北),2009.05.01.。