最新华东师大版 14.1.2直角三角形的判定
- 格式:pdf
- 大小:268.13 KB
- 文档页数:2
华师大版数学八年级14.1.2 直角三角形的判定教学设计课题直角三角形的判定单元14.1.2 学科数学年级八年级学习目标1、探索并掌握勾股定理的逆定理;2、会用勾股定理的逆定理判定一个三角形是否是直角三角形;3、掌握常见的勾股数;重点会用勾股定理的逆定理判定一个三角形是否是直角三角形难点会用勾股定理的逆定理判定一个三角形是否是直角三角形教学过程教学环节教师活动学生活动设计意图导入新课一、复习1、直角三角形两直角边的长为3和4,则斜边上的高为;2、如图,在ΔABC中,∠A=90°,BC的垂直平分线交AB于点E,交BC于点D,已知AC=12,AE=5,则AB=,AC=;二、提出问题古埃及人曾经用下面的方法画直角:将一根长绳找出等距离的13个结,然后如图那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?动口动手动脑巩固引出新课讲授新课一、探索勾股定理的逆定理1、学习“试一试”试画出三边长度分别为如下数据的三角形,看看它们是一些什么样的三角形:(1)a=3,b=4,c=5;(2)a=4,b=6,c=8;(3)a=6,b=8,c=10;2、可以发现,按(1)、(3)所画的三角形是直角三角形,最长边所对的角是直角;按(2)所画的三角形不是直角三角形.3、填表a b c a2b2c23 4 5 9 16 254 6 8 16 36 646 8 10 36 64 100从上表可以看出:第(1)、(3)两组数据恰好都满足a2+b2=c2,二、勾股定理逆定理1、勾股定理逆定理:如果三角形的三边长为a、b、c,有关系a2+b2=c2,那么这个三角形是直角三角形,且边c所对的角为直角.图形表述:符号表述:在ΔABC中,∵a2+b2=c2(已知),动手画动脑动口动口直观体验探索规律三种语言∴ΔABC为直角三角形(勾股定理的逆定理).∠C=90°2、勾股定理逆定理的证明已知:如图,在ΔABC中,AB=c,BC=a,AC=b,a2+b2=c2 .求证:∠C=90°.分析:(1)要证明ΔABC是直角三角形,可以作一个直角三角形;(2)再证这两个直角三角形全等. 证明:如图,作ΔDEF,使∠F=90°,EF=BC=a,DF=AC=b.在RtΔDEF中,DE2=a2+b2=c2 .在ΔABC和ΔDEF中,∵BC=a=EF,AC=b=DF,AB=c=DE,∴ΔABC≌ΔDEF(SSS),∴∠C=∠F=90°.三、勾股定理逆定理的应用1、例1 已知ΔABC,AB=n2-1,BC=2n,AC=n2+1,动口动脑动口认识同一法应用体验(n为大于1的正整数)。
基于课程标准、中招视野、两类结构”
教案设计
教学内容:直角三角形的判定课型:新授课
原单位:张明一中修订:李运动
一、学习目标确定的依据
1、课程标准
探索勾股定理及其逆定理,并能利用它们解决一些实际问题。
2、教材分析
勾股定理在数学学习中有着至关重要的作用。
它是数形结合的代表,是用数学方法来解决几何问题的基础桥梁。
它实现了由角向边的跨越,是几何中一颗美丽的奇葩。
本节课的主要内容是对勾股定理的逆定理的探索和验证。
它是判断直角三角形的一个非常重要的方法,揭示了数形结合的思想。
在此基础上,让学生利用勾股定理及逆定理来解决一些实际问题。
在中学数学学习中,勾股定理也为后面三角函数的学习及一些图形的计算打下必要的基础。
3、中招考点
勾股定理及其逆定理,以及其应用是中招的常考题。
本节课的主要知识点为探索勾股定理的逆定理及根据三边判断一个三角形是否是直角三角形。
4、学情分析
直角三角形的判定是学生在已经掌握了勾股定理的基础上进行学习的,学生已经对图形的探索、验证有了一定的推理能力,并对勾股定理已经有所了解,所以会对本节内容的学习有较浓厚的兴趣。
二、学习目标
体验勾股定理的逆定理的探索及验证过程,掌握勾股定理的逆定理;并能运用勾股定理及逆定理解决相关问题。
三、评价任务
通过动手操作,让学生猜想出一个三角形的三边若满足两个较短边的平方和等于最长边的平方,则这个三角形是直角三角形;通过做练习题,让学生熟练掌握勾股定理的逆定理。
四、教学过程。
14.1.2 直角三角形的判定一、教学目标知识与技能:掌握直角三角形的判定条件,并能进行简单应用.过程与方法:通过“创设情境---实验验证----理论释意---实际应用---探究活动”的探索过程,让学生感受知识的乐趣情感态度与价值观:激发学生解决的愿望,体会逆向思维所获得的结论.明确其应用范围和实际价值.二、重点、难点、关键重点:理解和应用直角三角形的判定.难点:运用直角三角形判定方法进行解决问题.关键:运用合情推理的方法,对勾股定理进行逆向思维,形成一种判别方法.三、教学准备教师准备:直尺、投影机.制作教具学生准备:复习勾股定理,预习本节课内容.一复习引入问题1:直角三角形有什么性质?(1)有一个角是直角; (2)两个锐角互余;(3) 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么:a2 + b2 = c2问题2:反之,一个三角形满足什么条件,才能是直角三角形呢?(有一个角是直角;两个锐角互余)问题3:猜想:让我们猜想一下,一个三角形各边长数量应满足怎样的关系式时,这个三角形才可能是直角三角形呢?这就是我们今天所要学习的内容板书:14.1.2 直角三角形的判定二创设情境古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉如图那样钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?(教具展示:用纸片钉好图形)三实验验证探究新知:1、画图:试画出三边长度分别为如下数据的三角形,看看它们是一些什么形状的三角形:(1)a=3,b=4,c=5;(第一组同学画)(2)a=4,b=6,c=8; (第二组同学画)(3)a=6,b=8,c=10. (第3组同学画)(4)a=2,b=3,c=4 (第4组同学画)用展示台展示每一个组几个学生的图形,从而得出(在这三组数据中以(1)、(3)两组为边所画的三角形是直角三角形;以(2)、(4)两组为边所画的三角形不是直角三角形)2、结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状有怎样的关系吗?而在这三组数据中,(1)、(3)两组都满足a2 + b2 = c2而(2)、(4))不满足.3、归纳:(请一学生口述师完善并板书)勾股定理的逆定理:如果三角形的三边长a、b、c满足a2 + b2 = c2 ,那么这个三角形是直角三角形。