2019年高考数学一轮复习(北师大版文科): 课时分层训练13 导数的概念及运算 文 北师大版
- 格式:doc
- 大小:99.50 KB
- 文档页数:5
课时分层训练(十四)导数与函数的单调性A 组基础达标 (建议用时:30分钟)一、选择题1.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)B [y =12x 2-ln x ,y ′=x -1x =x 2-1x=x -x +x(x >0).令y ′<0,得0<x <1,∴单调递减区间为(0,1).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图像如图2113所示,则下列叙述正确的是()图2113A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增加的,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为()A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52D.⎝⎛⎦⎥⎤-∞,52 D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.]4.若函数e xf (x )(e =2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是()A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos xA [若f (x )具有性质M ,则[e xf (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于选项A ,f (x )+f ′(x )=2-x-2-xln2=2-x(1-ln2)>0,符合题意. 经验证,选项B ,C ,D 均不符合题意. 故选A .]5.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为() A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上是增加的,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.] 二、填空题6.函数f (x )=ln x x的单调递增区间是________.(0,e)[由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x >0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]7.若函数y =ax +sin x 在R 上是增加的,则a 的最小值为________.1[函数y =ax +sin x 在R 上单调递增等价于y ′=a +cos x ≥0在R 上恒成立,即a ≥-cos x 在R 上恒成立,因为-1≤-cos x ≤1,所以a ≥1,即a 的最小值为1.]8.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤-1,12[因为f (-x )=(-x )3-2(-x )+e -x -1e -x=-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上是增加的, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.]三、解答题9.已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.[解](1)由题意得f ′(x )=1x-ln x -kex, 又f ′(1)=1-ke =0,故k =1.5分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x-ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减少的. 8分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).12分10.已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. [解](1)对f (x )求导得f ′(x )=3ax 2+2x , 2分因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.5分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.8分令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.12分B 组能力提升 (建议用时:15分钟)1.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是()A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3A [易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x<0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上是减少的,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A]2.)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. (-2,0)∪(2,+∞)[令g (x )=f x x ,则g ′(x )=xfx -f xx 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f -x -x =-f x -x =f xx=g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,gx >0或⎩⎪⎨⎪⎧x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减少的,求实数m 的取值范围.[解](1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.5分(2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减少的,∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞).9分∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2]. 12分。
[考纲传真] 1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数定义求函数y=C (C为常数),y=x,y=x2,y=x3,y=错误!,y=错误!的导数.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y—f(x0)=f′(x0)(x—x0).2.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α是实数)f′(x)=αxα—1y=sin x y′=cos xy=cos x y′=—sin xf(x)=e x f′(x)=e xf(x)=a x(a>0,a≠1)f′(x)=a x ln_af(x)=ln x f′(x)=错误!f(x)=log a xf′(x)=错误!(a>0,且a≠1)(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0).4.复合函数的导数复合函数y=f(φ(x))的导数和函数y=f(u),u=φ(x)的导数间的关系为y x′=[f(φ(x))]′=f′(u)·φ′(x).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)f′(x0)与[f(x0)]′表示的意义相同.()(3)与曲线只有一个公共点的直线一定是曲线的切线.()(4)函数f(x)=sin(—x)的导数是f′(x)=cos x.()[答案] (1)×(2)×(3)×(4)×2.已知f(x)=x ln x,若f′(x0)=2,则x0等于()A.e2B.eC.错误!D.ln 2B[∵f′(x)=ln x+x·错误!=ln x+1,由f′(x0)=ln x0+1=2得ln x0=1,∴x0=e.]3.有一机器人的运动方程为s(t)=t2+错误!(t是时间,s是位移),则该机器人在时刻t=2时的瞬时速度为()A.错误!B.错误!C.错误!D.错误!D[由题意知,机器人的速度方程为v(t)=s′(t)=2t—错误!,故当t=2时,机器人的瞬时速度为v(2)=2×2—错误!=错误!.]4.曲线y=x2+错误!在点(1,2)处的切线方程为________.x—y+1=0 [∵y′=2x—错误!,∴y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,∴切线方程为y—2=x—1,即x—y+1=0.]5.设f(x)=ln(3—2x)+cos 2x,则f′(0)=________.—错误![∵f′(x)=错误!—2sin 2x,∴f′(0)=—错误!.]导数的计算1.已知f(x)=x2+2xf′(1),则f′(0)=________.—4[∵f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),∴f′(1)=—2.∴f′(0)=2f′(1)=2×(—2)=—4.]2.求下列函数的导数:(1)y=(x+1)(x+2)(x+3);(2)y=sin 错误!错误!;(3)y=错误!.[解] (1)因为y=(x2+3x+2)(x+3)=x3+6x2+11x+6,所以y′=3x2+12x+11.(2)因为y=sin 错误!错误!=—错误!sin x,所以y′=错误!′=—错误!(sin x)′=—错误!cos x.(3)y′=错误!′=错误!=—错误!.[规律方法] 导数计算的技巧1求导之前,应对函数进行化简,然后求导,减少运算量.2复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.►考法1求切线方程【例1】(2018·全国卷Ⅰ)设函数f(x)=x3+(a—1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=—2xB.y=—xC.y=2xD.y=xD[因为函数f(x)=x3+(a—1)x2+ax为奇函数,所以f(—x)=—f(x),所以(—x)3+(a—1)(—x)2+a(—x)=—[x3+(a—1)x2+ax],所以2(a—1)x2=0,因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.]►考法2求切点坐标【例2】已知曲线y=错误!—3ln x的一条切线的斜率为—错误!,则切点的横坐标为()A.3B.2C.1D.错误!B[因为y=错误!—3ln x,所以y′=错误!—错误!.再由导数的几何意义,令错误!—错误!=—错误!,解得x=2或x=—3(舍去).故选B.]►考法3切线的条数问题【例3】过点A(2,1)作曲线f(x)=x3—3x的切线最多有()A.3条B.2条C.1条D.0条A[由题意得,f′(x)=3x2—3,设切点为(x0,x错误!—3x0),那么切线的斜率为k=3x错误!—3,利用点斜式方程可知切线方程为y—(x错误!—3x0)=(3x错误!—3)(x—x0),将点A(2,1)代入可得关于x0的一元三次方程2x错误!—6x错误!+7=0,令y=2x错误!—6x错误!+7,则y′=6x错误!—12x0.由y′=0得x0=0或x0=2.当x0=0时,y=7>0;x0=2时,y=—1<0.结合函数y=2x错误!—6x错误!+7的单调性可得方程2x错误!—6x错误!+7=0有3个解,故过点A(2,1)作曲线f(x)=x3—3x的切线最多有3条,故选A.]►考法4求参数的值(范围)【例4】(2016·全国卷Ⅱ)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=________.1—ln 2[设直线y=kx+b与两曲线的切点分别为P1(x1,ln x1+2),P2(x2,ln(x2+1)).∵y′1=错误!,y′2=错误!,∴错误!=错误!,∴x1=x2+1.此时切点P1(x2+1,ln(x2+1)+2).故切线斜率k=错误!=2.由错误!=2,得切点P1的坐标为错误!,∴切线方程为y—2+ln 2=2错误!.令x=0,得y=1—ln 2,即b=1—ln 2.][规律方法] 1求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f x在点P x0,f x0处的切线方程是y—f x0=f′x0x—x0;求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:1切点处的导数是切线的斜率;2切点在切线上;3切点在曲线上.切线方程为()A.y=x—1B.y=2x—1C.y=2x—2D.y=x(2)若曲线y=ln x+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值范围是()A.错误!B.错误!C.(0,+∞)D.[0,+∞)(3)(2019·青岛模拟)已知函数y=f(x)及其导函数y=f′(x)的图像如图所示,则曲线y=f (x)在点P处的切线方程是________.(1)C(2)D(3)x—y—2=0 [(1)∵f(x)=ln(2x—1),∴f′(x)=错误!.∴f′(1)=2,又∵f(1)=0,∴切线方程是:y=2x—2,故选C.(2)由题意得y′=错误!+2ax(x>0).因为曲线不存在斜率为负数的切线,则y′≥0恒成立,即a≥错误!m ax.因为x>0,所以—错误!<0,即a≥0,故选D.(3)根据导数的几何意义及图像可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x—y—2=0.]1.(2016·全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(—x)+3x,则曲线y=f (x)在点(1,—3)处的切线方程是________.y=—2x—1[因为f(x)为偶函数,所以当x>0时,f(x)=f(—x)=ln x—3x,所以f′(x)=错误!—3,则f′(1)=—2.所以y=f(x)在点(1,—3)处的切线方程为y+3=—2(x—1),即y=—2x—1.]2.(2018·全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为—2,则a=________.—3[y′=(ax+1+a)e x,由曲线在点(0,1)处的切线的斜率为—2,得y′|x=0=(ax+1+a)e x|x=0=1+a=—2,所以a=—3.]。
第1讲导数的概念及运算最新考纲 1.了解导数概念的实际背景;2.通过函数图像直观理解导数的几何意义;3.能根据导数的定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1x,y=x的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理1.导数与导函数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α是实数)f′(x)=αxα-1f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln_a f (x )=ln x f ′(x )=1x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线与曲线不一定只有一个公共点.( ) (4)若f (x )=a 3+2ax +x 2,则f ′(x )=3a 2+2x .( )解析 (1)f ′(x 0)表示函数f (x )的导数在x 0处的值,而f ((x 0))′表示函数值f (x 0)的导数,其意义不同,(1)错.(2)求f ′(x 0)时,应先求f ′(x ),再代入求值,(2)错.(4)f (x )=a 3+2ax +x 2=x 2+2ax +a 3,∴f ′(x )=2x +2a ,(4)错. 答案 (1)× (2)× (3)√ (4)×2.(教材改编)有一机器人的运动方程为s (t )=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134解析 由题意知,机器人的速度方程为v (t )=s ′(t )=2t -3t 2,故当t =2时,机器人的瞬时速度为v (2)=2×2-322=134. 答案 D3.(2016·天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析 因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 答案 34.(2017·豫北名校期末联考)曲线y =-5e x +3在点(0,-2)处的切线方程为________. 解析 ∵y ′=-5e x ,∴所求曲线的切线斜率k =y ′|x =0=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0. 答案 5x +y +2=05.(2015·全国Ⅰ卷)已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________.解析 由题意可得f ′(x )=3ax 2+1,则f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案 1考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =cos x e x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =⎝ ⎛⎭⎪⎫ln x +1x e x .(2)因为y =x 3+1+1x 2,所以y ′=(x 3)′+(1)′+⎝ ⎛⎭⎪⎫1x 2′=3x 2-2x 3. (3)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(4)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x. 规律方法 (1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【训练1】 (1)f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0等于( ) A .e 2 B .1 C .ln 2 D .e(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析 (1)f ′(x )=2 017+ln x +1x ·x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,则x 0=1.(2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案 (1)B (2)3考点二 导数的几何意义(多维探究) 命题角度一 求切线方程【例2-1】 (1)(2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)(2017·南昌质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0 D .x -y +1=0解析 (1)设x >0,则-x <0,f (-x )=e x -1+x . 又f (x )为偶函数,f (x )=f (-x )=e x -1+x , 所以当x >0时,f (x )=e x -1+x .因此,当x >0时,f ′(x )=e x -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)B 命题角度二 求切点坐标【例2-2】 (2017·西安调研)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 由y ′=e x ,知曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1. 设P (m ,n ),又y =1x (x >0)的导数y ′=-1x 2, 曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2.依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1). 答案 (1,1)命题角度三 求与切线有关的参数值(或范围)【例2-3】 已知直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( ) A .2 B .-1 C .-12 D .1 解析 设切点坐标为P (x 0,y 0), 由y =-12x +ln x ,得y ′=-12+1x . ∴y ′|x =x 0=-12+1x 0,依题意,-12+1x 0=12,∴x 0=1,则P ⎝ ⎛⎭⎪⎫1,-12,又切点P ⎝ ⎛⎭⎪⎫1,-12在直线y =12x +b 上, 故-12=12+b ,得b =-1. 答案 B规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.(2)“曲线在点P 处的切线”是以点P 为切点,“曲线过点P 的切线”则点P 不一定是切点,此时应先设出切点坐标.(3)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.【训练2】 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(2)函数f (x )=ln x +ax 的图像存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.解析 (1)由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2. 设P (m ,n ),则1+ln m =2,解得m =e , 所以n =eln e =e ,即点P 的坐标为(e ,e).(2)函数f (x )=ln x +ax 的图像存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a 在(0,+∞)上有解,a =2-1x ,因为a >0,所以2-1x <2,所以a 的取值范围是(-∞,2). 答案 (1)(e ,e) (2)(-∞,2)[思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意交换的等价性.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点. [易错防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.3.对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.基础巩固题组(建议用时:40分钟)一、选择题1.设y =x 2e x ,则y ′=( ) A .x 2e x +2x B .2x e x C .(2x +x 2)e x D .(x +x 2)e x 解析 y ′=2x e x +x 2e x =(2x +x 2)e x .2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1 D .e解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x , ∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 B3.曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0 D .3x -y +1=0解析 y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0. 答案 C4.(2017·成都诊断)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e . 答案 C5.(2017·昆明诊断)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2 D .2 解析 ∵y ′=-1-cos xsin 2 x ,∴=-1.由条件知1a =-1,∴a =-1.二、填空题6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 27.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0.答案08.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1. 又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8三、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53, 所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53, 斜率k =-1,所以切线方程为x +y -113=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.能力提升题组 (建议用时:20分钟)11.(2016·山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( ) A .y =sin x B .y =ln x C .y =e x D .y =x 3解析 若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x ,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2;对于D :y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2.答案 A12.(2017·合肥模拟)点P 是曲线x 2-y -ln x =0上的任意一点,则点P 到直线y =x -2的最小距离为( )A .1 B.32 C.52 D. 2解析 点P 是曲线y =x 2-ln x 上任意一点,当过点P 的切线和直线y =x -2平行时, 点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2-ln x ,得y ′=2x -1x =1,解得x =1或x =-12(舍去),故曲线y =x 2-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y =x -2的距离等于2,∴点P 到直线y =x -2的最小距离为 2.答案 D13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x (x >0).∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)14.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
北京高三导数知识点总结高三导数知识点总结一、导数的概念和定义导数是微积分中的重要概念,表示函数在某一点的变化率。
导数的定义如下:设函数y=f(x),在点x0处可导,那么函数y=f(x)在点x0处的导数为:f'(x0) = lim┬(△x->0)((f(x0+△x)-f(x0))/△x)二、导数的计算法则1. 常数法则:设k为常数,则导数f'(x) = 02. 幂函数法则:- 若f(x) = x^n,其中n为常数,则导数f'(x) = nx^(n-1)- 特殊情况:- 当n为负整数时,函数f(x) = x^n在x = 0处无导数- 当n为0时,函数f(x) = x^n在整个定义域上导数恒为03. 指数函数法则:- 若f(x) = a^x,其中a为常数且a>0且a≠1,则导数f'(x) = (ln(a))a^x- 若f(x) = e^x,则导数f'(x) = e^x4. 对数函数法则:- 若f(x) = log┬a(x),其中a为常数且a>0且a≠1,则导数f'(x) = 1/(xln(a))- 若f(x) = ln(x),则导数f'(x) = 1/x5. 三角函数法则:- 若f(x) = sin(x),则导数f'(x) = cos(x)- 若f(x) = cos(x),则导数f'(x) = -sin(x)- 若f(x) = tan(x),则导数f'(x) = sec^2(x)6. 反函数法则:- 若f(x) = y为可逆函数,且y = g(x)的导数在x = b处存在且不为0,则反函数g(x)在y = b处的导数为1/f'(g(b))- 简记为:若y = f(x)的导数不为0,则(dy)/(dx) = 1/(dx)/(dy)三、导数的应用1. 切线和法线:- 切线方程:y = f'(x0)(x - x0) + f(x0)- 法线方程:y = -(1/f'(x0))(x - x0) + f(x0)2. 凹凸性和拐点:- 凹凸性:函数f(x)的二阶导数f''(x)代表函数曲线凹凸性质。
2019-2020年高考数学一轮复习 13.1 导数的概念与运算教案●网络体系总览●考点目标定位1.理解导数的定义,会求多项式函数的导数.2.理解导数的物理、几何意义,会求函数在某点处切线的斜率和物体运动到某点处的瞬时速度.3.会用导数研究多项式函数的单调性,会求多项式函数的单调区间.4.理解函数极大(小)值的概念,会用导数求多项式、函数的极值及在闭区间上的最值,会求一些简单的实际问题的最大(小)值.●复习方略指南在本章的复习过程中应始终把握对导数概念的认识、计算及应用这条主线.复习应侧重概念、公式、法则在各方面的应用,应淡化某些公式、法则的理论推导.课本只给出了两个简单函数的导数公式,我们只要求记住这几个公式,并会应用它们求有关函数的导数即可.从2000年高考开始,导数的知识已成为高考考查的对象,特别是导数的应用是高考必考的重要内容之一,题型涉及选择题、填空题与解答题,要给予充分的重视.但是,本章内容是限定选修内容,试题难度不大,要重视基本方法和基础知识;做练习题时要控制好难度,注意与函数、数列、不等式相结合的问题.13.1 导数的概念与运算●知识梳理1.用定义求函数的导数的步骤.(1)求函数的改变量Δy ;(2)求平均变化率xy ∆∆. (3)取极限,得导数f '(x 0)=0lim →∆x xy ∆∆. 2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. 物理意义:若物体运动方程是s =s (t ),在点P (i 0,s (t 0))处导数的意义是t =t 0处的瞬时速度.3.求导公式(c )'=0,(x n )'=n ·x n -1(n ∈N *).4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ),[c ·f (x )]'= c f '(x ).●点击双基1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则x y ∆∆等于A.4B.4xC.4+2ΔxD.4+2Δx 2 解析:Δy =2(1+Δx )2-1-1=2Δx 2+4Δx ,xy ∆∆=4+2Δx . 答案:C2.对任意x ,有f '(x )=4x 3,f (1)=-1,则此函数为A.f (x )=x 4-2B.f (x )=x 4+2C.f (x )=x 3D.f (x )=-x 4解析:筛选法.答案:A3.如果质点A 按规律s =2t 3运动,则在t =3 s 时的瞬时速度为A.6B.18C.54D.81解析:∵s ′=6t 2,∴s ′|t =3=54.答案:C4.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5.又P (-2,6+c ),∴26-+c =-5. ∴c =4.答案:45.设函数f (x )=(x -a )(x -b )(x -c )(a 、b 、c 是两两不等的常数),则)(a f a '+)(b f b '+)(c f c '=________. 解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc ,∴f '(x )=3x 2-2(a +b +c )x +ab +bc +ca .又f '(a )=(a -b )(a -c ),同理f '(b )=(b -a )(b -c ),f '(c )=(c -a )(c -b ). 代入原式中得值为0.答案:0●典例剖析【例1】 (1)设a >0,f (x )=ax 2+bx +c ,曲线y =f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,4π],则P 到曲线y =f (x )对称轴距离的取值范围为 A.[0,a 1] B.[0,a21] C.[0,|a b 2|] D.[0,|a b 21-|] (2)(2004年全国,3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为A.y =3x -4B.y =-3x +2C.y =-4x +3D.y =4x -5(3)(2004年重庆,15)已知曲线y =31x 3+34,则过点P (2,4)的切线方程是______. (4)(2004年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______.剖析:本题的各小题都是考查导数的几何意义的,导数的几何意义是曲线在该点处的切线的斜率.解析:(1)∵过P (x 0,f (x 0))的切线的倾斜角的取值范围是[0,4π], ∴P 到曲线y =f (x )对称轴x =-a b 2的距离d =x 0-(-a b 2)=x 0+ab 2. 又∵f '(x 0)=2ax 0+b ∈[0,1],∴x 0∈[a b 2-,a b 21-].∴d =x 0+a b 2∈[0,a21]. (2)∵点(1,-1)在曲线上,y ′=3x 2-6x ,∴切线斜率为3×12-6×1=-3.∴所求切线方程为y +1=-3(x -1).(3)∵P (2,4)在y =31x 3+34上, 又y ′=x 2,∴斜率k =22=4.∴所求直线方程为y -4=4(x -2),4x -y -4=0.(4)y ′=6x -4,∴切线斜率为6×1-4=2.∴所求直线方程为y -2=2(x +1),即2x -y +4=0.答案:(1)B (2)B (3)4x -y -4=0 (4)2x -y +4=0评述:利用导数的几何意义,求切线的斜率是导数的一个基本应用.思考讨论导数除用来求切线的斜率外,还有哪些方面的应用?答:导数的应用较广,如求函数的单调区间,求函数的极值、最值等.【例2】 曲线y =x 3在点(3,27)处的切线与两坐标轴所围成的三角形面积是多少?剖析:求出切线的方程后再求切线与坐标轴的交点.解:曲线在点(3,27)处切线的方程为y =27x -54,此直线与x 轴、y 轴交点分别为(2,0)和(0,-54),∴切线与坐标轴围成的三角形面积是S =21×2×54=54. 评述:求切线的斜率是导数的一个基本应用.【例3】 已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且直线l 与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标.剖析:切点(x 0,y 0)既在曲线上,又在切线上,由导数可得切线的斜率.联立方程组解之即可.解:∵直线过原点,则k =00x y (x 0≠1). 由点(x 0,y 0)在曲线C 上,则y 0=x 03-3x 02+2x 0, ∴00x y =x 02-3x 0+2. 又y ′=3x 2-6x +2,∴在(x 0,y 0)处曲线C 的切线斜率应为k =f '(x 0)=3x 02-6x 0+2.∴x 02-3x 0+2=3x 02-6x 0+2.整理得2x 02-3x 0=0.解得x 0=23(∵x 0≠0). 这时,y 0=-83,k =-41. 因此,直线l 的方程为y =-41x ,切点坐标是(23,-83). 评述:对于高次函数凡涉及到切线或其单调性的问题时,要有求导意识.【例4】 证明:过抛物线y =a (x -x 1)·(x -x 2)(a ≠0,x 1<x 2)上两点A (x 1,0)、B (x 2,0)的切线,与x 轴所成的锐角相等.剖析:利用与x 轴所成的锐角和倾斜角之间的关系,只要求出切线的斜率进行比较即可. 解:y ′=2ax -a (x 1+x 2),y ′|1x x ==a (x 1-x 2),即k A =a (x 1-x 2),y ′|2x x ==a (x 2-x 1),即k B =a (x 2-x 1). 设两条切线与x 轴所成的锐角为α、β,则tan α=|k A |=|a (x 1-x 2)|,tan β=|k B |=|a (x 2-x 1)|,故tan α=tan β.又α、β是锐角,则α=β.评述:由tan α=tan β不能直接得α=β,还必须有α、β为锐角时(或在同一单调区间上时)才能得α=β.●闯关训练夯实基础1.函数f (x )=(x +1)(x 2-x +1)的导数是A.x 2-x +1B.(x +1)(2x -1)C.3x 2D.3x 2+1解析:∵f (x )=x 3+1,∴f '(x )=3x 2.答案:C2.曲线y =f (x )在点(x 0,f (x 0))处的切线方程为3x +y +3=0,则A. f '(x 0)>0B. f '(x 0)<0C. f '(x 0)=0D. f '(x 0)不存在解析:由题知f '(x 0)=-3.答案:B3.函数f (x )=ax 3+3x 2+2,若f '(-1)=4,则a 的值等于________.解析: f '(x )=3ax 2+6x ,从而使3a -6=4,∴a =310. 答案: 310 4.曲线y =2x 2+1在P (-1,3)处的切线方程是________________.解析:点P (-1,3)在曲线上,k =f '(-1)=-4,y -3=-4(x +1),4x +y +1=0. 答案:4x +y +1=05.已知曲线y =x 2-1与y =3-x 3在x =x 0处的切线互相垂直,求x 0.解:在x =x 0处曲线y =x 2-1的切线斜率为2x 0,曲线y =3-x 3的切线斜率为-3x 02.∵2x 0·(-3x 02)=-1,∴x 0=361. 答案: 361 6.点P 在曲线y =x 3-x +32上移动,设点P 处切线的倾斜角为α,求α的范围. 解:∵tan α=3x 2-1,∴tan α∈[-1,+∞).当tan α∈[0,+∞)时,α∈[0,2π); 当tan α∈[-1,0)时,α∈[43π,π). ∴α∈[0,2π)∪[43π,π). 培养能力7.曲线y =-x 2+4x 上有两点A (4,0)、B (2,4).求:(1)割线AB 的斜率k AB 及AB 所在直线的方程;(2)在曲线AB 上是否存在点C ,使过C 点的切线与AB 所在直线平行?若存在,求出C 点的坐标;若不存在,请说明理由.解:(1)k AB =4204--=-2, ∴y =-2(x -4).∴所求割线AB 所在直线方程为2x +y -8=0.(2)y '=-2x +4,-2x +4=-2,得x =3,y =-32+3×4=3.∴C 点坐标为(3,3),所求切线方程为2x +y -9=0.8.有点难度哟!若直线y =3x +1是曲线y =x 3-a 的一条切线,求实数a 的值.解:设切点为P (x 0,y 0),对y =x 3-a 求导数是y '=3x 2,∴3x 02=3.∴x 0=±1. (1)当x =1时,∵P (x 0,y 0)在y =3x +1上,∴y =3×1+1=4,即P (1,4).又P (1,4)也在y =x 3-a 上,∴4=13-a .∴a =-3.(2)当x =-1时,∵P (x 0,y 0)在y =3x +1上,∴y =3×(-1)+1=-2,即P (-1,-2).又P (-1,-2)也在y =x 3-a 上,∴-2=(-1)3-a .∴a =1.综上可知,实数a 的值为-3或1.9.确定抛物线方程y =x 2+bx +c 中的常数b 和c ,使得抛物线与直线y =2x 在x =2处相切.解:y '=2x +b ,k =y ′|x =2=4+b =2,∴b =-2.又当x =2时,y =22+(-2)×2+c =c ,代入y =2x ,得c =4.探究创新10.有点难度哟!曲线y =x 3+3x 2+6x -10的切线中,求斜率最小的切线方程.解:y '=3x 2+6x +6=3(x +1)2+3,∴x =-1时,切线最小斜率为3,此时,y =(-1)3+3×(-1)2+6(-1)-10=-14.∴切线方程为y +14=3(x +1),即3x -y -11=0.●思悟小结1.理解导数的定义及几何和物理方面的意义是解题的关键.2.非多项式函数要化成多项式函数求导.3.要注意含有参数的函数的导数的写法及研究在不定点处切线问题时切点的设法. ●教师下载中心教学点睛1.f '(x 0)=0lim →x xx f x x ∆-∆+)()(00的几种等价形式: f '(x 0)=0lim x x →00)()(x x x f x f -- =0lim→h h x f h x f )()(00-+ =0lim →h h h x f x f )()(00-- 2.曲线C :y =f (x )在其上一点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f '(x 0)(x -x 0).3.若质点的运动规律为s =s (t ),则质点在t =t 0时的瞬时速度为v =s '(t 0).这就是导数的物理意义.4.直线与曲线相切,并不一定只有一个公共点,当曲线是二次曲线时,由解析几何知,直线与曲线相切,有且只有一个公共点,即切点.拓展题例【例题】 曲线y =x 2+1上过点P 的切线与曲线y =-2x 2-1相切,求点P 的坐标.解:设P (x 0,y 0),由题意知曲线y =x 2+1在P 点的切线斜率为k =2x 0,切线方程为y =2x 0x +1-x 02,而此直线与曲线y =-2x 2-1相切,∴切线与曲线只有一个交点,即方程2x 2+2x 0x +2-x 02=0的判别式Δ=4x 02-2×4×(2-x 02)=0.解得x 0=±332,y 0=37. ∴P 点的坐标为(332,37)或(-323,37).。
课时分层训练(十三) 变化率与导数、计算导数A 组 基础达标一、选择题1.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)C [∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).]2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-eB .-1C .1D .eB [由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,所以f ′(1)=2f ′(1)+1,则f ′(1)=-1.]3.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-3x -1A [由题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率为(0+1)e 0+2=3,故曲线y =x e x+2x -1在点(0,-1)处的切线方程为y +1=3x ,即y =3x -1.]4.(2018·南宁、钦州第二次适应性考试)若直线y =kx +1是函数f (x )=ln x 图像的一条切线,则k =( )【导学号:79140073】A.1e 2B.1e C .eD .e 2A [由f (x )=ln x ,得f ′(x )=1x .设切点为(x 0,ln x 0),则⎩⎪⎨⎪⎧ln x 0=kx 0+1,k =1x 0,解得x 0=e 2,则k =1x 0=1e2,故选A.]5.已知y =f (x )是可导函数,如图2101,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )图2101A .-1B .0C .2D .4B [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.]二、填空题6.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.1-ln 2 [分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值. 求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2.]7.已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________.【导学号:79140074】1 [∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.]8.曲线y =a ln x (a >0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则a =________.8 [∵y =a ln x ,∴y ′=ax,∴在x =1处的切线的斜率k =a ,而f (1)=a ln 1=0,故切点为(1,0), ∴切线方程为y =a (x -1).令y =0,得:x =1;令x =0,y =-a . ∴三角形面积S =12×a ×1=4,∴a =8.] 三、解答题9.求下列函数的导数:(1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3); (3)y =ln(2x +1)x.[解] (1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y =(x +1)(x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11. (3)y ′=⎣⎢⎡⎦⎥⎤ln(2x +1)x ′=[ln(2x +1)]′x -x ′ln (2x +1)x 2=(2x +1)′2x +1·x -ln(2x +1)x =2x2x +1-ln(2x +1)x=2x -(2x +1)ln(2x +1)(2x +1)x2. 10.已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5.∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.B 组 能力提升11.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围成的三角形的面积为( )A.92e 2 B .4e 2C .2e 2D .e 2D [易知曲线y =e 12x 在点(4,e 2)处的切线斜率存在,设其为k .∵y ′=12e 12x ,∴k =12e 12×4=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x=2,∴所求面积为S =12×2×|-e 2|=e 2.]12.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 的值为( ) A .-1 B .-3 C .-4D .-2D [∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,解得m =-2.]13.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.(1,1) [∵函数y =e x 的导函数为y ′=e x, ∴曲线y =e x在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x(x >0)在点P 处的切线的斜率k 2=-1x 20.易知k 1k 2=-1,即1·⎝⎛⎭⎪⎫-1x20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y=1x(x >0)上,∴y 0=1,故点P 的坐标为(1,1).]14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图像为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.【导学号:79140075】[解] (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
课时分层训练(十三) 导数的概念及运算A 组 基础达标 (建议用时:30分钟)一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )【导学号:00090060】A .2B .0C .-2D .-4D [f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.]2.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( ) A .4 B .5 C .254D .132C [∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.]3.(2018·武汉模拟)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( ) A .1 B .-1 C .2D .-2A [f (x +1)=2 x +1 -1x +1,故f (x )=2x -1x ,即f (x )=2-1x ,对f (x )求导得f ′(x )=1x2,则f ′(1)=1,故所求切线的斜率为1,故选A .]4.(2018·成都模拟)已知函数f (x )的图像如图2101,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )图2101A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) C [如图:f ′(3)、f (3)-f (2)⎝⎛⎭⎪⎫f 3 -f 2 3-2、f ′(2)分别表示直线n ,m ,l 的斜率,故0<f ′(3)<f (3)-f (2)<f ′(2),故选C .]5.(2018·福州模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图像是( )A [∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,其图像关于原点对称,故排除B 、D .又f ′⎝ ⎛⎭⎪⎫π6=π12-12<0,故排除C ,选A .]二、填空题6.(2017·郑州二次质量预测)曲线f (x )=x 3-x +3在点P (1,3)处的切线方程是________. 【导学号:00090061】2x -y +1=0 [由题意得f ′(x )=3x 2-1,则f ′(1)=3×12-1=2,即函数f (x )的图像在点P (1,3)处的切线的斜率为2,则切线方程为y -3=2(x -1),即2x -y +1=0.] 7.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.12 [因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.]8.如图2102,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.图21020 [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.]三、解答题9.求下列函数的导数:(1)y =x nlg x ; (2)y =1x +2x 2+1x3;(3)y =sin x xn . [解] (1)y ′=nx n -1lg x +x n·1x ln 10=xn -1⎝ ⎛⎭⎪⎫n lg x +1ln 10. (2)y ′=⎝ ⎛⎭⎪⎫1x ′+⎝ ⎛⎭⎪⎫2x 2′+⎝ ⎛⎭⎪⎫1x 3′=(x -1)′+(2x -2)′+(x -3)′ =-x -2-4x -3-3x -4=-1x 2-4x 3-3x4.(3)y ′=⎝⎛⎭⎪⎫sin x x n ′ =x n sin x ′- x n ′sin x x 2n=x n cos x -nx n -1sin x x 2n=x cos x -n sin xx n +1.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 【导学号:00090062】 [解] (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 2分所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53, 4分斜率k =-1,所以切线方程为x +y -113=0.6分(2)由(1)得k ≥-1,9分所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12分B 组 能力提升 (建议用时:15分钟)1.(2016·山东高考)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3A [若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x >0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2; 对于D :y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2. 综上所述,选A .]2.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.2x -y =0 [设x >0,则-x <0,f (-x )=ex -1+x .∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1), 即2x -y =0.]3.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线. [解] 根据题意有f ′(x )=1+2x 2,g ′(x )=-ax.2分曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a , 所以f ′(1)=g ′(1),即a =-3.6分曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),所以y +1=3(x -1),即切线方程为3x -y -4=0. 9分曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),所以y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12分。
♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 或 0x x y ='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 ,记作 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′= ; (2)[f (x )·g (x )]′= ;(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= ,即y 对x 的导数等于 的导数与 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算例1:(2018•天津)已知函数f (x )=e x lnx ,f′(x )为f (x )的导函数,则f′(1)1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .03.已知f (x )=x 2+2xf ′(1),则f ′(0)= . 考点二、导数的几何意义命题点①求切线方程例2:(2018•新课标Ⅰ)设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A .y=-2x B .y=-xC .y=2xD .y=x 解:函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数, 可得a=1,所以函数f (x )=x 3+x ,可得f′(x )=3x 2+1, 曲线y=f (x )在点(0,0)处的切线的斜率为:1, 则曲线y=f (x )在点(0,0)处的切线方程为:y=x . 故选:D . ♦♦♦跟踪训练♦♦♦4.曲线f (x )=e xx -1在x =0处的切线方程为 .5.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 命题点②求参数的值例3:直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = . 解: 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a , 则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1. ♦♦♦跟踪训练♦♦♦6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m = . 命题点③导数与函数图象例3:已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )答案: B解: 由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B. ♦♦♦跟踪训练♦♦♦7.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .8.(2017·山西孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 . 9.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a = .★★★知能达标演练★★★一、选择题1.(2018•德阳模拟)已知函数f (x )在R 上存在导数f′(x ),下列关于f (x ),f′(x )的描述正确的是( )A .若f (x )为奇函数,则f′(x )必为奇函数B .若f (x )为周期函数,则f′(x )必为周期函数C .若f (x )不为周期函数,则f′(x )必不为周期函数D .若f (x )为偶函数,则f′(x )必为偶函数2.若f (x )=xe x +1,则f′(1)=( ) A .0 B .e+1C .2eD .e 2 3.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是( )5.函数f (x )=xlnx+2f'(1)x ,则f (1)=( ) A .-2 B .−12 C .-1 D .126.(2017·西安质检)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3)D .(1,-3)7.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a 等于( ) A .0 B .1 C .2D .38.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e9.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) A .1秒末 B .1秒末和2秒末 C .4秒末D .2秒末和4秒末10.(2018•延安模拟)己知函数f (x )=220191x +sinx ,其中f′(x )为函数f (x )的导数,求f (2018)+f (-2018)+f′(2019)-f′(-2019)=( ) A .2 B .2019 C .2018 D .011.(2018•青羊区校级模拟)若函数y=f (x )的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t ,则称函数y=f (x )为“t 函数”.下列函数中为“2函数”的个数有( )①y=x-x 3 ②y=x+e x ③y=xlnx ④y=x+cosx A .1个 B .2 个C .3 个D .4个二、填空题12.(2017·西安模拟)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = . 13.(2018届云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a = . 14.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为 .15.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示. (1)若f (1)=1,则f (-1)= ;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为 .(用“<”连接)16.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为 .17.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .三、解答题18.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.19.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.20.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.21.(2018·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 f ′(x 0) 或 0x x y='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 导函数 ,记作 f ′(x ) 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = f ′(x 0) . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′= f ′(x )±g ′(x ) ;(2)[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) ; (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′ ,即y 对x 的导数等于 y 对u 的导数与 u 对x 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算 ♦♦♦跟踪训练♦♦♦ 1.答案: B解: f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 2.答案: B解: f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 3.答案: -4解: ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. 考点二、导数的几何意义 ♦♦♦跟踪训练♦♦♦ 4.答案: 2x +y +1=0解: 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0. 5.答案: x -y -1=0解: ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点②求参数的值 ♦♦♦跟踪训练♦♦♦ 6.答案: -2 解: ∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, ∴m =-2.命题点③导数与函数图象 ♦♦♦跟踪训练♦♦♦ 7.答案: 0解: 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. ♦♦♦跟踪训练♦♦♦8.答案: y =0或4x +y +4=0 解: 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0. 9.答案: -1解: ∵y ′=-1-cos xsin 2x ,π2| 1.x y ='∴=-由条件知1a=-1,∴a =-1.★★★知能达标演练★★★一、选择题 1.答案: B解:对于A :例如:f (x )=x 3为奇函数,则f′(x )=3x 2,为偶函数,故A 错误; 对于B :f (x )是可导函数,则f (x+T )=f (x ),两边对x 求导得(x+T )′f'(x+T )=f'(x ),f'(x+T )=f'(x ),周期为T .故若f (x )为周期函数,则f′(x )必为周期函数.故B 正确;对于C :例如:f (x )=sinx+x 不是周期函数,当f′(x )=cosx+1为周期函数,故C 错误;对于D :例如:f (x )=x 2为偶函数,则f′(x )=2x 为奇函数,故D 错误; 故选:B . 2.答案: C解:∵f (x )=xe x +1,则f′(x )=(x+1)e x , 则f′(1)=2e , 故选:C . 3.答案: C解: f ′(x )=(x -a )2+(x +2a )·(2x -2a ) =(x -a )·(x -a +2x +4a )=3(x 2-a 2). 4.答案: C解: 原函数的单调性是当x <0时,f (x )单调递增; 当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C. 5.答案: A解:根据题意,函数f (x )=xlnx+2f'(1)x , 其导数f′(x )=1+lnx+2f'(1),令x=1可得:f′(1)=1+2f'(1), 解可得f′(1)=-1; ∴f (1)=0-2=-2 故选:A . 6.答案: C解: f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 7.答案: D解: ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x+1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 8.答案: C解: y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|,x x y x ='=切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e .9.答案: D解: s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4, 即2秒末和4秒末的速度为零.可得f′(2019)-f′(-2019)=g′(2019)-g′(-2019)=0, 即有f (2018)+f (-2018)+f′(2019)-f′(-2019)=2, 故选:A . 11.答案: B12.答案: 3解: y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.13.答案: 1-e解: 因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2, 则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切, 故y =x 2+a 可联立y =2x -e , 得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. 14.答案: x +4y -2=0解: y ′=-e x (e x +1)2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.15.答案: (1)1 (2)h (0)<h (1)<h (-1) 解: (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0), 则f ′(x )=2ax +b =x , g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).可得a =14,经检验,a =14满足题意.16.答案:2解: 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x =1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2. 17.答案: [2,+∞)解: ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).三、解答题18.解: 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y ='==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.19.解: (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 20.解: (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.21.解: (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 f ′(x 0) 或 0x x y='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 导函数 ,记作 f ′(x ) 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = f ′(x 0) . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′= f ′(x )±g ′(x ) ;(2)[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) ; (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′ ,即y 对x 的导数等于 y 对u 的导数与 u 对x 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算例1:(2018•天津)已知函数f (x )=e x lnx ,f′(x )为f (x )的导函数,则f′(1)1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2 D .e答案: B解: f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0答案: B解: f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2.3.已知f (x )=x 2+2xf ′(1),则f ′(0)= . 答案: -4解: ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. 考点二、导数的几何意义 命题点①求切线方程例2:(2018•新课标Ⅰ)设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A .y=-2x B .y=-xC .y=2xD .y=x 解:函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数, 可得a=1,所以函数f (x )=x 3+x ,可得f′(x )=3x 2+1, 曲线y=f (x )在点(0,0)处的切线的斜率为:1, 则曲线y=f (x )在点(0,0)处的切线方程为:y=x . 故选:D . ♦♦♦跟踪训练♦♦♦4.曲线f (x )=e xx -1在x =0处的切线方程为 .答案: 2x +y +1=0解: 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0.5.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案: x -y -1=0解: ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点②求参数的值例3:直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = . 解: 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a , 则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1. ♦♦♦跟踪训练♦♦♦6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m = . 答案: -2 解: ∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, ∴m =-2.命题点③导数与函数图象例3:已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )答案: B解: 由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B. ♦♦♦跟踪训练♦♦♦7.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .答案: 0解: 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0.8.(2017·山西孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 . 答案: y =0或4x +y +4=0 解: 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0.9.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a = . 答案: -1解: ∵y ′=-1-cos x sin 2x ,π2| 1.x y ='∴=-由条件知1a=-1,∴a =-1.★★★知能达标演练★★★一、选择题1.(2018•德阳模拟)已知函数f (x )在R 上存在导数f′(x ),下列关于f (x ),f′(x )的描述正确的是( )A .若f (x )为奇函数,则f′(x )必为奇函数B .若f (x )为周期函数,则f′(x )必为周期函数C .若f (x )不为周期函数,则f′(x )必不为周期函数D .若f (x )为偶函数,则f′(x )必为偶函数 答案: B解:对于A :例如:f (x )=x 3为奇函数,则f′(x )=3x 2,为偶函数,故A 错误; 对于B :f (x )是可导函数,则f (x+T )=f (x ),两边对x 求导得(x+T )′f'(x+T )=f'(x ),f'(x+T )=f'(x ),周期为T .故若f (x )为周期函数,则f′(x )必为周期函数.故B 正确;对于C :例如:f (x )=sinx+x 不是周期函数,当f′(x )=cosx+1为周期函数,故C 错误;对于D :例如:f (x )=x 2为偶函数,则f′(x )=2x 为奇函数,故D 错误; 故选:B .2.若f (x )=xe x +1,则f′(1)=( ) A .0 B .e+1C.2e D.e2答案:C解:∵f(x)=xe x+1,则f′(x)=(x+1)e x,则f′(1)=2e,故选:C.3.函数f(x)=(x+2a)(x-a)2的导数为()A.2(x2-a2) B.2(x2+a2)C.3(x2-a2) D.3(x2+a2)答案:C解:f′(x)=(x-a)2+(x+2a)·(2x-2a)=(x-a)·(x-a+2x+4a)=3(x2-a2).4.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数f′(x)的图象可能是()答案:C解:原函数的单调性是当x<0时,f(x)单调递增;当x>0时,f(x)的单调性变化依次为增、减、增,故当x<0时,f′(x)>0;当x>0时,f′(x)的符号变化依次为+,-,+.故选C.5.函数f(x)=xlnx+2f'(1)x,则f(1)=()A.-2 B.−12C.-1 D.12答案:A解:根据题意,函数f(x)=xlnx+2f'(1)x,其导数f′(x)=1+lnx+2f'(1),令x=1可得:f′(1)=1+2f'(1),解可得f′(1)=-1;∴f (1)=0-2=-2故选:A .6.(2017·西安质检)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案: C解: f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.7.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a 等于( ) A .0 B .1 C .2 D .3 答案: D解: ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x+1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 8.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案: C解: y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|,x x y x ='=切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.9.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) A .1秒末 B .1秒末和2秒末 C .4秒末 D .2秒末和4秒末答案: D解: s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零.A.2 B.2019C.2018 D.0答案:A11.(2018•青羊区校级模拟)若函数y=f(x)的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t,则称函数y=f(x)为“t函数”.下列函数中为“2函数”的个数有()①y=x-x3②y=x+e x③y=xlnx ④y=x+cosxA.1个B.2 个C.3 个D.4个答案:B二、填空题12.(2017·西安模拟)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = . 答案: 3解: y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.13.(2018届云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a = . 答案: 1-e解: 因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2, 则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切, 故y =x 2+a 可联立y =2x -e , 得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.14.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为 .答案: x +4y -2=0解: y ′=-e x (e x +1)2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.15.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示. (1)若f (1)=1,则f (-1)= ;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为 .(用“<”连接) 答案: (1)1 (2)h (0)<h (1)<h (-1) 解: (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0), g (x )=dx 3+ex 2+mx +n (d ≠0), 则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).可得a =14,经检验,a =14满足题意.16.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为 . 答案:2解: 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x =1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2. 17.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .答案: [2,+∞)解: ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).三、解答题18.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 解: 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y ='==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.19.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解: (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.20.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解: (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.21.(2018·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解: (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.。
第九节 实际问题的函数建模[考纲传真] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(对应学生用书第27页) [基础知识填充]1.常见的几种函数模型(1)一次函数模型:y =kx +b (k ≠0).(2)反比例函数模型:y =k x+b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(4)指数函数模型:y =a ·b x +c (a ,b ,c 为常数,b >0,b ≠1,a ≠0). (5)对数函数模型:y =m log a x +n (m ,n ,a 为常数,a >0,a ≠1,m ≠0). (6)幂函数模型:y =a ·x n+b (a ≠0). 2.三种函数模型之间增长速度的比较3. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[知识拓展] “对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.(2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =2x 的函数值比y =x 2的函数值大.( ) (2)幂函数增长比直线增长更快.( ) (3)不存在x 0,使ax 0<x n0<log a x 0.( )(4)f (x )=x 2,g (x )=2x,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( ) [答案] (1)× (2)× (3)× (4)√2.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到( ) A .100只 B .200只 C .300只D .400只B [由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 3 9=200.]3.(教材改编)在某种新型材料的研制中,试验人员获得了下列一组试验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A 2 C .y =12(x 2-1)D .y =2.61cos xB [由表格知当x =3时,y =1.59,而A 中y =23=8,不合要求,B 中y =log 23∈(1,2),C 中y =12(32-1)=4,不合要求,D 中y =2.61cos 3<0,不合要求,故选B .]4.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图像表示为( )B [由题意h =20-5t,0≤t ≤4.结合图像知应选B .]5.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 【导学号:00090054】+p +q-1 [设年平均增长率为x ,则(1+x )2=(1+p )·(1+q ),∴x =+p+q -1.](对应学生用书第28页)(1)3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是( )A B C D(2)已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图像是( )A B C D(1)A (2)D [(1)前3年年产量的增长速度越来越快,说明呈高速增长,只有A 、C 图像符合要求,而后3年年产量保持不变,产品的总产量应呈直线上升,故选A .(2)依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知,选D .][规律方法] 判断函数图像与实际问题中两变量变化过程相吻合的两种方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.[变式训练1] 设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为( )D[y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.]关系如图291①;B产品的利润与投资的算术平方根成正比,其关系如图291②.(注:利润和投资单位:万元)①②图291(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?【导学号:00090055】[解](1)f(x)=0.25x(x≥0),g(x)=2x(x≥0).3分(2)①由(1)得f(9)=2.25,g(9)=29=6,所以总利润y=8.25万元. 5分②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.则y =14(18-x )+2x ,0≤x ≤18.7分令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+172.所以当t =4时,y max =172=8.5,9分此时x =16,18-x =2.所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.12分[规律方法] 求解所给函数模型解决实际问题的关注点: (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.易错警示:解决实际问题时要注意自变量的取值范围.[变式训练2] (2018·德州模拟)某实验员在培养皿中滴入了含有10个某种真菌的实验液,约1小时后培养真菌数目繁殖为原来的2倍.经测量知该真菌的繁殖规律为y =10e λt,其中λ为常数,t 表示时间(单位:小时),y 表示真菌个数.经过8小时培养,真菌能达到的个数为( ) A .640 B .1 280 C .2 560D .5 120C [原来的细菌数为10,由题意可得,在函数y =10e λt中,当t =1时,y =20, ∴20=10e λ,即e λ=2,y =10e λt =10·2t.若t =8,则可得此时的细菌数为y =10×28=2 560,故选C .]2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2018年 B .2019年 C .2020年D .2021年(2)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另外每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.(1)B (2)9 [(1)设2015年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n >2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元. (2)设出租车行驶了x km ,付费y 元, 由题意得y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.当x =8时,y =19.75<22.6,因此由8+2.15×5+2.85×(x -8)+1=22.6, 得x =9.][规律方法] 构建函数模型解决实际问题的常见类型与求解方法: (1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. (2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +ax(a >0)模型,常用基本不等式、导数等知识求解. 易错警示:求解过程中不要忽视实际问题是对自变量的限制.[变式训练3] (2016·宁波模拟)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元 2 500 [L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500.当Q =300时,L (Q )的最大值为2 500万元.]。
§3.1 导数的概念及运算1.导数与导函数的概念(1)当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号f ′(x 0)表示,记作f ′(x 0)=limx 1→x 0f (x 1)-f (x 0)x 1-x 0=lim Δx →0f (x 0+Δx )-f (x 0)Δx .(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx ,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)g2(x)(g(x)≠0).知识拓展1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]′=af′(x)+bg′(x).3.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)与[f(x0)]′表示的意义相同.(×)(3)与曲线只有一个公共点的直线一定是曲线的切线.(×)(4)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=________.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y =sin xx 在点M (π,0)处的切线方程为________________________________.答案 x +πy -π=0解析 ∵y ′=x cos x -sin xx 2,∴x =π时,y ′=-ππ2=-1π,∴切线方程为y =-1π(x -π),即x +πy -π=0.题组三 易错自纠4.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )答案 D解析 由y =f ′(x )的图像知,y =f ′(x )在(0,+∞)上是减少的,说明函数y =f (x )的切线的斜率在(0,+∞)上也是减少的,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.5.有一机器人的运动方程为s =t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A.194B.174C.154D.134 答案 D6.(2018·青岛调研)已知f (x )=12x 2+2xf ′(2 018)+2 018ln x ,则f ′(2 018)等于( )A .2 018B .-2 019C .2 019D .-2 018答案 B解析 由题意得f ′(x )=x +2f ′(2 018)+2 018x ,所以f ′(2 018)=2 018+2f ′(2 018)+2 0182 018,即f ′(2 018)=-(2 018+1)=-2 019.7.已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________. 答案 1解析 ∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1), 又点(2,7)在切线上,可得a =1.题型一 导数的计算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0 答案 B解析 f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2.3.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 答案 -4解析 ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 思维升华导数计算的技巧求导之前,应对函数进行化简,然后求导,减少运算量.题型二 导数的几何意义命题点1 求切线方程典例 (1)曲线f (x )=e xx -1在x =0处的切线方程为__________________.答案 2x +y +1=0解析 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 引申探究本例(2)中,若曲线y =x ln x 上点P 的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 y ′=1+ln x ,令y ′=2,即1+ln x =2, ∴x =e ,∴点P 的坐标为(e ,e). 命题点2 求参数的值典例 (1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 1解析 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)(2018届东莞外国语学校月考)曲线y =4x -x 2上两点A (4,0),B (2,4),若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标是( ) A .(3,3) B .(1,3) C .(6,-12) D .(2,4)答案 A解析 设点P (x 0,y 0),∵A (4,0),B (2,4), ∴k AB =4-02-4=-2.∵在点P 处的切线l 平行于弦AB ,∴k l =-2. ∴根据导数的几何意义知 当x =x 0时,y ′=4-2x 0=-2,即x 0=3,∵点P (x 0,y 0)在曲线y =4x -x 2上, ∴y 0=4x 0-x 20=3,∴P (3,3). 命题点3 导数与函数图像典例 (1)已知函数y =f (x )的图像是下列四个图像之一,且其导函数y =f ′(x )的图像如图所示,则该函数的图像是( )答案 B解析 由y =f ′(x )的图像是先上升后下降可知,函数y =f (x )图像的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=______.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况. 跟踪训练 (1)(2017·山西孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是________.答案 y =0或4x +y +4=0 解析 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0.(2)设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 答案 -1解析 ∵y ′=-1-cos x sin 2x ,∴当x =π2时,y ′=-1. 由条件知1a=-1,∴a =-1.求曲线的切线方程典例若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得当x =0时,y ′=2, 即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.函数f(x)=(x+2a)(x-a)2的导数为()A.2(x2-a2) B.2(x2+a2)C.3(x2-a2) D.3(x2+a2)答案 C解析f′(x)=(x-a)2+(x+2a)·(2x-2a)=(x-a)·(x-a+2x+4a)=3(x2-a2).2.设函数f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数f′(x)的图像可能是()答案 C解析原函数的单调性是当x<0时,f(x)是增加的;当x>0时,f(x)的单调性变化依次为增、减、增,故当x<0时,f′(x)>0;当x>0时,f′(x)的符号变化依次为+,-,+.故选C. 3.(2017·西安质检)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案 C解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.4.若直线y=x是曲线y=x3-3x2+px的切线,则实数p的值为()A .1B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0, 解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.5.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则当x =x 0时y ′=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.6.(2017·重庆诊断)已知函数f (x )=2e x +1+sin x ,其导函数为f ′(x ),则f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)的值为( ) A .0 B .2 C .2 017 D .-2 017答案 B解析 ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e x(e x +1)2+cos x ,f (x )+f (-x )=2e x +1+sin x +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e x(e x +1)2+cos x +2e -x(e -x +1)2-cos(-x )=0, ∴f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)=2.7.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为______.答案 3解析 f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ), 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.8.(2016·全国Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是____________.答案 2x -y =0解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以当x >0时,f (x )=e x -1+x ,f ′(x )=e x -1+1,故f ′(1)=2,所以曲线在点(1,2)处的切线方程为y -2=2(x -1),即y =2x . 9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________. 答案 ⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 解析 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 10.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图像如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________________.(用“<”连接)答案 (1)1 (2)h (0)<h (1)<h (-1)解析 (1)由图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0, 所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12, 则f (x )=12x 2+12,故f (-1)=1. (2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n , 则有h (-1)=56+c -n ,h (0)=c -n , h (1)=16+c -n ,故h (0)<h (1)<h (-1). 11.已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.12.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.13.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图像的切线平行,则实数a 的值为( )A.14B.12C .1D .4 答案 A解析 由题意可知f ′(x )=12x 12-,g ′(x )=a x, 由f ′⎝⎛⎭⎫14=g ′⎝⎛⎭⎫14,得12×⎝⎛⎭⎫1412-=a 14, 可得a =14,经检验,a =14满足题意. 14.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为________.答案 2 解析 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x=1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2.15.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞), ∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号). 16.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,② 将①代入②得x 21+⎝⎛⎭⎫k -92x 1+4=0. ∵P 为切点,∴Δ=⎝⎛⎭⎫k -922-16=0, 得k =172或k =12. 当k =172时,x 1=-2,y 1=-17; 当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12. (2)过P 点作切线的垂线,其方程为y =-2x +5.③将③代入抛物线方程得x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),即2x 2=9,∴x 2=92,y 2=-4. ∴Q 点的坐标为⎝⎛⎭⎫92,-4.。
课时分层训练(十四) 导数与函数的单调性A 组 基础达标(建议用时:30分钟)一、选择题1.函数y =x 2-ln x 的单调递减区间为( )12A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)B [y =x 2-ln x ,y ′=x -=121x x 2-1x =(x >0).x -1 x +1 x令y ′<0,得0<x <1,∴单调递减区间为(0,1).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图像如图2113所示,则下列叙述正确的是( )图2113A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增加的,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2]C.D.(-∞,52)(-∞,52]D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立,即x 2-mx +1≥0恒成立,∴m ≤x +恒成立.1x 令g (x )=x +,g ′(x )=1-,1x 1x 2∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增,∴m ≤2+=,故选D.]12524.(2017·山东高考)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-x B .f (x )=x 2C .f (x )=3-xD .f (x )=cos xA [若f (x )具有性质M ,则[e x f (x )]′=e x [f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于选项A ,f (x )+f ′(x )=2-x -2-x ln 2=2-x (1-ln 2)>0,符合题意.经验证,选项B ,C ,D 均不符合题意.故选A .]5.(2016·湖北枣阳第一中学3月模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) 【导学号:00090066】A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上是增加的,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.]二、填空题6.函数f (x )=的单调递增区间是________.ln xx (0,e) [由f ′(x )=′=>0(x >0),(ln xx )1-ln xx 2可得Error!解得x ∈(0,e).]7.若函数y =ax +sin x 在R 上是增加的,则a 的最小值为________.1 [函数y =ax +sin x 在R 上单调递增等价于y ′=a +cos x ≥0在R 上恒成立,即a ≥-cos x 在R 上恒成立,因为-1≤-cos x ≤1,所以a ≥1,即a 的最小值为1.]8.(2017·江苏高考)已知函数f (x )=x 3-2x +e x -,其中e 是自然对数的底数.若1e xf (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. [因为f (-x )=(-x )3-2(-x )+e -x -[-1,12]1e -x=-x 3+2x -e x +=-f (x ),1e x所以f (x )=x 3-2x +e x -是奇函数.1e x 因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2=3x 2≥0,e x ·e -x 所以f (x )在R 上是增加的,所以2a 2≤1-a ,即2a 2+a -1≤0,所以-1≤a ≤.]12三、解答题9.已知函数f (x )=(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处ln x +ke x 的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.【导学号:00090067】[解] (1)由题意得f ′(x )=,1x-ln x -k e x又f ′(1)==0,故k =1.5分1-ke (2)由(1)知,f ′(x )=.1x-ln x -1e x设h (x )=-ln x -1(x >0),1x 则h ′(x )=--<0,1x 21x 即h (x )在(0,+∞)上是减少的.8分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0;当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).12分10.(2015·重庆高考)已知函数f (x )=ax 3+x 2(a ∈R )在x =-处取得极值.43(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.[解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,2分因为f (x )在x =-处取得极值,43所以f ′=0,(-43)即3a ·+2·=-=0,169(-43)16a 383解得a =.5分12(2)由(1)得g (x )=e x ,(12x 3+x 2)故g ′(x )=e x +e x(32x 2+2x )(12x 3+x 2)=e x(12x 3+52x 2+2x)=x (x +1)(x +4)e x .8分12令g ′(x )=0,解得x =0或x =-1或x =-4.当x <-4时,g ′(x )<0,故g (x )为减函数;当-4<x <-1时,g ′(x )>0,故g (x )为增函数;当-1<x <0时,g ′(x )<0,故g (x )为减函数;当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.12分B 组 能力提升(建议用时:15分钟)1.(2018·江淮十校联考)设函数f (x )=x 2-9ln x 在区间[a -1,a +1]上单调递减,则12实数a 的取值范围是( )A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3A [易知函数f (x )的定义域为(0,+∞),f ′(x )=x -,由f ′(x )=x -<0,解得9x 9x 0<x <3.因为函数f (x )=x 2-9ln x 在区间[a -1,a +1]上是减少的,所以Error!解12得1<a ≤2,选A]2.(2017·石家庄质检(二))设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.【导学号:00090068】(-2,0)∪(2,+∞) [令g (x )=,则g ′(x )f xx =>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又xf ′ x -f xx 2g (-x )====g (x ),则g (x )是偶函数,g (-2)=0=g (2),f -x -x -f x -x f xx 则f (x )=xg (x )>0⇔Error!或Error!解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=ax +b .12(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=-f (x )在[1,+∞)上是减少的,求实数m 的取值范围.m x -1x +1[解] (1)由已知得f ′(x )=,∴f ′(1)=1=a ,a =2.1x 12又∵g (1)=0=a +b ,∴b =-1,∴g (x )=x -1.5分12(2)∵φ(x )=-f (x )=-ln x 在[1,+∞)上是减少的,m x -1 x +1m x -1x +1∴φ′(x )=≤0在[1,+∞)上恒成立,-x 2+ 2m -2 x -1x x +1 2即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +,x ∈[1,+∞).9分1x ∵x +∈[2,+∞),∴2m -2≤2,m ≤2.1x 故实数m 的取值范围是(-∞,2].12分。
课时分层训练(十三) 导数的概念及运算
A 组 基础达标 (建议用时:30分钟)
一、选择题
1.若f (x )=2xf ′(1)+x 2
,则f ′(0)等于( )
【导学号:00090060】
A .2
B .0
C .-2
D .-4
D [f ′(x )=2f ′(1)+2x ,
令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.]
2.已知f (x )=x 3
-2x 2
+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( ) A .4 B .5 C .254
D .132
C [∵f (x )=x 3
-2x 2
+x +6,
∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-5
4,
∴所求面积S =12×54×10=25
4
.]
3.(2018·武汉模拟)已知函数f (x +1)=2x +1
x +1,则曲线y =f (x )在点(1,f (1))处切线的斜
率为( ) A .1 B .-1 C .2 D .-2
A [f (x +1)=
x +-1x +1,故f (x )=2x -1x ,即f (x )=2-1
x
,对f (x )求导得f ′(x )
=1
x
2,则f ′(1)=1,故所求切线的斜率为1,故选A .]
4.(2018·成都模拟)已知函数f (x )的图像如图2101,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )
图2101
A .0<f ′(2)<f ′(3)<f (3)-f (2)
B .0<f ′(3)<f ′(2)<f (3)-f (2)
C .0<f ′(3)<f (3)-f (2)<f ′(2)
D .0<f (3)-f (2)<f ′(2)<f ′(3) C [如图:
f ′(3)、f (3)-f (2)⎝
⎛⎭
⎪⎫f -f 3-2
、f ′(2)分别表示直线n ,m ,l 的斜率,故0<f ′(3)<f (3)-f (2)<f ′(2),故选C .]
5.(2018·福州模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图像是( )
A [∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14
x 2
+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,
其图像关于原点对称,故排除B 、D .又f ′⎝ ⎛⎭⎪⎫π6=π12-1
2
<0,故排除C ,选A .]
二、填空题
6.(2017·郑州二次质量预测)曲线f (x )=x 3
-x +3在点P (1,3)处的切线方程是________. 【导学号:00090061】
2x -y +1=0 [由题意得f ′(x )=3x 2
-1,则f ′(1)=3×12
-1=2,即函数f (x )的图像在点P (1,3)处的切线的斜率为2,则切线方程为y -3=2(x -1),即2x -y +1=0.] 7.若曲线y =ax 2
-ln x 在点(1,a )处的切线平行于x 轴,则a =________.
12 [因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12
.]
8.如图2102,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.
图2102
0 [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-1
3.
又因为g (x )=xf (x ),
所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),
由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭
⎪⎫-13=0.]
三、解答题
9.求下列函数的导数:
(1)y =x n
lg x ; (2)y =1x +2x 2+1x
3;
(3)y =sin x x
n . [解] (1)y ′=nx n -1
lg x +x n
·
1
x ln 10
=x
n -1
⎝ ⎛⎭⎪⎫n lg x +1ln 10. (2)y ′=⎝ ⎛⎭
⎪⎫1x ′+⎝ ⎛⎭
⎪⎫2x 2′+⎝ ⎛⎭
⎪⎫1x 3′
=(x -1)′+(2x -2
)′+(x -3
)′ =-x -2
-4x -3
-3x -4
=-1x 2-4x 3-3x
4.
(3)y ′=⎝
⎛⎭
⎪⎫sin x x n ′ =x n sin x ′-x n ′sin x x 2n
=x n cos x -nx n -1sin x x 2n
=
x cos x -n sin x
x n +1
.
10.已知点M 是曲线y =13
x 3-2x 2
+3x +1上任意一点,曲线在M 处的切线为l ,求:
(1)斜率最小的切线方程;
(2)切线l 的倾斜角α的取值范围. 【导学号:00090062】 [解] (1)y ′=x 2
-4x +3=(x -2)2
-1≥-1, 2分
所以当x =2时,y ′=-1,y =5
3
,
所以斜率最小的切线过点⎝ ⎛⎭
⎪⎫2,53, 4分
斜率k =-1,
所以切线方程为x +y -11
3=0.
6分
(2)由(1)得k ≥-1,9分
所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭
⎪⎫3π4,π.
12分
B 组 能力提升 (建议用时:15分钟)
1.(2016·山东高考)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是
( )
A .y =sin x
B .y =ln x
C .y =e x
D .y =x 3
A [若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.
对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;
对于B :y ′=1x ,若有1x 1·1
x 2
=-1,即x 1x 2=-1,∵x >0,∴不存在x 1,x 2,使得x 1x 2
=-1;
对于C :y ′=e x
,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2; 对于D :y ′=3x 2
,若有3x 2
1·3x 2
2=-1,即9x 21x 2
2=-1,显然不存在这样的x 1,x 2. 综上所述,选A .]
2.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1
-x ,则曲线y =f (x )在
点(1,2)处的切线方程是________.
2x -y =0 [设x >0,则-x <0,f (-x )=e
x -1
+x .
∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1
+x .
∵当x >0时,f ′(x )=e x -1
+1,
∴f ′(1)=e
1-1
+1=1+1=2.
∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1), 即2x -y =0.]
3.已知函数f (x )=x -2
x
,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x
=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线. [解] 根据题意有f ′(x )=1+2x 2,g ′(x )=-a
x
.
2分
曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a , 所以f ′(1)=g ′(1),即a =-3.
6分
曲线y =f (x )在x =1处的切线方程为
y -f (1)=3(x -1),
所以y +1=3(x -1),即切线方程为3x -y -4=0. 9分
曲线y =g (x )在x =1处的切线方程为
y -g (1)=3(x -1),
所以y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.
12分。