高二上学期数学练习题(6)(椭圆的标准方程)有详细答案
- 格式:doc
- 大小:227.50 KB
- 文档页数:8
高二数学练习椭圆的标准方程高二数学练习椭圆的标准方程(附详解)一、选择题(本大题共8小题,共40.0分)1.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|=3,则椭圆C的方程为()A. B. C. D.2.过点且与椭圆有相同焦点的椭圆方程为A. B. C. D.3.椭圆两焦点为、,P在椭圆上,若的面积的最大值为12,则椭圆方程为()A. B. C. D.4.动点到两定点的距离之和为10,则动点的轨迹方程是A. B.C. D.5.已知是椭圆的两焦点,过点的直线交椭圆于两点.在中,若有两边之和是,则第三边的长度为( )A. 3B. 4C. 5D. 66.椭圆的方程是,其长轴长为()A. 6B. 2C. 4D. 37.椭圆的焦点坐标为()A. B. C.D.8.椭圆上一点P到右焦点的距离()A. 最大值为5,最小值为4.B. 最大值为10,最小值为8.C. 最大值为10,最小值为6.D. 最大值为9,最小值为1.二、填空题(本大题共6小题,共30.0分)9.椭圆的焦距为.10.已知椭圆+的左、右焦点分别为,过作直线交椭圆于、两点,则的周长为.11.若焦点在轴上的椭圆的焦距为2,则的值是 .12.椭圆的焦点坐标是__________13.设P椭圆上的点,、是椭圆的两个焦点,则=______.14.若椭圆+的焦距为6,则的值为__________.三、解答题(本大题共4小题,共48.0分)15.椭圆C:(a>b>0)的长轴长是短轴长的倍,点P(,)在椭圆C上.(1)求椭圆C的标准方程;(2)点M是直线x=1上的动点,过点M作直线交椭圆于两点A、B,且M为线段AB的中点,过M作直线l⊥AB,证明直线l过定点,并求出定点坐标.高二数学练习椭圆的标准方程16.在平面直角坐标系xOy中,已知椭圆C过点(0,2),其焦点为F1(-,0),F2(,0).(1)求椭圆C的标准方程;(2)已知点P在椭圆C上,且PF1=4,求PF1F2的面积.17.已知椭圆的两个焦点分别是F1(0,-1),F2(0,1),P为椭圆上一点.若|F1F2|是|PF1|与|PF2|的等差中项,求椭圆的标准方程.18.已知椭圆上一点P(3,4),且PF1⊥PF2(F1,F2为椭圆的两个焦点),试求椭圆的标准方程.高二数学练习椭圆的标准方程答案和解析1.【答案】C【解析】【分析】本题主要考查了椭圆标准方程的求解,属于基础题.根据题意得到c值,设出椭圆的方程,进而建立关于a的方程求解即可.【解答】解:由题意知,椭圆焦点在x轴上,且c=1,可设椭圆C的方程为+(a>1),又椭圆C由过F2且垂直于x轴的直线截得的弦长|AB|=3,知点(1,)必在椭圆上,代入椭圆方程化简得4a4-17a2+4=0,所以a2=4或(舍去).故椭圆C的方程为+.2.【答案】C【解析】【分析】求出椭圆的焦点坐标,设出方程利用椭圆经过的点,求解即可.本题考查椭圆的简单性质以及椭圆方程的求法,考查计算能力.【解答】解:椭圆3x2+8y2=24的焦点(,0),可得c=,设椭圆的方程为:,可得:,a2-b2=5,解得a=,b=,所求的椭圆方程为:.故选C.3.【答案】B【解析】【分析】由题意,当点P在短轴端点时,PF1F2的面积的最大值为12,此时可得,解得b,再求出a值,即可写出椭圆方程.本题考查椭圆的性质,判断出当点P在短轴端点时PF1F2的面积为最大值,从而建立方程求b,是解答的关键.【解答】解:由题意,可得,解得b=3,又c=4,故a=5,故椭圆的方程为+=1.故选B.4.【答案】C高二数学练习椭圆的标准方程【解析】【分析】本题考查了椭圆的概念与方程,属基础题.因为,|PF1|+|PF2|=10,可知动点P到定点F1、F2两点的距离和为10>|F1F2|=6,所以P点运动轨迹为椭圆,其中c=3,a=5,b=4,从而得出结果.【解答】解:因为,|PF1|+|PF2|=10,可知动点P到定点F1、F2两点的距离和为10>|F1F2|=6,∴M点运动轨迹为椭圆,其中c=3,a=5,b=4,∴轨迹方程为,故选C.5.【答案】D【解析】【分析】本题主要考查应用椭圆定义求三角形的周长,做题时尽量数形结合.利用椭圆定义,椭圆上的点到两焦点距离之和等于2a,可求出在AF1B的周长,则第三边的长度等于周长减另两边的和.【解答】解:∵A,B两点在椭圆+=1上,∴|AF1|+|AF2|=8,|BF1|+|BF2|=8∴|AF1|+|AF2|+|BF1|+|BF2|=16∴|AF1|+|BF1|+|AB|=16∵在AF1B中,有两边之和是10,∴第三边的长度为16-10=6故选D.6.【答案】A【解析】【分析】本题主要考查了椭圆的概念及标准方程和椭圆的性质及几何意义,属于基础题.利用椭圆的标准方程及其几何性质可得,,从而得到椭圆的长轴长.【解答】解: 因为椭圆的标准方程是所以可得,,所以,因此该椭圆的长轴长为.高二数学练习椭圆的标准方程故选A.7.【答案】A【解析】【分析】直接由椭圆的标准方程求得a2,b2的值,再由a、b、c之间的关系求得c,得答案.【解答】解:由椭圆的标准方程,得a2=25,b2=9,∴c2=a2-b2=25-9=16,则c=4,∴椭圆的焦点坐标为(4,0),(-4,0).故选A.8.【答案】D【解析】【分析】本题考查了椭圆的方程以及几何意义,根据椭圆方程利用焦半径公式求解.【解答】解:∵e=,∴由焦半径公式得|PF2|=5-x0,∵-5≤x0≤5,∴当x0=5时,|PF2|min=1;当x0=-5时,|PF2|max=9.故选D.9.【答案】6【解析】【分析】本题考查椭圆的方程和性质,掌握椭圆的a,b,c的关系是解题关键,属于容易题.【解答】解:椭圆中a=5,b=4所以=3椭圆的焦距为6故答案为:6.10.【答案】4【解析】【分析】本题考查了椭圆的定义和椭圆的标准方程,是个基础题,记住椭圆的定义和椭圆的标准方程即可解答.高二数学练习椭圆的标准方程【解答】解:由椭圆C的标准方程知:a=1,根据椭圆的定义知,三角形的周长为:,故答案为4.11.【答案】5【解析】【分析】本题考查了椭圆的标准方程,是基础题,由题意易得m的值.【解答】解:由题意:a2=m,b2=4,2c=2,由a2=b2+c2可得m=5.故答案为5.12.【答案】【解析】【分析】本题主要考查椭圆的焦点的计算,属于基础题. 【解答】解:由题可知a=5,b=3,所以,所以椭圆+的焦点坐标是,故答案为.13.【答案】10【解析】【分析】本题考查椭圆的定义,由方程得a,然后利用定义即可求解.【解答】解: 由椭圆方程得a=5,所以.故答案为10.14.【答案】7或25【解析】【分析】本题给出椭圆方程,在已知焦距的情况下求参数m的值.着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.分椭圆的焦点在x轴、y轴两种情况加以讨论,结合椭圆基本量的平方关系解关于m的方程,即可得到实数m的值.【解答】解:∵椭圆的焦距为6,∴c=3,当椭圆的焦点在x轴上时,a2=m,b2=16,∴c==3,解得m=25;当椭圆的焦点在y轴上时,a2=16,b2=m,∴c==3,解得k=7.。
高二数学椭圆试题答案及解析1.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:据此,可推断抛物线的方程为_____________.【答案】【解析】:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点在上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为.【考点】椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.2.已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)不存在【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(I)依题意可设椭圆方程为,则右焦点,由题设:,解得:,故所求椭圆的方程为.(II)设存在直线符合题意,直线方程为,代入椭圆方程得:,设,为弦的中点,则由韦达定理得:,,因为不符合,所以不存在直线符合题意.【考点】(1)椭圆的方程;(2)直线与椭圆的综合问题.3.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.4.已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.【答案】(1);(2).【解析】(1)利用题干中的两个条件,和椭圆本身的性质,得然后求解,代入即可;(2)由题干“过点的直线与椭圆交于不同的两点”.设直线的方程为,由得,设,的坐标分别为,,然后利用根与系数的关系,代换出,注意:k的范围.试题解析:(1)由题意得解得,.椭圆的方程为.(2)由题意显然直线的斜率存在,设直线的方程为,由得. 直线与椭圆交于不同的两点,,,解得.设,的坐标分别为,,则,,,.的范围为.【考点】椭圆定义,转化与化归思想,舍而不求思想的运用.5.已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率. (1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.【答案】(1);(2)或.【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)椭圆C的方程是 4分(2)当直线轴时,可得的面积为3,不合题意。
高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
高二数学椭圆试题答案及解析1.已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上.(1)求椭圆的方程;(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).【答案】(1);(2)【解析】⑴由得,椭圆方程为,又点在椭圆上,所以解得因此椭圆方程为;(2)由题意知直线的斜率存在,设的方程为 ,代入得:,由,解得设,,则,令,则,,所以 .试题解析:⑴,∵∴∴∵点在椭圆上,∴∴∴(2)由题意知直线的斜率存在,设的方程为 ,代入得:由,解得设,,则令,所以所以【考点】1.椭圆的方程;2.用代数法研究直线与椭圆相交;3.基本不等式2.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.3.已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.【答案】.【解析】解题思路:根据条件设出椭圆的标准方程,再代点求系数即可.规律总结:求圆锥曲线的标准方程通常用待定系数法,即先根据条件设出合适的标准方程,再根据题意得到关于系数的方程或方程组,解之积得.试题解析:因为椭圆的焦点在x轴上,所以设它的标准方程为,由椭圆的定义知,所以.又因为,所以,所以椭圆的标准方程为.【考点】椭圆的标准方程.4.如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)P(,±).【解析】(1)求椭圆标准方程,一般利用待定系数法,利用两个独立条件确定a,b的值. 设椭圆C的方程为,由已知,得,∴∴b=.所以椭圆C的方程为.(2)等腰三角形这个条件,是不确定的,首先需要确定腰. 由=e=,得PF=PM.∴PF≠PM.若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF 不可能与FM相等.因此只有FM=PM,然后结合点在椭圆上条件进行列方程求解:设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.试题解析:解:(1)设椭圆C的方程为由已知,得,∴,∴b=.所以椭圆C的方程为(2)由=e=,得PF=PM.∴PF≠PM.①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与FM 相等.②若FM=PM,设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.【考点】椭圆方程,椭圆第二定义5.已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.(1)求证:当时;(2)若当时有,求椭圆的方程;(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.【答案】(1)详见解析;(2)(3)存在,最大值为,直线方程为,或【解析】(1)设,从而可得各向量的坐标。
高二数学 椭圆及其标准方程练习题及答案姓名:_________班级:________ 得分:______一、课前练习:1.判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。
(1)14322=+y x (2)1422=+y x (3)1422=+y x 2.求适合下列条件的椭圆标准方程:两个焦点的坐标分别为)0,4(),0,4(-,椭圆上一点P 到两焦点距离的和等于10。
3.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 二、典例:例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.变式练习1:与椭圆x 2+4y 2=16有相同焦点,且过点()6,5-的椭圆方程是 . 例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.变式练习2:已知定圆x 2+y 2-6x -55=0,动圆M 和已知圆内切且过点P (-3,0),求圆心M 的轨迹及其方程.三、巩固练习:1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件 2.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C. 5D. 53.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为4.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是 ( A )A .椭圆B .线段C .不存在D .椭圆或线段6.椭圆12222=+b y a x 和k by a x =+2222()0>k 具有 ( A ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴7.已知:△ABC 的一边长BC =6,周长为16,求顶点A 的轨迹方程.答案:课前练习:1.(1)(0,1),(0,-1)焦距:2。
高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。
高二数学椭圆试题答案及解析1.若,则方程表示的曲线只可能是()A. B. C. D.【答案】C【解析】由得或依次验证各选项中两图形能否同时成立,如A中若直线成立则,就表示双曲线,验证可得C正确【考点】直线椭圆图像点评:通过观察两图像在坐标系下的位置判定系数是否同时成立,若能同时成立则图像可能正确,考查学生的视图能力,较难2.若抛物线的焦点与椭圆的右焦点重合,则的值为________.【答案】4【解析】易知椭圆的右焦点为,因为抛物线的焦点与椭圆的右焦点重合,所以。
【考点】抛物线的简单性质;椭圆的简单性质。
点评:注意椭圆中关系式与双曲线中的不同。
3.已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.(1)求椭圆标准方程;(2)设点,且,求直线方程.【答案】(1)(2)【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。
(1)结合抛物线的定义和性质得到参数a,b,c的关系式得到结论。
(2)利用直线与椭圆方程联立方程组,得到二次方程,结合韦达定理和向量的关系式得到直线的求解。
解:(1)抛物线焦点为(2,0)椭圆方程为:………………5分(2)设与联立得设 AB中点………………9分均满足方程:…………14分4.(本小题满分12分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上,(1)求椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点在单位圆上,求椭圆的方程.【答案】解:设、两点的坐标分别为( I);(II)【解析】本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。
(1)结合已知中直线方程与椭圆方程联立,和设出点A,B的坐标,然后得到关于系数a,b的关系式,然后得到椭圆的方程中比例关系,进而研究其性质。
(2)由上可知,椭圆中b,c关系,然后利用对称性,设出点的坐标,借助于坐标关系式得到椭圆的方程。
解:设、两点的坐标分别为( I)由得:…………2分由知是的中点,点的坐标为………………………4分又点在直线上:…………………6分(II)由(1)知,设椭圆的右焦点坐标为,设关于直线的对称点为,则有解得:……………10分由已知,,. ………11分所求的椭圆的方程为……………12分5.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.【答案】D【解析】点到椭圆的两个焦点的距离之和为6.已知椭圆的焦点在轴上,点在上,且的离心率,则的方程是()A.B.C.D.【答案】C【解析】的方程是,应选C.7.已知动点到两定点、的距离之和为定值.(1)求的轨迹方程;(2)若倾斜角为的直线经过点,且与的轨迹相交于两点、,求弦长.【答案】(1).(2)的方程是..【解析】(1)由椭圆的定义可得,,∴.即得到P的轨迹方程;(2)写出直线方程与(1)中的椭圆方程联立,利用两点间的距离公式和韦达定理可求得弦长.解:(1)依题意可知的轨迹是以、为焦点的椭圆,设其方程为,则有,,∴,故的轨迹方程是.……7分(2)的方程是.设,,由消去得,故弦长.……14分8.椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是A.3B.4C.5D.6【答案】D【解析】解:利用椭圆的定义可知,椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是10-4=6,因此选择D.9.如图,已知椭圆的离心率为,且经过点平行于的直线在轴上的截距为,与椭圆有A、B两个不同的交点(Ⅰ)求椭圆的方程;(Ⅱ) 求的取值范围;(III)求证:直线、与轴始终围成一个等腰三角形.【解析】本小题主要考查椭圆的标准方程,直线与椭圆的位置关系,考查转化与化归的思想方法,以及学生的运算能力.解:(Ⅰ)设椭圆方程为………1分离心率为所以,可得由经过点,解得,…………………………3分∴椭圆方程为……………………………4分(Ⅱ)∵直线平行于,且在轴上的截距为又……………………………………………………5分由……………………………………6分∵直线l与椭圆交于A、B两个不同点,(III)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可…………9分设则由……………………………………………………10分而故直线MA、MB与x轴始终围成一个等腰三角形.……………………14分10.已知A(m,0),|m|≤2,椭圆,点P在椭圆上运动,求|PA|的最小值.【答案】见解析.【解析】本试题主要研究椭圆上点到定点距离的最值问题。
高二数学椭圆试题答案及解析1.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若A B的面积为,求以为圆心且与直线相切的圆方程.【答案】(1)(2)【解析】解:(Ⅰ)根据题意,由于椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上,2c=2,利用定义可知椭圆C的方程为(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),A B的面积为3,不符合题意.②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:,显然>0成立,设A,B,则,,可得|AB|=又圆的半径r=,∴A B的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为【考点】直线与椭圆的位置关系点评:主要是考查了直线与椭圆的位置关系,属于中档题。
2.椭圆=1上一点M到左焦点F的距离为2, N是MF的中点,则=( )A.2B.4C.6D.【答案】B【解析】解:∵椭圆方程为,∴椭圆的a=5,长轴2a=10,可得椭圆上任意一点到两个焦点F1、F2距离之和等于10.∴|MF1|+|MF2|=10,∵点M到左焦点F1的距离为2,即|MF1|=2,∴|MF2|=10-2=8,∵△MF1F2中,N、O分别是MF1、F1F2中点,∴|ON|= |MF2|=4.故选B.【考点】三角形中位线定理和椭圆的定义点评:本题考查了三角形中位线定理和椭圆的定义等知识点,考查学生的计算能力,属于基础题3.过椭圆+=1内一点M(2,1)引一条弦,使弦被M点平分,求此弦所在直线方程。
【答案】x+2y-4=0,【解析】解:设直线与椭圆的交点为A(x1,y1)、B(x2,y2),∵M(2,1)为AB的中点,∴x1+x2=4,y1+y2=2,∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16,两式相减得(x12-x 22)+4(y12-y22)=0,于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,故所求直线的方程为y-1=-(x-2),即x+2y-4=0.【考点】直线与椭圆的位置关系点评:本题考查直线与椭圆的位置关系,考查点差法的运用,考查学生的计算能力,属于中档题.4.设分别为椭圆的左、右焦点,点A,B在椭圆上,若,则点A的坐标是()A.B.C.D.【答案】D【解析】设,由椭圆可知点的坐标代入得,将A,B代入椭圆得关于的方程组,解得【考点】椭圆方程及性质,向量运算点评:圆锥曲线题目中出现的向量关系式常化为坐标表示,本题将所求A点设出,利用向量求得B点,两点在椭圆上即可代入5.已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.【答案】(I)(II)【解析】(Ⅰ)由已知得解得,又所以椭圆G的方程为(3分)(Ⅱ)设直线l的方程为( 4分)由得 5分设A、B的坐标分别为AB中点为E,则;(7分)因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率解得m=2。
高二数学椭圆的方程练习题一、求椭圆方程1. 现有一个椭圆,其长轴的两个顶点分别为A(3, 4)和B(7, 8),其焦点F位于y轴上。
求该椭圆的方程。
解析:首先我们计算该椭圆的中点C,通过中点C可以确定椭圆焦点F的y轴坐标。
然后我们利用焦点F和顶点A、B的坐标,根据焦点到顶点的距离定理得到椭圆的方程。
计算中点C:C的横坐标为(x1 + x2) / 2 = (3 + 7) / 2 = 5C的纵坐标为(y1 + y2) / 2 = (4 + 8) / 2 = 6椭圆焦点F的坐标为(5, y)。
计算焦点到顶点的距离:AF = AF' = AB / 2 = √[ (7 - 3)^2 + (8 - 4)^2 ] / 2 = √40 / 2 = √10由焦点到顶点的距离定理可知:√[ (x - 5)^2 + (y - 4)^2 ] + √[ (x - 5)^2 + (y - 8)^2 ] = √10该方程即为所求的椭圆方程。
2. 现有一个椭圆,其焦点F1(-3, 0)和F2(3, 0),离心率e = 2/3。
求该椭圆的方程。
解析:根据离心率e和焦点坐标的关系我们可以得到e = c / a,其中c为焦点到原点的距离,a为椭圆的半长轴长度。
然后利用离心率e和半长轴a的关系式e = √[1 - (b^2 / a^2)] ,其中b为椭圆的半短轴长度,可以求得椭圆的半长轴a和半短轴b。
最后利用半长轴a和半短轴b的长度及原点坐标(x, y),推导得到椭圆的方程。
计算c:c的距离为3由e = c / a 可得 a = c / e = 3 / (2/3) = 9/2计算b:e = √[1 - (b^2 / a^2)](2/3)^2 = 1 - (b^2 / (9/2)^2)4/9 = 1 - 4b^2 / 814b^2 / 81 = 5/9b^2 = 81 * 5 / 4b = √(81 * 5 / 4)b = 9√5 / 2椭圆的方程为:(x^2 / (9/2)^2) + (y^2 / (9√5 / 2)^2) = 1二、求给定条件下的椭圆参数1. 一个椭圆的焦点坐标为F1(0, -5)和F2(0, 5),直线2x + y = 4是其一条准线。
高二数学椭圆试题答案及解析1.已知椭圆C:的离心率为.双曲线的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.B.C.D.【答案】D【解析】由椭圆C:的离心率为,得,从而,所以椭圆C的方程可写为:,又因为双曲线的渐近线方程为:与椭圆C的四个交点坐标分别为:,从而以这四个交点为顶点的四边形的面积为,从而,所以椭圆C的方程为,故选D.【考点】椭圆的方程.2.已知椭圆的离心率为.(1)若原点到直线的距离为,求椭圆的方程;(2)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.当,求b的值;【答案】(1);(2)1.【解析】解题思路:(1)利用点到直线的距离公式求出b值,利用离心率以及求得椭圆方程;(2)联立直线与椭圆的方程,整理得到关于的一元二次方程,利用弦长公式求值.规律总结:圆锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法所以处理这类问题一定要有耐心.试题解析:(1),., 解得.所以椭圆的方程为.(2),,椭圆的方程可化为:①易知右焦点,据题意有AB:②由①,②有:③设,.【考点】1.椭圆的标准方程;2.直线与椭圆的位置关系.3.从椭圆短轴的一个端点看长轴的两个端点的视角为,那么此椭圆的离心率为()A.B.C.D.【答案】D.【解析】由题意:,又.【考点】椭圆离心率计算.4.已知椭圆:,过点的直线与椭圆交于、两点,若点恰为线段的中点,则直线的方程为。
【答案】【解析】设,则有,以上两式相减得,整理可得,因为是的中点,所以,所以,因为直线过点,则直线方程为,即。
【考点】中点弦问题。
5.已知椭圆:经过点,其离心率.(1)求椭圆的方程;(2)过坐标原点作不与坐标轴重合的直线交椭圆于两点,过作轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线与的斜率的乘积是否为定值?说明理由.【答案】(1);(2)直线与的斜率的乘积是定值.【解析】(1)由椭圆的离心率可得,又点满足方程可得,可解得,,所以知椭圆的方程;(2)设直线方程是,,,可得,,可得直线方程是,与椭圆方程联立,由韦达定理代入最终可化为.解:(1)∵,∴,,∵点在椭圆上,∴,解得,,∴椭圆的方程是;(2)设直线方程是,,,则,,直线的斜率是,直线方程是,由,得,则,∴,直线与的斜率的乘积是定值.【考点】1.椭圆的标准方程与几何性质;2.直线与椭圆;6.如果方程表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是()A.B.C.D.【答案】D【解析】由方程表示双曲线,可得c=,判断出A,C不表示椭圆,再求出B,D中的c,即可得出结论.【考点】双曲线与椭圆的标准方程.7.椭圆的焦点分别为和,点在椭圆上,如果线段的中点在轴上,那么。
一 椭圆的标准方程习题一、选择题1.设定点F 1(0,-3),F 2(0,3),动点P (x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是( )A .椭圆B .线段C .椭圆、线段或不存在D .不存在2.椭圆2x 2+3y 2=12的两焦点之间的距离是( )A .210 B.10 C. 2 D .2 23.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( )A .-1B .1 C. 5 D .- 54.已知方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-9<m <25 B .8<m <25 C .16<m <25D .m >85.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( )A .(0,±m -n )B .(±m -n ,0)C .(0,±n -m )D .(±n -m ,0)6.若△ABC 的两个顶点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( ) A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 7.点P 为椭圆x 25+y 24=1上一点,以点P 以及焦点F 1、F 2为顶点的三角形的面积为1, 则P 点的坐标为( )A.⎝⎛⎭⎫±152,1B.⎝⎛⎭⎫152,±1C.⎝⎛⎭⎫152,1D.⎝⎛⎭⎫±152,±1 8.已知椭圆过点P ⎝⎛⎭⎫35,-4和点Q ⎝⎛⎭⎫-45,3,则此椭圆的标准方程是( ) A.y 225+x 2=1 B.x 225+y 2=1或x 2+y 225=1 C.x 225+y 2=1 D .以上都不对 9.AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( ) A .b 2B .bcC .abD .ac二、填空题10.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的交点到两焦点的距离分别为3和1, 则椭圆的标准方程为________.11.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆方程是________. 三、解答题12.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.13.求以椭圆9x 2+5y 2=45的焦点为焦点,且经过点M (2,6)的椭圆的标准方程.二 椭圆的标准方程(答案)1、[答案] C [解析] 当a >|F 1F 2|=6时,动点P 的轨迹为椭圆;当a =|F 1F 2|=6时,动点P 的轨迹为线段;当a <|F 1F 2|=6时,动点P 的轨迹不存在2、[答案] D [解析] 椭圆方程2x 2+3y 2=12可化为:x 26+y 24=1,a 2=6,b 2=4,c 2=6-4=2,∴2c =2 2. 3、[答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2=5k ,b 2=1,c 2=5k-1=4,∴k =1. 4、[答案] B[解析] 由题意得⎩⎪⎨⎪⎧ m +9>025-m >0m +9>25-m ,解得8<m <25.5、[答案] C [解析] 椭圆方程mx 2+ny 2+mn =0可化为x 2-n +y 2-m =1, ∵m <n <0,∴-m >-n ,椭圆的焦点在y 轴上,排除B 、D ,又n >m ,∴m -n 无意义,排除A ,故选C.6、[答案] D[解析] |AB |=8,|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.7、[答案] D [解析] S △PF 1F 2=12×|F 1F 2|·|y P |=12×2×|y P |=1, ∴|y P |=1,y P =±1,代入椭圆方程得,x P =±152. 8、[答案] A [解析] 设椭圆方程为:Ax 2+By 2=1(A >0,B >0)由题意得⎩⎨⎧ 925A +16B =11625A +9B =1,解得⎩⎪⎨⎪⎧A =1B =125. 9、[答案] B [解析] S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b .∴△ABF 面积的最大值为bc .10、[答案] x 24+y 23=1 [解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3a -c =1,∴⎩⎪⎨⎪⎧a =2c =1,三 故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. 11、[答案] x 215+y 210=1 [解析] 因为焦点坐标为(±5,0),设方程为x 2a 2+y 2a 2-5=1,将(-3,2)代入方程可得9a 2+4a2-5=1,解得a 2=15,故方程为x 215+y 210=1.12、[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.13、[解析] 由9x 2+5y 2=45,得y 29+x 25=1.其焦点F 1(0,2)、F 2(0,-2).设所求椭圆方程为y 2a 2+x 2b 2=1.又∵点M (2,6)在椭圆上,∴6a 2+4b 2=1①又a 2-b 2=4②解①②得a 2=12,b 2=8.故所求椭圆方程为y 212+x 28=1.。
高二数学椭圆专项练习题椭圆作为解析几何中的重要概念,具有广泛的应用。
通过专项练习题的训练,我们将更加深入地理解椭圆的特性,并能够熟练运用相关知识解决实际问题。
本文将为大家提供高二数学椭圆专项练习题,帮助大家巩固椭圆的掌握程度。
一、选择题1. 椭圆的离心率为ε,离心率定义为:A) ε = a/b,其中a为焦点到直径的距离,b为椭圆长轴长度。
B) ε = b/a,其中a为焦点到顶点的距离,b为椭圆短轴长度。
C) ε = a/b,其中a为焦点到椭圆上任意一点的距离,b为椭圆长轴长度。
D) ε = b/a,其中a为焦点到椭圆上任意一点的距离,b为椭圆短轴长度。
2. 椭圆的标准方程为:A) (x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)为椭圆的中心点坐标。
B) (x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a, b)为椭圆的长轴和短轴长度。
C) (x-h)^2/b^2 + (y-k)^2/a^2 = 1,其中(h, k)为椭圆的中心点坐标。
D) (x-h)^2/b^2 + (y-k)^2/a^2 = 1,其中(a, b)为椭圆的长轴和短轴长度。
3. 椭圆的焦距定义为:A) 2a,其中a为椭圆的长轴长度。
B) 2b,其中b为椭圆的短轴长度。
C) 2c,其中c为椭圆焦点到中心点的距离。
D) a+b,其中a为椭圆的长轴长度,b为椭圆的短轴长度。
4. 某椭圆的长轴长度为6,短轴长度为4,则该椭圆的焦距为:A) 2B) 4C) 6D) 8二、填空题1. 已知椭圆的焦距为6,离心率为2/3,则其长半轴的长度为_______。
2. 椭圆的焦点为F1、F2,准线为L,已知直线L过点(0,4)且与椭圆交于点A、B两处,则直线F1B的斜率为_______。
三、解答题1. 椭圆的参数方程为:x = a*cosθy = b*sinθ其中a、b分别为椭圆的长半轴和短半轴长度,θ为参数。
典型例题一例1 已知椭圆06322=-+m y mx 的一个焦点为(0;2)求m 的值.分析:把椭圆的方程化为标准方程;由2=c ;根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x . 因为焦点在y 轴上;所以62>m ;解得3>m . 又2=c ;所以2262=-m ;5=m 适合.故5=m .典型例题二例2 已知椭圆的中心在原点;且经过点()03,P ;b a 3=;求椭圆的标准方程. 分析:因椭圆的中心在原点;故其标准方程有两种情况.根据题设条件;运用待定系数法;求出参数a 和b (或2a 和2b )的值;即可求得椭圆的标准方程.解:当焦点在x 轴上时;设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ;知10922=+ba .又b a 3=;代入得12=b ;92=a ;故椭圆的方程为1922=+y x . 当焦点在y 轴上时;设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ;知10922=+ba .又b a 3=;联立解得812=a ;92=b ;故椭圆的方程为198122=+x y .典型例题三例3 ABC ∆的底边16=BC ;AC 和AB 两边上中线长之和为30;求此三角形重心G的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ;再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系;利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴;BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,;由20=+GB GC ;知G 点的轨迹是以B 、C 为焦点的椭圆;且除去轴上两点.因10=a ;8=c ;有6=b ;故其方程为()013610022≠=+y y x .(2)设()y x A ,;()y x G '',;则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①;得A 的轨迹方程为()0132490022≠=+y y x ;其轨迹是椭圆(除去x 轴上两点).典型例题四例4 已知P 点在以坐标轴为对称轴的椭圆上;点P 到两焦点的距离分别为354和352;过P 点作焦点所在轴的垂线;它恰好过椭圆的一个焦点;求椭圆方程. 分析:讨论椭圆方程的类型;根据题设求出a 和b (或2a 和2b )的值.从而求得椭圆方程.解:设两焦点为1F 、2F ;且3541=PF ;3522=PF . 从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴; 所以在12F PF Rt ∆中;21sin 1221==∠PF PF F PF ;可求出621π=∠F PF ;3526cos21=⋅=πPF c ;从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .典型例题五例5 已知椭圆方程()012222>>=+b a by a x ;长轴端点为1A ;2A ;焦点为1F ;2F ;P是椭圆上一点;θ=∠21PA A ;α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边;从而利用C ab S sin 21=∆求面积.解:如图;设()y x P ,;由椭圆的对称性;不妨设()y x P ,; 由椭圆的对称性;不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ② 则-①②2得αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan2αb =.典型例题六例6 已知椭圆1222=+y x ;(1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线;求截得的弦的中点的轨迹方程;(4)椭圆上有两点P 、Q ;O 为原点;且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ;求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关;因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,;()22y x N ,;线段MN 的中点()y x R ,;则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠;则上式两端同除以21x x -;有()()0221212121=-+++x x y y y y x x ;将③④代入得022121=--+x x y y yx . ⑤(1)将21=x ;21=y 代入⑤;得212121-=--x x y y ;故所求直线方程为 0342=-+y x . ⑥将⑥代入椭圆方程2222=+y x 得041662=--y y ;0416436>⨯⨯-=∆符合题意; 故0342=-+y x 即为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为:04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为 022222=--+y x y x .(椭圆内部分) (4)由①+②得()2222212221=+++y y x x ; ⑦ 将③④平方并整理得212222124x x x x x -=+; ⑧ 212222124y y y y y -=+; ⑨将⑧⑨代入⑦得()224424212212=-+-y y y x x x ; ⑩ 再将212121x x y y -=代入⑩式得 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x ; 即 12122=+y x . 此即为所求轨迹方程.当然;此题除了设弦端坐标的方法;还可用其它方法解决.典型例题七例7 已知动圆P 过定点()03,-A ;并且在定圆()64322=+-y x B :的内部与其相内切;求动圆圆心P 的轨迹方程.分析:关键是根据题意;列出点P 满足的关系式.解:如图所示;设动圆P 和定圆B 内切于点M .动点P到两定点;即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径;即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ;B 为两焦点;半长轴为4;半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义;判定轨迹是椭圆;然后根据椭圆的标准方程;求轨迹的方程.这是求轨迹方程的一种重要思想方法.典型例题八例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时;直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102;求直线的方程. 分析:直线与椭圆有公共点;等价于它们的方程组成的方程组有解.因此;只须考虑方程组消元后所得的一元二次方程的根的判别式.已知弦长;由弦长公式就可求出m .解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ;即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ;解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ;2x ;由(1)得5221m x x -=+;51221-=m x x .根据弦长公式得51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m . 解得0=m .因此;所求直线的方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题;采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题;一般考虑判别式∆;解决弦长问题;一般应用弦长公式.用弦长公式;若能合理运用韦达定理(即根与系数的关系);可大大简化运算过程.典型例题九例9 以椭圆131222=+y x 的焦点为焦点;过直线09=+-y x l :上一点M 作椭圆;要使所作椭圆的长轴最短;点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出;按照椭圆的定义;本题实际上就是要在已知直线上找一点;使该点到直线同侧的两已知点(即两焦点)的距离之和最小;而这种类型的问题在初中就已经介绍过;只须利用对称的知识就可解决.解:如图所示;椭圆131222=+y x 的焦点为()031,-F ;()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9;6);直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5;4).此时21MF MF +最小.所求椭圆的长轴562221==+=FF MF MF a ;∴53=a ;又3=c ;∴()3635322222=-=-=c a b .因此;所求椭圆的方程为1364522=+y x . 说明:解决本题的关键是利用椭圆的定义;将问题转化为在已知直线上求一点;使该点到直线同侧两已知点的距离之和最小.典型例题十例10 已知方程13522-=-+-ky k x 表示椭圆;求k 的取值范围. 分析:根据椭圆方程的特征求解.解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ;且4≠k .∴满足条件的k 的取值范围是53<<k ;且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ;故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件;当b a =时;并不表示椭圆.典型例题十一例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆;求α的取值范围.分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性;求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x . 因为焦点在y 轴上;所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α;0cos 1>-α;这是容易忽视的地方. (2)由焦点在y 轴上;知αcos 12-=a ;αsin 12=b .(3)求α的取值范围时;应注意题目中的条件πα<≤0.典型例题十二例2 求中心在原点;对称轴为坐标轴;且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.分析:由题设条件焦点在哪个轴上不明确;椭圆标准方程有两种情形;为了计算简便起见;可设其方程为122=+ny mx (0>m ;0>n );且不必去考虑焦点在哪个坐标轴上;直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ;0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ;51=n .故所求的椭圆方程为151522=+y x . 说明:此类题目中已存在直角坐标系;所以就不用建立直角坐标系了;但是这种题目一定要注意已知点和已知轨迹在坐标系中的位置关系.求椭圆的标准方程;一般是先定位(焦点位置);再定量(a ;b 的值);若椭圆的焦点位置确定;椭圆方程唯一;若椭圆的焦点位置不确定;既可能在x 轴;又可能在y 轴上;那么就分两种情况进行讨论.方法是待定系数法求椭圆的标准方程;求解时是分为根据椭圆的焦点在x 轴上或y 轴上确定方程的形式、根据题设条件列出关于待定系数a ;b 的方程组、解方程组求出a ;b 的值三个步骤;从而得到椭圆的标准方程.对此题而言;根据题目的要求不能判断出所求的椭圆焦点所在的坐标轴;那么就分情况讨论;这种方法解此题较繁.另一种方法直接设出椭圆的方程;而不强调焦点在哪一个坐标轴上;即不强调2x 和2y 的系数哪一个大;通过解题;解得几种情况就是几种情况.在求椭圆方程确定焦点在哪一坐标轴上的时候;可以根据焦点坐标;也可以根据准线方程.若不能确定焦点在哪一个坐标轴上;就用上述两种方法.典型例题十三例13 已知长轴为12;短轴长为6;焦点在x 轴上的椭圆;过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ;B 两点;求弦AB 的长. 分析:此类题目是求弦长问题;这种题目方法很多;可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得;也可以利用椭圆定义及余弦定理;还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ;3=b ;所以33=c . 又因为焦点在x 轴上;所以椭圆方程为193622=+y x ;左焦点)0,33(-F ;从而直线方程为93+=x y .由直线方程与椭圆方程联立得0836372132=⨯++x x .设1x ;2x 为方程两根; 所以1337221-=+x x ;1383621⨯=x x ;3=k ;从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ;设m AF =1;n BF =1;则 m AF -=122;n BF -=122.在21F AF ∆中;3cos22112212122πF F AF F F AF AF -+=;即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中;用余弦定理得346+=n ;所以 1348=+=n m AB . (法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ;2x ;它们分别是A ;B 的横坐标.再根据焦半径11ex a AF +=;21ex a BF +=;从而求出11BF AF AB +=. 说明:对于直线与椭圆的位置关系有相交、相切、相离;判断直线与椭圆的位置关系;可以利用直线方程与椭圆方程联立;看联立后方程解的个数:0<∆;无解则相离;0=∆;一解则相切;0>∆;两解则相交.直线与椭圆相交就有直线与椭圆相交弦问题;直线与椭圆的两交点之间的线段叫做直线与椭圆相交弦.典型例题十四例14 已知圆122=+y x ;从这个圆上任意一点P 向y 轴作垂线段;求线段中点M 的轨迹.分析:本题是已知一些轨迹;求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.解:设点M 的坐标为),(y x ;点P 的坐标为),(00y x ; 则20x x =;0y y =. 因为),(00y x P 在圆122=+y x 上;所以12020=+y x .将x x 20=;y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x .说明:此题是利用相关点法求轨迹方程的方法;这种方法具体做法如下:首先设动点的坐标为),(y x ;设已知轨迹上的点的坐标为),(00y x ;然后根据题目要求;使x ;y 与0x ;0y 建立等式关系;从而由这些等式关系求出0x 和0y 代入已知的轨迹方程;就可以求出关于x ;y 的方程;化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法;必须掌握.这种题目还要注意题目的问法;是求“轨迹”还是求“轨迹方程”.若求轨迹方程;只要求出关于x ;y 的关系化简即可;若求轨迹;当求出轨迹方程后;还要说明由这种方程所确定的轨迹是什么.这在审题时要注意.典型例题十五例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2;N 为1MF 的中点;则ON (O 为坐标原点)的值为( )A .4B .2C .8D .23 解:如图所示;设椭圆的另一个焦点为2F ;由椭圆第一定义得10221==+a MF MF ;所以82101012=-=-=MF MF ;又因为ON 为21F MF∆的中位线;所以4212==MF ON ;故答案为A .说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义;即a MF MF 221=+;利用这个等式可以解决椭圆上的点与焦点的有关距离.典型例题十六例16 已知椭圆13422=+y x C :;试确定m 的取值范围;使得对于直线m x y l +=4:;椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ;B 两点关于直线l 对称;则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ;),(22y x B 两点关于直线l 对称;直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ;∴设直线AB 的方程为n x y +-=41. 由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ① ∴13821n x x =+. 于是1342210n x x x =+=;13124100n n x y =+-=; 即点M 的坐标为)1312,134(n n .∵点M 在直线m x y +=4上;∴m n n +⨯=1344. 解得m n 413-=. ② 将式②代入式①得048169261322=-++m mx x ③∵A ;B 是椭圆上的两点;∴0)48169(134)26(22>-⨯-=∆m m . 解得1313213132<<-m . (法2)同解法1得出m n 413-=;∴m m x -=-=)413(1340; m m m m x y 3413)(414134100-=--⨯-=--=;即M 点坐标为)3,(m m --. ∵A ;B 为椭圆上的两点;∴M 点在椭圆的内部; ∴13)3(4)(22<-+-m m . 解得1313213132<<-m . (法3)设),(11y x A ;),(22y x B 是椭圆上关于l 对称的两点;直线AB 与l 的交点M 的坐标为),(00y x .∵A ;B 在椭圆上;∴1342121=+y x ;1342222=+y x . 两式相减得0))((4))((321212121=-++-+y y y y x x x x ;即0)(24)(23210210=-⋅+-⋅y y y x x x . ∴)(4321002121x x y x x x y y ≠-=--. 又∵直线l AB ⊥;∴1-=⋅l AB k k ;∴144300-=⋅-y x ; 即003x y = ①又M 点在直线l 上;∴m x y +=004 ②由①;②得M 点的坐标为)3,(m m --.以下同解法2.说明:涉及椭圆上两点A ;B 关于直线l 恒对称;求有关参数的取值范围问题;可以采用以下方法列参数满足的不等式:(1)利用直线AB 与椭圆恒有两个交点;通过直线方程与椭圆方程组成的方程组;消元后得到的一元二次方程的判别式0>∆;建立参数方程.(2)利用弦AB 的中点),(00y x M 在椭圆内部;0x ;0y 满足不等式12020<+b y a x ;将0x ;0y 利用参数表示;建立参数不等式.典型例题十七例17 在面积为1的PMN ∆中;21tan =M ;2tan -=N ;建立适当的坐标系;求出以M 、N 为焦点且过P 点的椭圆方程.分析:本题考查用待定系数法求椭圆方程及适当坐标系的建立.通过适当坐标系的建立;选择相应椭圆方程;再待定系数.适当坐标系的建立能达到简化问题的目的.解:以MN 的中点为原点;MN 所在直线为x 轴建立直角坐标系;设),(y x P . 则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x y c x y ∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ;∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,134********b a b a 得⎪⎩⎪⎨⎧==.3,41522b a ∴所求椭圆方程为1315422=+y x . 说明:适当坐标系的建立是处理好椭圆应用问题的关键.建立适当坐标系;需对题设所给图形进行观察、分析;做好数与形的结合;本题也可以以MN 的中点为原点;MN 所在直线为y 轴建立直角坐标系;再求椭圆方程.典型例题十八例18 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点;求直线l 的方程. 分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去y (或x );得到关于x (或y )的一元二次方程;再由根与系数的关系;直接求出21x x +;21x x (或21y y +;21y y )的值代入计算即得.并不需要求出直线与椭圆的交点坐标;这种“设而不求”的方法;在解析几何中是经常采用的.本题涉及到直线被椭圆截得弦的中点问题;也可采用点差法或中点坐标公式;运算会更为简便.解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程;整理得036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ;),(22y x B ;则1x 、2x 是①的两根;∴14)24(8221+-=+k k k x x ∵)2,4(P 为AB 中点;∴14)24(424221+-=+=k k k x x ;21-=k . ∴所求直线方程为082=-+y x .方法二:设直线与椭圆交点),(11y x A ;),(22y x B .∵)2,4(P 为AB 中点;∴821=+x x ;421=+y y .又∵A ;B 在椭圆上;∴3642121=+y x ;3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x ;即0))((4))((21212121=-++-+y y y y x x x x . ∴21)(4)(21212121-=++-=--y y x x x x y y . ∴所求直线方程为082=-+y x .方法三:设所求直线与椭圆的一个交点为),(y x A ;另一个交点)4,8(y x B --. ∵A 、B 在椭圆上;∴36422=+y x ①36)4(4)8(22=-+-y x ②从而A ;B 在方程①-②的图形082=-+y x 上;而过A 、B 的直线只有一条; ∴所求直线方程为082=-+y x .说明:直线与圆锥曲线的位置关系是高考重点考查的解析几何问题;“设而不求”的方法是处理此类问题的有效方法.若已知焦点是)0,33(、)0,33(-的椭圆截直线082=-+y x 所得弦中点的横坐标是4;则如何求椭圆方程?。
高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆:的离心率为,一条准线.(1)求椭圆的方程;(2)设为坐标原点,是上的点,为椭圆的右焦点,过点作的垂线与以为直径的圆交于两点.①若=,求圆的方程;②若是上的动点,求证:点在定圆上,并求该定圆的方程.【答案】(1);(2)或;(3)点在定圆上【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)根据圆的圆心坐标和半径求圆的标准方程.(3)直线和圆相交,根据半径,弦长的一半,圆心距求弦长,圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则(2)代数方法:运用根与系数的关系及弦长公式.(4)与圆有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用直线与圆的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(1)由题意可知:,解得,所以椭圆的方程为由①知:,设,则圆的方程:直线的方程:所以圆的方程:或②证明:设,由①知,化简得消去得:所以点在定圆上.【考点】(1)椭圆的标准方程;(2)圆的标准方程;(3)与圆有关的探索问题.3.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。
WORD格式.可编辑高二数学椭圆一.选择题22与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为1.椭圆ax+by=1,那么的值为〔〕A.B.C.D.2.方程表示焦点在y轴上的椭圆,那么实数k的取值范围是〔〕A.B.〔1,+∞〕C.〔1,2〕D.22〕3.椭圆x+4y=1的离心率为〔A.B.C.D.4.椭圆+=1的右焦点到直线y=x的距离是〔〕A.B.C.1D.5.以两条坐标轴为对称轴的椭圆过点P〔,﹣4〕和Q〔﹣,3〕,那么此椭圆的方程是〔〕A.2=1B.+y2x+=1C.22D.以上均不对=1+y=1或x+6.P为椭圆+=1上的点,F1、F2为其两焦点,那么使∠F1PF2=90°的点P有〔〕A.4个B.2个C.1个D.0个7.椭圆4x2+9y2=1的焦点坐标是〔〕A.〔±,0〕B.〔0,±〕C.〔±,0〕D.〔±,0〕8.假设椭圆2kx2+ky2=1的一个焦点坐标是〔0,4〕,那么实数k的值为〔〕A.B.﹣C.D.﹣9.椭圆上的一点P到椭圆一个焦点的距离为3,那么P到另一焦点距离为〔〕A.9B.7C.5D.3二.填空题〔共6小题〕技术资料.整理分享WORD 格式.可编辑10.〔2021?湖北模拟〕如图Rt △ABC 中,AB=AC=1,以点C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 边上,且这个椭圆过A 、B 两点,那么这个椭圆的焦距长为_________ .11.假设P 是椭圆 +=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值为 _________ .12.F 1、F 2是椭圆 + =1的两个焦点, P 是椭圆上一点,那么 |PF 1|?|PF 2|有最_________值为 _________ .13.经过两点 P 1〔 〕,P 2〔0, 〕的椭圆的标准方程 _________.14.焦距为 8,离心率为,那么椭圆的标准方程为 _________ .15.点P 在椭圆 + =1上,F 1,F 2是椭圆的焦点,假设 PF 1⊥PF 2,那么点P 的坐标是_________ .三.解答题〔共 5小题〕16.椭圆的中心在坐标原点,焦点在 x 轴上,离心率为 ,且过点〔1,2 〕,求椭圆的标准方程.17.中心在原点,长轴在x 轴上的椭圆的两焦点间的距离为 ,假设椭圆被直线 x+y+1=0截得的弦的中点的横坐标为﹣ ,求椭圆的方程.技术资料.整理分享WORD格式.可编辑18.椭圆的焦点在x轴上,离心率为,且过点P〔1,〕,求该椭圆的方程.19.求适合以下条件的椭圆的标准方程:〔1〕焦点在x轴上,a=6,e=;〔2〕焦点在y轴上,c=3,e=.20.椭圆两焦点的坐标分别是〔﹣2,0〕,〔2,0〕,并且经过点〔2,〕,求椭圆方程.技术资料.整理分享WORD格式.可编辑21.:△ABC的一边长BC=6,周长为16,求顶点A的轨迹方程.技术资料.整理分享WORD 格式.可编辑参考答案与试题解析一.选择题〔共9小题〕ax 2+by 2=1与直线y=1﹣x 交于A 、B 两点,过原点与线段AB 1.〔2021?兴国县一模〕椭圆中点的直线的斜率为 ,那么 的值为〔 〕A .B .C .D .考点:椭圆的简单性质.专题:综合题.分析:联立椭圆方程与直线方程,得 ax 2+b 〔1﹣x 〕2=1,〔a+b 〕x 2﹣2bx+b ﹣1=0,A 〔x 1,y 1〕,B 〔x 2,y 2〕,由韦达定理得 AB 中点坐标:〔 〕,AB 中点与原点连线的斜率k== = .解答:解:联立椭圆方程与直线方程,得 ax 2+b 〔1﹣x 〕2=1,〔a+b 〕x 2﹣2bx+b ﹣1=0,〔x 1,y 1〕,B 〔x 2,y 2〕,,y 1+y 2=1﹣x 1+1﹣x 2=2﹣ = ,AB 中点坐标:〔〕,AB 中点与原点连线的斜率 k= = = .应选A .点评:此题考查直线和圆锥曲线的经综合运用,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.〔2021?香洲区模拟〕方程 表示焦点在 y 轴上的椭圆,那么实数k 的取值范围是〔 〕A .B .〔1,+∞〕C .〔1,2〕D .考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得焦点在y 轴上的椭圆方程中, x 2、y 2的分母均为正数,且y 2 的分母较大,由此建立关于 k 的不等式组,解之即得实数 k 的取值范围.技术资料.整理分享WORD 格式.可编辑解答:解:∵方程表示焦点在y 轴上的椭圆,∴,解之得 1<k <2实数k 的取值范围是〔 1,2〕应选:C点评:此题给出标准方程表示焦点在y 轴上的椭圆,求参数k 的取值范围,着重考查了椭圆的标准方程的概念,属于根底题.3.〔2007?安徽〕椭圆x 2+4y 2=1的离心率为〔 〕A .B .C .D .考点:椭圆的简单性质.专题:综合题.分析:把椭圆的方程化为标准方程后,找出a 与b 的值,然后根据a 2=b 2+c 2求出c 的值,利 用离心率公式e=,把a 与c 的值代入即可求出值.解答:x2解:把椭圆方程化为标准方程得:+=1,得到a=1,b= ,那么c== ,所以椭圆的离心率 e= = .应选A点评:此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道综合题.4.〔2006?东城区二模〕椭圆 +=1的右焦点到直线 y= x 的距离是〔〕A .B .C .1D .考点:椭圆的简单性质;点到直线的距离公式.专题:计算题.分析:根据题意,可得右焦点 F 〔1,0〕,由点到直线的距离公式,计算可得答案.解答:解:根据题意,可得右焦点 F 〔1,0〕,y= x 可化为y ﹣ x=0,技术资料.整理分享WORD 格式.可编辑那么d== ,应选B .点评:此题考查椭圆的性质以及点到直线的距离的计算,注意公式的准确记忆.5.以两条坐标轴为对称轴的椭圆过点 P 〔,﹣4〕和Q 〔﹣,3〕,那么此椭圆的方程是〔 〕A .B .+y 2=1x 2+=1C .D .以上均不对+y 2=1或x 2+=1考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设经过两点 P 〔 ,﹣4〕和Q 〔﹣ ,3〕,的椭圆标准方程为 mx 2+ny 2=1〔m >0,n>0,m ≠n 〕,利用待定系数法能求出椭圆方程.解答:解:设经过两点 P 〔 ,﹣4〕和Q 〔﹣ ,3〕,的椭圆标准方程为 mx 2+ny 2=1〔m >0,n >0,m ≠n 〕,代入A 、B 得, ,解得m=1,n=,∴所求椭圆方程为x 2+ =1.应选:B .点评:此题考查椭圆标准方程的求法,是中档题,解题时要认真审题,注意椭圆简单性质的合理运用.6.P 为椭圆 + =1上的点,F 1、F 2为其两焦点, 那么使∠F 1PF 2=90°的点P 有〔 〕A .4个B .2个C .1个D .0个考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得出a 、b 、c 的值,由∠F 1PF 2=90°得出点P 在以F 1F 2为直径的圆〔除F 1 2〕,且r <b ,得出圆在椭圆内,点 P 不存在.、F技术资料.整理分享WORD 格式.可编辑解答:解:∵椭圆 +=1中,a=4,b=2 ,∴c= =2;∴焦点F 1〔﹣2,0〕,F 2〔2,0〕;又∵∠F 1PF 2=90°,∴点P 在以F 1F 2为直径的圆 x 2+y 2=4上〔除F 1、F 2〕,又∵r=2<2 =b ,∴圆被椭圆内含,点 P 不存在.点评:此题考查了椭圆的标准方程与圆的标准方程的应用问题,解题时应灵活利用∠F 1PF 2=90°,是根底题.7.椭圆4x 2+9y 2=1的焦点坐标是〔 〕A .〔±,0〕B .〔0,±〕C .D .〔±,0〕〔±,0〕考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把椭圆方程化为标准方程,再利用 c=即可得出.解答:解:椭圆4x 2+9y 2=1化为,a 2=,b2=,∴c= =∴椭圆的焦点坐标为〔 ± ,0〕.应选:C .点评:熟练掌握椭圆的标准方程及其性质是解题的关键.8.假设椭圆2kx 2+ky 2=1的一个焦点坐标是〔 0,4〕,那么实数 k 的值为〔〕A .B .﹣C .D .﹣考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦点坐标为〔 0,4〕可得k >0,化椭圆方程为标准式,求出 c ,再由c=4得答案.技术资料.整理分享WORD 格式.可编辑解答:解:由2kx 2+ky 2=1,得 ,22椭圆2kx+ky=1的一个焦点坐标是〔0,4〕,∴ , ,那么 , .∴ ,解得 .应选:C .点评:此题考查了椭圆的简单几何性质,考查了椭圆的标准方程,是根底题.9.椭圆 上的一点P 到椭圆一个焦点的距离为 3,那么P 到另一焦点距离为〔 〕A .9B .7C .5D .3考点:椭圆的简单性质;椭圆的定义.专题:综合题.分析:由椭圆方程找出 a 的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a ,把a 的值代入即可求出常数的值得到 P 到两焦点的距离之和,由 P 到一个焦点的距离为3,求出P 到另一焦点的距离即可.解答:解:由椭圆 ,得a=5,那么2a=10,且点P 到椭圆一焦点的距离为 3,由定义得点 P 到另一焦点的距离为 2a ﹣3=10﹣3=7.应选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.二.填空题〔共 6小题〕10.〔2021?湖北模拟〕如图 Rt △ABC 中,AB=AC=1,以点C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在 AB 边上,且这个椭圆过 A 、B 两点,那么这个椭圆的焦距长为 .技术资料.整理分享WORD格式.可编辑考点:椭圆的简单性质.专题:计算题.分析:设另一焦点为D,那么可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得CD,得到答案.解答:解析:设另一焦点为D,Rt△ABC中,AB=AC=1,∴BC=AC+AD=2a,AC+AB+BC=1+1+=4a,∴a=又∵AC=1,∴AD=.在Rt△ACD中焦距CD==.故答案为:.点评:此题主要考查了椭圆的简单性质和解三角形的应用.要理解好椭圆的定义和椭圆中短轴,长轴和焦距的关系.11.假设P是椭圆+=1上任意一点,F1、F2是焦点,那么∠F1PF2的最大值为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据椭圆方程求得a和b的大小,进而利用椭圆的根本性质,确定最大角的位置,求出∠F1PF2的最大值.解答:解:根据椭圆的方程可知:+=1,∴a=2,b=,c=1,由椭圆的对称性可知,∠F1PF2的最大时,P在短轴端点,此时△F12PF是正三角形,技术资料.整理分享WORD格式.可编辑∴∠F12的最大值为.PF故答案为:.点评:此题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,那么|PF1|?|PF2|有最大值为.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用椭圆的定义,可得|PF1|+|PF2|=2a=8,再由根本不等式,即可求得|PF1|?|PF2|的最大值.解答:解:椭圆+=1的a=4,那么|PF1|+|PF2|=2a=8,那么|PF122,|?|PF|≤〔〕=16当且仅当|PF1|=|PF2|=4,那么|PF1|?|PF2|有最大值,且为16.故答案为:大,16点评:此题考查椭圆的定义和性质,考查根本不等式的运用:求最值,考查运算能力,属于根底题.13.经过两点P〔〕,P〔0,〕的椭圆的标准方程=1.12考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为mx 2+ny2=1〔m>0,n>0,m≠n〕,把两点P1〔〕,P2〔0,〕代入,能求出结果.解答:解L:设椭圆方程为mx 22+ny=1〔m>0,n>0,m≠n〕把两点P1〔〕,P2〔0,〕代入,得:,技术资料.整理分享WORD 格式.可编辑解得m=5,n=4,∴椭圆方程为 5x 2 2,即=1.+4y =1 故答案为:=1.点评:此题考查椭圆的标准方程的求法,是根底题,解题时要认真审题,注意椭圆性质的合理运用.14.焦距为 8,离心率为,那么椭圆的标准方程为 ,或 .考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦距是 8,离心率,先求出 a=5,c=4,b ,由此能求出椭圆的标准方程.解答:解:∵椭圆的焦距是 8,离心率 ,∴ ,解得a=5,c=4,b 2=25﹣16=9,∴椭圆的标准方程为 ,或 .故答案为: ,或 .点评:此题考查椭圆的标准方程的求法,是根底题,解题时要防止丢解.15.点P 在椭圆 +=1上,F 1,F 2是椭圆的焦点,假设PF 1⊥PF 2,那么点P 的坐标是〔3,4〕,〔3,﹣4〕,〔﹣3,4〕,〔﹣3,﹣4〕 .考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程求出椭圆的焦点坐标, 根据PF 1⊥PF 2 得=0,与椭圆方程联立解得即可.解答:解:由椭圆+ =1,得F 1〔﹣5,0〕,F 2〔5,0〕技术资料.整理分享WORD 格式.可编辑设P 〔x ,y 〕,=0,①2即〔x+5〕〔x ﹣5〕+y=0因为P 在椭圆上,所以+=1,②两式联立可得x=±3,P 〔3,4〕,P 〔3,﹣4〕,P 〔﹣3,4〕,P 〔﹣3,﹣4〕故答案为:P 〔3,4〕,P 〔3,﹣4〕,P 〔﹣3,4〕,P 〔﹣3,﹣4〕.点评:此题主要考查了椭圆的几何性质,向量的应用.三.解答题〔共 5小题〕16.椭圆的中心在坐标原点,焦点在 x 轴上,离心率为 ,且过点〔1,2 〕,求椭圆的标准方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:C 的离心率为,且过点〔1,2〕,即可求得先假设椭圆的方程,再利用的椭圆椭圆C 的方程.解答:解:设椭圆方程为,椭圆的半焦距为 c ,∵椭圆C 的离心率为 ,∴,∴ ,①∵椭圆过点〔1,2 〕,∴ ②由①②解得:b 2=,a 2=49∴椭圆C 的方程为.点评:此题重点考查椭圆的标准方程,考查椭圆的性质,解题的关键是待定系数法.17.中心在原点,长轴在x 轴上的椭圆的两焦点间的距离为 ,假设椭圆被直线 x+y+1=0截得的弦的中点的横坐标为﹣ ,求椭圆的方程.技术资料.整理分享WORD格式.可编辑考点:椭圆的标准方程.分析:首先,设椭圆的标准方程为:=1〔a>b>0〕,然后,设出直线与椭圆的两个交点坐标,然后,将这两个交点坐标代入椭圆方程,两个方程相减,得到关于a,b的一个方程,再结合给定的a,c的关系式,求解即可.解答:解:设椭圆的标准方程为:=1〔a>b>0〕,∵椭圆被直线x+y+1=0截得的弦的中点的横坐标是﹣,∴弦的中点的纵坐标是﹣,设椭圆与直线x+y+1=0的两个交点为P〔x1,y1〕,Q〔x2,y2〕.那么有+=1①=1②①﹣②,化简得+=0③x1+x2=2×〔﹣〕=﹣,y1+y2=2×〔〕=﹣,且=﹣1,∴由③得a 2=2b2,又由题意2c=,有c=,那么可求得c 2= =b2,a2=,∴椭圆的标准方程为:+=1.点评:此题重点考查了椭圆的几何性质、标准方程、直线与椭圆的位置关系等知识,属于中档题,涉及到弦的中点问题,处理思路是“设而不求〞的思想.18.椭圆的焦点在x轴上,离心率为,且过点P〔1,〕,求该椭圆的方程.技术资料.整理分享WORD 格式.可编辑考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为 〔a >b >0〕,由得 ,由此能求出椭圆方程.解答:解:设椭圆方程为〔a >b >0〕,由得 ,解得 ,b 2=1,∴椭圆方程为 .点评:此题考查椭圆方程的求法,是根底题,解题时要认真审题, 注意椭圆性质的合理运用.19.求适合以下条件的椭圆的标准方程:1〕焦点在x 轴上,a=6,e=;2〕焦点在y 轴上,c=3,e=.考点:椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:〔1〕由离心率公式,求得c ,再由a ,b ,c 的关系,求得b ,即可得到椭圆方程;〔2〕由离心率公式,求得a ,再由a ,b ,c 的关系,求得b ,即可得到椭圆方程.解答:解:〔1〕a=6,e= ,即 ,解得c=2,b 2=a 2﹣c 2=32,那么椭圆的标准方程为:=1; 〔2〕c=3,e=,即,解得,a=5,b 2=a 2﹣c 2=25﹣9=16.那么椭圆的标准方程为:=1.技术资料.整理分享WORD 格式.可编辑点评:此题考查椭圆的性质和方程,考查运算能力,属于根底题. 20.椭圆两焦点的坐标分别是〔﹣2,0〕,〔2,0〕,并且经过点〔2,〕,求椭圆方程.考点:椭圆的标准方程. 专题:圆锥曲线的定义、性质与方程. 分析:直接根据焦点的坐标设出椭圆的方程,再根据点的坐标求出结果. 解答:解:椭圆两焦点的坐标分别是〔﹣2,0〕,〔2,0〕, 所以:设椭圆的方程为: 由于:椭圆经过点〔2,〕, 那么:, 且a 2=b 2+4,那么:,解得:.椭圆方程为: .点评:此题考查的知识要点:椭圆方程的求法,属于根底题型.21.以BC 边为x 轴,BC 线段的中垂线为 y 轴建立直角坐标系,那么 A 点的轨迹是椭圆,其方程为:x 2y 21。
高二数学椭圆试题(有答案)一:选择题1.已知方程 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣1解:椭圆的焦点在x轴上,所以 $a^2>b^2$,即$\frac{b^2}{a^2}<1$。
根据焦点公式可得 $c=\sqrt{a^2-b^2}$,又因为焦点在x 轴上,所以 $c=a$。
所以 $a=b$,代入椭圆方程可得$\frac{x^2}{a^2}+\frac{y^2}{a^2}=1$。
解得 $m^2-2m>0$,即 $m2$。
所以 m 的取值范围为 $m>2$ 或 $-2<m<-1$,故选D。
2.已知椭圆 $\frac{x^2}{4}+\frac{y^2}{m-2}=1$,长轴在y 轴上、若焦距为4,则m等于()A.4B.5C.7D.8解:因为椭圆的长轴在y轴上,所以 $a^2=4$。
又因为焦距为4,所以 $c=2$。
根据焦点公式可得 $b^2=a^2(c^2-a^2)=12$。
代入椭圆方程可得 $\frac{x^2}{4}+\frac{y^2}{2}=1$,解得 $m=8$,故选D。
3.椭圆 $(1-m)x^2-my^2=1$ 的长轴长是()A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$解:将椭圆的方程化为标准形式 $\frac{x^2}{\frac{1}{1-m}}+\frac{y^2}{\frac{1}{m}}=1$。
因为长轴长为 $2a$,所以 $2a=2$,解得长轴长为$\sqrt{2}$,故选A。
4.已知点 $F_1$、$F_2$ 分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($k>﹣1$)的左、右焦点,弦AB过点 $F_1$,若△ABF2的周长为8,则椭圆的离心率为()A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$解:因为弦AB过点 $F_1$,所以 $AB=2a$。
高二数学椭圆试题一:选择题1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是()2.已知椭圆,长轴在y轴上、若焦距为4,则m等于()解:将椭圆的方程转化为标准形式为B C D=4.已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2B,所以.(x≠0)(x≠0)(x≠0)(x≠0)6.方程=10,化简的结果是()B表示点)的距离,所以椭圆的方程为:.7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线,所以,,)1、2212B轴上方,坐标为,即e=9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭B+,,即=,===e=10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为(),解得,==取得最大值11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为()BOM=MF=PF=e=,故答案选12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=()B的方程为==13.已知椭圆+=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上的一点,且|PF1||PF2|的最大值的取值范围是[2c2,3c2],其中c=.则椭圆的离心率的取值范围为()[,[,[,[].故椭圆14.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭B代入得,即,即故该椭圆离心率的取值范围是15.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.16.若方程表示焦点在y轴上的椭圆,则k的取值范围是4<k<7.+=117.已知椭圆的焦距为2,则实数t=2,3,6.上,则=.=故答案为19.在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为.,故答案为20.若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.即m故答案为21.已知F1,F2为椭圆的左、右焦点,P是椭圆上一点.(1)求|PF1|•|PF2|的最大值;(2)若∠F1PF2=60°且△F1PF2的面积为,求b的值.≤22.如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.=|BA||F=40b=5(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.的方程为(,从而有,解得的方程为.x+t≤4224.设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程,其中.两点坐标满足方程组,故的离心率,,从而的方程为.25.设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.)根据椭圆方程为.=∵离心率为,∴=b=;﹣(﹣(﹣,(k=26.设椭圆E:,O为坐标原点(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒在两个交点A,B且?若存在,写出该圆的方程,关求|AB|的取值范围;若不存在,说明理由.(,,解得的方程为解方程组,,所以,所以,,都满足与椭圆的两个交点为或存在圆心在原点的圆,且,所以,,当且仅当27.已知直线x﹣2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.的方程为(,由得(,则,从而)由,当且仅当时等号成立.的长度取最小值(依题意,,可得同理可得:=不仿设的长度取最小值的方程为,∴的面积等于的距离等于距离等于,则由或.,此时点。
高二数学选修椭圆的标准方程练习题一、填空题1.若4=a ,2=b ,焦点在x 轴上,则椭圆的标准方程为_______________。
2.若2=b ,3=c 焦点在y 轴上,则椭圆的标准方程为_______________。
3.焦点为0(1F ,)2-,0(2F ,)2,4=a ,则椭圆的标准方程为_______________。
4.焦点在x 轴上,焦距为4,且经过点3(M ,)62-,则椭圆的标准方程为_______________。
5.经过A(-2,0)和B(0,-3),则椭圆的标准方程为_______________。
6.椭圆)0(122<<=-+-n m ny m x 的焦点的坐标是_______________。
7. 椭圆13422=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为_________。
8. 若方程122=+my x 表示焦点在x 轴上的椭圆,则m 的取值X 围是______________。
9.焦点在2(-A ,)0和0(B ,)3-,且椭圆上各点到两焦点的距离之和为10,则椭圆的标准方程为_______________。
10.过点A(-1,-2)且与椭圆19622=+y x 的两个焦点相同,则椭圆的标准方程为________。
11.已知方程12322=-++ky k x 表示焦点在y 轴上的椭圆,则k 的取值X 围是______________。
12.若方程t ax y a x y =-⋅+(a>0,y ≠0)表示焦点在y 轴上的椭圆,则t 的取值X 围为_____________。
二、解答题13.ABC ∆的顶点B 、C 的坐标分别为(-4,0)、(4,0),AC 、AB 边上的中线长之和为30,求ABC ∆的重心G 的轨迹方程?14.点P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,且︒=∠3021PF F ,求21PF F ∆的面积。
高二数学圆锥曲线椭圆测试题带答案一、选择题(每小题5分,共12小题60分)1、在平面直角坐标xoy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,离心率为22,过1F 的直线l交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为()A.181622=+y x B.12422=+y x C. 1182422=+y x D. 191622=+y x 2、已知椭圆C :)0(12222>>=+b a b y a x 的左右焦点为1F ,2F ,离心率为33,过2F 的直线l 交C 与A ,B 两点,若B AF 1∆的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y xC.181222=+y x D.141222=+y x 3、曲线192522=+y x 与曲线)9(192522<=-+-k ky k x 的 ( ) A.长轴长相等B.短轴长相等C.焦距相等D.离心率相等4、图,1F ,2F 是椭圆1C :1422=+y x 与双曲线2C 的公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点,若四边形21BF AF 为矩形,则2C 的离心率是( )A.2B.3C.23D.265、已知椭圆110222=-+-m y m x 的长轴在x 轴上,焦距为4,则m 等于( ) A.8B.7C.6D.56、已知()2,4是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的方程是( ) A.02=-y xB.042=-+y xC.0432=++y xD.082=-+y x7、设1F ,2F 分别是椭圆)0(12222>>=+b a b y a x 的左、右焦点,与直线b y =相切的⊙2F 交椭圆于点E ,E 恰好是直线1EF 与⊙2F 的切点,则椭圆的离心率为( )A.23B .33 C.35D.458、已知椭圆191622=+y x 及以下3个函数:①x x f =)(;②x x f sin )(=;③x x x f sin )(=,其中函数图像能等分该椭圆面积的函数个数有( ) A.0个 B.1个C.2个D.3个9、椭圆C :)0(12222>>=+b a by a x 的左、右焦点为1F ,2F ,过1F 作直线l 交C 于A ,B 两点,若2ABF ∆是等腰直角三角形,且︒=∠902B AF ,则椭圆C 的离心率为( ) B.221-C.12-D.2210、设椭圆C :)0(12222>>=+b a b y a x 的左、右焦点分别为1F ,2F ,P 是C 上的点,212F F PF ⊥,︒=∠3021F PF ,则C 的离心率为( ) A.63B.31C.21D.3311、椭圆)0(12222>>=+b a by a x 的一个焦点为1F ,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段1PF 相切于该线段的中点,则椭圆的离心率为( )A.22 B.32C.95D.3512、已知1A ,2A 分别为椭圆C :)0(12222>>=+b a by a x 的左右顶点,椭圆C 上异于1A ,2A 的点P 恒满足9421-=⋅PA PA k k ,则椭圆C 的离心率为( )A.94B.32C.95D.35二、填空题(每小题5分,共4小题20分)13、已知1F ,2F 是椭圆11222=+++k y k x 的左、右焦点,过1F 的直线交椭圆于A ,B 两点,若2ABF ∆的周长为8,则k 的值为__________ 14、短轴长为52,离心率32=e 的椭圆两焦点为1F ,2F ,过1F 作直线交椭圆于A ,B 两点,则2ABF ∆的周长为__________15、直线01=-+y x 交椭圆122=+ny mx 于A ,B 两点,过原点与线段,AB 中点直线的斜率为22,则=n m__________16、在平面直角坐标系xOy 中,经过点()2,0且斜率为的直线l 与椭圆1222=+y x 有两个不同的交点P 和Q .则k 的取值范围为__________.三、解答题(每小题10分,共2小题20分) 17、已知椭圆1422=+y x 与直线l :0=+-λy x 相切.(1)求λ的值;(2)设直线:m 054=+-y x ,求椭圆上的点到直线m 的最短距离.18、已知椭圆4422=+y x 与斜率为1的直线l 交椭圆于A ,B 两点.(1)求弦AB 长的最大值;(2)求ABO ∆面积的最大值及此时直线l 的方程(O 为坐标原点)高二数学椭圆测试题答案解析第4题答案D第4题解析解答:第5题答案A第6题答案D第6题解析第7题答案C第7题解析第8题答案C第8题解析第9题答案C第10题答案D第10题解析第11题答案D第11题解析第12题答案D第12题解析第13题答案2第13题解析第14题答案12第14题解析第15题答案22第17题答案第18题答案。
高二上学期数学练习题(6)(椭圆的标准方程)班级 姓名 学号一 .选择填空题1. 设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于 ( ).A .4B .5C .8D .102. 已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是 ( ).A .椭圆B .直线C .圆D .线段3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是 ( ).A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2 4.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线5.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1 6. 设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为 ( )A .16B .18C .20D .不确定 7. 焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( )A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 8. 已知两椭圆ax 2+y 2=8与9x 2+25y 2=100的焦距相等,则a 的值为( ) A .9或917 B.34或32 C .9或34D.917或329. 椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于A.32B. 3C.72D .4 ( )10. 已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线 11. 曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对12. 直线)(01R k kx y ∈=--与椭圆1522=+by x 恒有公共点,则b 的取值范围是( )A .(0,1)B .(0,5)C .),5()5,1[+∞D .),1(+∞二.填空题13.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为14.已知椭圆x 220+y 2k=1的焦距为6,则k 的值为________ .15.若α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.16.椭圆x 212+y 23=1的两个焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的___ 倍.17.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为______.18.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.19.△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程 为20.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.三.解答题21.求经过两点P 1⎝⎛⎭⎫13,13,P 2⎝⎛⎭⎫0,-12的椭圆的标准方程.22.求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)焦距是10,且椭圆上一点到两焦点的距离的和为26.23.已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).若F1A⊥F2A,求椭圆的标准方程.24.在圆C:(x+1)2+y2=25内有一点A(1,0),Q为圆C上一点,AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程.25.已知椭圆y 2a 2+x2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.26.如图,已知椭圆的方程为x 24+y 23=1,P 点是椭圆上的一点,且∠F 1PF 2=60°,求△PF 1F 2的面积.高二上学期数学练习题(6)(椭圆的标准方程)参考答案班级 姓名 学号一 .选择填空题1. 设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于 ( ).A .4B .5C .8D .10解析 由椭圆的标准方程得a 2=25,a =5.由椭圆的定义知|PF 1|+|PF 2|=2a =10. 答案 D 2. 已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是 ( ).A .椭圆B .直线C .圆D .线段 解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|,∴点M 的轨迹是线段F 1F 2,故选D.答案 D3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是 ( ).A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2解析 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6.⇔a >3或-6<a <-2.故选D.答案D4.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是 ( ).A .圆B .椭圆C .双曲线的一支D 解析 如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数). 又∵|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A.答案 A5.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1解析 由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1, ∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知△F 1PF 2是直角三角形且1290F PF ∠=︒, 故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4,故选B.答案 B6. 设F 1,F 2是椭圆x 225+y29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为 ( B )A .16B .18C .20D .不确定 7. 焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( D )A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 8. 已知两椭圆ax 2+y 2=8与9x 2+25y 2=100的焦距相等,则a 的值为( A )A .9或917 B.34或32 C .9或34D.917或329. 椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于A.32B. 3C.72D .4 ( C )10. 已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是A .圆B .椭圆C .线段D .直线 ( B ) 11. 曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( B )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对12. 直线)(01R k kx y ∈=--与椭圆1522=+by x 恒有公共点,则b 的取值范围是( C )A .(0,1)B .(0,5)C .),5()5,1[+∞D .),1(+∞二.填空题13.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为解析 由已知2a =8,2c =215,∴a =4,c =15,∴b 2=a 2-c 2=16-15=1, ∴椭圆标准方程为y 216+x 2=1.答案 y 216+x 2=114.已知椭圆x 220+y 2k=1的焦距为6,则k 的值为________ .解析 由已知2c =6,∴c =3,而c 2=9,∴20-k =9或k -20=9,∴k =11或k =29.答案 11或29 15.若α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.解析 方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.∵椭圆的焦点在y 轴上,∴1cos α>1sin α>0.又∵α∈(0,π2),∴sin α>cos α>0,∴π4<α<π2.答案 (π4,π2)16.椭圆x 212+y 23=1的两个焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的___ 倍.解析 依题意,不妨设椭圆两个焦点的坐标分别为F 1(-3,0),F 2(3,0),设P 点的坐 标为(x 1,y 1),由线段PF 1的中点的横坐标为0,知x 1-32=0,∴x 1=3.把x 1=3代入椭圆方程x 212+y 23=1,得y 1=±32,即P 点的坐标为(3,±32),∴|PF 2|=|y 1|=32.由椭圆的定义知|PF 1|+|PF 2|=43,∴|PF 1|=43-|PF 2|=43-32=732,即|PF 1|=7|PF 2|.答案:717.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为__6____.18.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是____4____.19.△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程 为解 由已知得b =2,又a ,b ,c 成等差数列,∴a +c =2b =4,即|AB |+|BC |=4, ∴点B 到定点A 、C 的距离之和为定值4,由椭圆定义知B 点的轨迹为椭圆的一部分, 其中a ′=2,c ′=1.∴b ′2=3.又a >b >c ,∴顶点B 的轨迹方程为x 24+y 23=1 (-2<x <0).20.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=___6_____.三.解答题21.求经过两点P 1⎝⎛⎭⎫13,13,P 2⎝⎛⎭⎫0,-12的椭圆的标准方程. 解:依题意可设所求椭圆的方程为Ax 2+By 2=1 (A >0,B >0). ∵点P 1⎝ ⎛⎭⎪⎫13,13,P 2⎝⎛⎭⎪⎫0,-12在所求椭圆上,∴⎩⎨⎧A ⎝⎛⎭⎫132+B ⎝⎛⎭⎫132=1,B ⎝⎛⎭⎫-122=1,解之得⎩⎪⎨⎪⎧A =5,B =4.,∴所求椭圆的标准方程为x 215+y 214=1.22.求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)焦距是10,且椭圆上一点到两焦点的距离的和为26. 解:(1)依题意所求椭圆的焦点在y 轴上,且24c =,∴c =2,∴所求椭圆的两焦点分别为1F (0,-2),2F (0,2).由椭圆的定义知2a =12MF MF +=32+(2+2)2+32+(2-2)2=8,∴a =4,∴b 2=a 2-c 2=16-4=12,∴所求椭圆的标准方程为y 216+x 212=1.(2)依题意2c =10,2a =26,∴c =5,a =13,∴b 2=a 2-c 2=132-52=144,∵所求椭圆的焦点所在的坐标轴不确定,∴所求椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.23.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程. 解:依题意可设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设所求椭圆的两焦点分别为F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴ 120FA FA = ,∵ 1(4,3)F A c =-+2(4,3)F A c =--,∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32=10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.24.在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解:依题意园C 的圆心为(1,0)C -,半径5r =,又由题意知点M 在线段CQ 上,∴有|CQ |=|MQ |+|MC |=5r =∵点M 在线段AQ 的垂直平分线上,∴|MA |=|MQ |,∴|MA |+|MC |=|CQ |=5OA >∴由椭圆的定义可知点M 的轨迹是以A (1,0),C (-1,0) 为焦点的椭圆, ∵2a =5,∴a =52,又∵c =1,∴b 2=a 2-c 2=254-1=214.∴所求点M 的轨迹方程为x 2254+y 2214=1.25.已知椭圆y 2a 2+x 2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值. 解:(1)依题意知所求椭圆的焦点在y 轴上且c =1,∴a 2-b 2= c 2=1,∵3a 2=4b 2,解方程组2222134a b a b⎧-=⎨=⎩可得a 2=4,b 2=3,∴所求椭圆的标准方程为 y 24+x 23=1. (2)∵点P 在椭圆上,∴由椭圆的定义可知|PF 1|+|PF 2|=2a =2×2=4……①, 又∵|PF 1|-|PF 2|=1……②,∴将①②联立方程组解之得|PF 1|=52,|PF 2|=32,又∵|F 1F 2|=2c =2,∴在12PF F ∆中由余弦定理可得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=⎝⎛⎭⎫522+⎝⎛⎭⎫322-222×52×32=35,即∠F 1PF 2的余弦值等于35。