八下 (教师)直角三角形提高题1
- 格式:pdf
- 大小:180.12 KB
- 文档页数:5
八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。
新湘教版数学八年级下册第1章直角三角形单元测试题八年级数学下册第一章:直角三角形单元测试题一、选择题1.在直角三角形ABC中,∠C=90°,∠B=54°,则∠A=()。
A。
66° B。
36° C。
56° D。
46°2.在三角形ABC中,∠A:∠B:∠C=1:2:3,则三角形ABC 是()。
A。
等腰三角形 B。
直角三角形 C。
锐角三角形 D。
钝角三角形3.以下四组数中,不是勾股数的是()。
A。
3,4,5 B。
5,12,13 C。
4,5,6 D。
8,15,174.下列条件不能判定两个直角三角形全等的是()。
A。
两条直角边对应相等 B。
有两条边对应相等 C。
一条边和一个锐角对应相等 D。
两个锐角对应相等5.三角形中,到三边距离相等的点是()。
A。
三条边的垂直平分线的交点 B。
三条高的交点 C。
三角形的重心 D。
三条角平分线的交点6.等腰三角形腰长为13,底边长为10,则它底边上的高为()。
A。
12 B。
7 C。
5 D。
67.如右图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是()。
A。
8 B。
5 C。
6 D。
48.如图,有一张直角三角形纸片,两直角边长AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()。
A。
4 cm B。
3 cm C。
4 cm D。
3 cm二、填空题9.若一个直角三角形的两边长分别是10、24,则第三边长为________。
答案:2610.在Rt△ABC中,∠ACB=90°,D是AB的中点,CD =4 cm,则AB=________cm。
答案:2011.直角三角形的两直角边分别为12和24,则斜边长为,斜边上的中线长为,斜边上的高为。
答案:26,12,912.将一副三角板按如图所示的方式叠放,则角α=。
2020-2021年度北师大版八年级数学下册第1章三角形的证明课后提升作业题(附答案)1.A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,为拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点2.如图,在△ABC中,BC=10cm,AB的垂直平分线交AB于点D,交边AC于点E,若△BCE的周长等于22cm,则AC的长度等于()A.10cm B.12cm C.22cm D.32cm3.能把三角形分割成面积相等两部分的一定是()A.三角形的中线B.三角形的角平分线C.三角形的高线D.三角形一边上的垂直平分线4.如图,若记北京为A地,莫斯科为B地,雅典为C地,若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是()A.>B.<C.≥D.≤6.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A 端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断7.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等8.如图,Rt△ABC中,∠C=90°,∠B=30°,∠BAC的平分线AD交BC于点D,CD =,则BD的长是()A.2B.2C.3D.39.如图,点P在∠ABC的平分线上,PD⊥BC于点D,若PD=4,则P到BA的距离为()A.3B.4C.5D.610.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.25°或35°D.40°11.如图,在Rt△ABC中,∠ACB=90°,AC≠BC.点P是直角边所在直线上一点,若△P AB为等腰三角形,则符合条件的点P的个数最多为()A.3个B.6个C.7个D.8个12.下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍13.如图在第一个△A1BC中,∠B=40°,A1B=BC,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第二个△A1A2D,再在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E.……如此类推,可得到第n个等腰三角形.则第n个等腰三角形中,以A n为顶点的内角的度数为()A.B.C.D.14.如图,点P在∠AOB的平分线上,PC⊥OA于点C,∠AOB=30°,点D在边OB上,且OD=DP=2.则线段PC的长度为()A.3B.2C.1D.15.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.10C.8D.616.如图是由一副三角尺拼成的四边形ABCD,E为斜边AC的中点,则∠DBE等于()A.10°B.15°C.20°D.22.5°17.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有()①OE平分∠AOD;②∠AOC=∠BOD;③∠AOC﹣∠CEA=15°;④∠COB+∠AOD=180°.A.0B.1C.2D.318.如图,在△ABC中,线段AB的垂直平分线交AC于点D,连接BD,若∠C=80°,∠CBD=40°,则∠A的度数为°.19.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有个.20.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.21.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.22.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE =3cm,则BF=cm.23.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.24.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.26.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.27.如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.28.如图,△ABC中AB=AC,BD和CD分别平分△ABC的内角∠CBA和外角∠ECA,BD 交AC于F,连接AD.(1)求证:AD平分∠GAC;(2)求证:AD∥BC.29.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD 于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.参考答案1.解:∵AB2=10002=1000000,BC2=6002=360000,AC2=8002640000,∴AB2=BC2+AC2,∴△ABC为以AB为斜边的直角三角形,当点P在AB的中点时,CP=AB=P A=PB,故选:A.2.解:∵DE是线段AB的垂直平分线,∴EA=EB,∵△BCE的周长等于22cm,∴BC+CE+BE=22(cm),∴BC+CE+EA=BC+AC=22(cm),∵BC=10cm,∴AC=12(cm),故选:B.3.解:能把三角形分割成面积相等两部分的一定是三角形的中线,故选:A.4.解:∵中转仓到A、B两地的距离相等,∴中转仓的位置应选在边AB的垂直平分线上,同理,中转仓的位置应选在边AC、BC的垂直平分线上,∵中转仓到A、B、C三地的距离相等,∴中转仓的位置应选在三边垂直平分线的交点上,故选:A.5.解:连接BP,∵直线l是线段AB的垂直平分线,∴AP=BP,∴AP+PC=BP+PC,当点P在BC与l的交点处时,AP+PC=CB,当点P不在BC与l的交点处时,AP+PC=BP+PC>BC,∴BC≤AP+PC,故选:D.6.解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a;故选:B.7.解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.8.解:∵∠C=90°,∠B=30°,∴∠CAB=60°,∵∠BAC的平分线AD交BC于点D,∴∠CAD=∠BAD=CAB=30°,∴∠DAB=∠B,∴BD=AD,∵CD=,∴BD=AD=2CD=2,故选:B.9.解:∵BP是∠ABC的平分线,PD⊥BC于点D,∴点P到边AB的距离等于PD=4.故选:B.10.解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=90°﹣50°=40°;当50°为顶角时,∵∠A=50°,∴∠B=∠ACB=65°,∴∠BCD=90°﹣65°=25°.故选:B.11.解:①以B为圆心,以BA为半径作圆,此圆与直线BC交于两点,与直线AC交于一点(A除外),此时BP=AB;②以A为圆心,以AB为半径作圆,此圆与直线AC交于两点,与直线AB交于一点(B除外),此时AP=AB;③作线段AB的垂直平分线,交直线AC于一点,交直线BC于一点,此时AP=BP;(1+2)+(1+2)+1+1=8,故选:D.12.解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.13.解:在△CBA1中,∠B=40°,A1B=CB,∴∠BA1C==70°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×70°,同理可得∠EA3A2=()2×70°,∠F A4A3=()3×70°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×70°.故选:C.14.解:过P作PE⊥OB于E,∵点P在∠AOB的平分线上,PC⊥OA,∴PC=PE,∠AOP=∠BOP,∵OD=DP,∴∠BOP=∠DPO,∴∠AOP=∠DPO,∴PD∥OA,∴∠PDE=∠AOB,∵∠AOB=30°,∴∠PDE=30°,∵∠PEO=90°,DP=2,∴PE=DP=1,∴PC=1,故选:C.15.解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.16.解:在直角△ACD中,∠ADC=90°,∠DAC=30°,则∠ACD=60°.又∵E为斜边AC的中点,∴DE=EC=AC.∴∠DEC=∠ECD=60°.∵∠BED=90°,∴∠BED=150°.在直角△ABC中,E为斜边AC的中点,则BE=AC.∴DE=BE,∴∠DBE=EDB=×(180°﹣150°)=15°.故选:B.17.解:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠BOC=∠AOB﹣∠COB,即∠AOC=∠BOD,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A =180°,∴∠AOC﹣∠CEA=15°.故③正确;没有条件能证明OE平分∠AOD,故①错误.故选:D.18.解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°﹣∠C﹣∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=∠CDB=30°,故答案为:30.19.解:如图,△ABC是等腰三角形,这样的格点C有8个.故答案为8.20.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.21.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.22.解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.23.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠P AQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.24.(1)证明:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵AB=BD,∴∠BDA=∠BAD,∴∠CAD=∠BDA,∴AC∥BD;(2)解:作FG⊥AB于G,在Rt△ABE中,AE=2,AB=3,∴BE===,∴FE=BE﹣BF=﹣=,∵AD是∠BAC的平分线,BE⊥AC,作FG⊥AB,∴FG=FE=,即△ABF中AB边上的高为.25.证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.26.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.27.解:(1)∵CD⊥AB,∴∠CDB=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠CAE=∠BAE,∴∠ACD+∠CAE=∠B+∠BAE,即∠CFE=∠CEF,∴CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:∵E在线段AB的垂直平分线上,∴AE=BE,∴∠B=∠BAE,∵∠CAE=∠BAE,∠ACB=90°,∴3∠B=90°,∴∠B=30°,∴AB=2AC;(3)方法一、过E作EM⊥AB于M,∵AC=2.5,∠ACB=90°,∠B=∠CAE=30°,∴AE=2CE,设CE=2,则AE=2x,由勾股定理得:AC2+CE2=AE2,即2.52+x2=(2x)2,解得:x=,即CE=,∵AE平分∠CAB,∠ACB=90°,EM⊥AB,∴EM=CE=,∴△ABE的面积S==5×=;方法二、由勾股定理得:BC=2.5,∵CE=,∴BE=BC﹣CE=,∴△ABE的面积S==××2.5=.28.(1)证明:过点D作DN⊥BA,DK⊥AC,DM⊥BC,垂足分别为点N、K、M.∵BD、CD分别平分∠EBA、∠ECA,DN⊥BA,DK⊥AC,DM⊥BC,∴DM=DN=DK,∴AD平分∠GAC,∠ABD=∠DBC,∴∠GAD=∠DAC,∴AD平分∠GAC.(2)证明:∵∠GAC=∠ABC+∠ACB,∠GAD=∠DAC,又∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC.29.证明:连接DF,∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,∵AC=CB,∴△ACD≌△CBF.∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.。
八年级下册第一单元测试时量:90分钟 满分:120分姓名 班级一、选择题(每小题3分,且每题只有一个正确答案,共36分)1. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .270° B .135° C .90° D .315°2. 在Rt △ABC 中,∠C =90°,∠B =30°,斜边AB 的长为2 cm ,则AC 长为( )A .4 cmB .2 cmC .1 cm D. 12cm3. 边长为2的等边三角形的内有一点O ,那么O 到三角形各边的距离之和为( )A .3B .23C .2D .43 4. 如图,在△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离是( ) A .3 B .4C .5D .65. 如图,EA ⊥AB ,BC ⊥AB ,EA =AB =2BC ,D 为AB 中点,有以下结论:①DE =AC ;②DE ⊥AC ;③∠CAB =30°;④∠EAF =∠ADE . 其中正确的结论个数为( )A .1B .2C .3D .46. 如图,已知AD 是△ABC 的BC 边上的高,能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .∠BAC =90°C .BD =ACD .∠B =45°7. 在直角三角形ABC 中,斜边72=AB ,则222AC BC AB ++的值是( )A. 7B. 14C. 21D. 498. 小东想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,发现下端刚好接触地面,则旗杆的高为( )AB9. 如右图,长方形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,OB 的长为半径画弧,交正半轴于一点,则 这个点表示的实数是( ) A.2.5B.22C.3D.510. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A.90° B.60° C.45°D.30°11. 到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点 12. 如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,AD 是∠BAC 的平分线,则CD 的长为( )A.310 B. 38C.311D. 3 二、填空题(每小题4分,共24分)13. 如图,在△ABC 中,∠B =∠C ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为________.14. 腰长为5,一条高为415. 如右图,直线l 为5和11,则b 16. 如图,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°,有以下结论:①AF ⊥BC ;②△ADG ≌△ACF ;③O 为BC 的中点. 其中正确的序号是 . 17. 如右图,△ABC 中,有一点P 在AC 上移动.若AB =AC =5,BC =6,则AP+BP+CP 的最小值为 . 18. 顶角为150°,腰长为20的等腰三角形面积为 . C B三、解答题(共60分)19.(本小题8分)按要求用尺规作图:如图所示,在△ABC 内部,求作一点D ,使得D 点到AB 边和BC 边的距离相等,并且到B 点和C 点距离也相等.(不要求写作法,但必须保留作图痕迹)20.(本小题8分)如右图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,求BD 的长.21.(本小题8分)如图,上午8时,一条轮船从海岛A 出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A 、B 望灯塔C ,测得∠NAC =30°,∠NBC =60°,问以同样的速度继续前行,则上午何时轮船与灯塔C 距离最近.22.(本小题8分)如图,AC ⊥CB ,DB ⊥CB ,AB =DC .求证:∠ABD =∠ACD .B23.(本小题8分)如图所示,AD ∥BC ,AB=BD=BC =2,CD =1,求AC 的长.24.(本小题10分)已知:如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 是BC 边的中点,BF ∥AC ,EF ∥AB ,EF =4 cm . (1)求∠F 的度数; (2)求AB 的长.25.(本小题10分)已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),则当t 为何值时,△PBQ 是直角三角形?A。
2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)1.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,连接EM,DM,判断△EDM的形状,并说明理由.2.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧),AB=12.(1)如图1,AD=;(2)如图2,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,请直接写出EF的长.3.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.4.如图,在△ABC中,AB=AC=2,∠B=30°,D为BC上一点,连接AD.(1)求S△ABC;(2)若∠BAD=45°,求证△ACD为等腰三角形;(3)若△ACD为直角三角形,求∠BAD的度数.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,BC=2.(1)求AB的长度;(2)求△ABC的面积;(3)求CD的长度.6.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF 于F,AE=CF,求证:Rt△ADE≌Rt△CDF.7.如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.8.如图,四边形ABCD的对角线AC、BD相交于点O,∠ACB=∠ADB=90°,M为边AB 的中点,连接MC,MD.(1)求证:MC=MD;(2)若△MCD是等边三角形,求∠AOB的度数.9.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.10.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.11.如图,在△ABC中,∠ACB=90°,∠B=30°,CE垂直于AB于点E,D是AB的中点.(1)求证:AE=ED;(2)若AC=2,求DE的长.12.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.13.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,过点D作DF∥BE,交AC的延长线于点F,求∠D的度数.14.如图.在直角三角形BCD中,∠D=90°,∠DBC=15°,点A在直角边BD上,连接AC,AB=AC=4.求CD的长.15.如图,在Rt△ABC中,∠ACB=90°,D是边BC上一点,DE⊥AB于点E,点F是线段AD上一点,连接EF,CF.(1)若点F是线段AD的中点,试猜想线段EF与CF的大小关系,并加以证明.(2)在(1)的条件下,若∠BAC=45°,AD=6,求C、E两点间的距离.16.如图,△ABD是边长为2的等边三角形,点C为AB下方的一动点,∠ACB=90°.(1)若∠ABC=30°,求CD的长;(2)求点C到AB的最大距离;(3)当线段CD的长度最大时,求四边形ACBD的面积.17.如图,在等边△ABC中,点D,E分别在边BC、AC上,DE∥AB,过点E作EF⊥DE 交BC的延长线于点F.(1)求∠DFE的度数.(2)若CD=8,求DF的长.18.如图△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.19.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?20.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).参考答案1.(1)证明:连接ME,MD.∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△EDM是等边三角形.2.解:(1)过D作DG⊥AB于G,∵AD=BD,∠ADB=120°,∴∠DAB=∠ABD=30°,AG=BG=AB=6,∴AD=2GD,∵AD2=GD2+AG2,∴4CD2=GD2+62,∴GD=2,∴AD=4,故答案为:4;(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBC,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHF、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=12,∵AC=8,BC=CD=4,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=4,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=,故答案为:.3.(1)证明:∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴DE=DM,有(1)知DM=BC=6,∴DE=6,∵N是DE的中点,∴DN=DE=3,∴MN==3.4.(1)解:过A作AE⊥BC于E,则∠AEB=90°,∵AB=AC=2,∠B=30°,∴AE=AB=1,∵AB=AC=2,AE⊥BC,∴BC=2BE,由勾股定理得:BE===,∴BC=2BE=2,∴S△ABC==2×1=;(2)证明:∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BAD=45°,∴∠ADC=∠B+∠BAD=30°+45°=75°,∴∠DAC=180°﹣∠C﹣∠ADC=180°﹣30°﹣75°=75°,∴∠DAC=∠ADC,∴△ACD是等腰三角形;(3)解:分为两种情况:①∠DAC=90°时,∵∠C=∠B=30°,∴∠ADC=90°﹣∠C=60°,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°;②当∠ADC=90°时,∠BAD=∠ADC﹣∠B=90°﹣30°=60°;即∠BAD的度数是30°或60°.5.解:(1)∵∠ACB=90°,∠A=30°,∴AB=2BC,∵BC=2,∴AB=4;(2)在Rt△ABC中,∠ACB=90°,AB=4,BC=2,根据勾股定理得,AC===2,∴S△ABC=×BC×AC=×2×2=2;(3)∵S△ABC=×AB×CD=2,AB=4,∴×4×CD=2,解得CD=.6.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).7.解:MN⊥AC,证明:连接AM,CM,∵∠BAD=∠BCD=90°,M为BD的中点,∴AM=,CM=BD,∴AM=CM,∵N为AC的中点,∴MN⊥AC.8.(1)证明:∵∠ACB=∠ADB=90°,M为边AB的中点,∴MC=AB,MD=AB,∴MC=MD;(2)解:∵MC=MD=AB=AM=BM,∴∠BAC=∠ACM,∠ABD=∠BDM,∴∠BMC=2∠BAC,∠AMD=2∠ABD,∵△MCD是等边三角形,∴∠DMC=60°,∴∠BMC+∠AMD=120°,∴2∠BAC+2∠ABD=120°,∴∠BAO+∠ABO=60°,∴∠AOB=180°﹣60°=120°.9.证明:(1)连接DF,∵AD是边BC上的高,∴∠ADB=90°,∵点F是AB的中点,∴DF=AB=BF,∵DC=BF,∴DC=DF,∵点E是CF的中点.∴DE⊥CF;(2)∵DC=DF,∴∠DFC=∠DCF,∴∠FDB=∠DFC+∠DCF=2∠DFC,∵DF=BF,∴∠FDB=∠B,∴∠B=2∠BCF.10.解:(1)∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,AB=8,AC=6,∴DE=AB=4,DF=AC=3,AE=4,AF=3,∴四边形AEDF的周长=AE+DE+DF+AF=14;(2)△ABC的面积=×AB×AC=24,∵E、F分别是AB、AC的中点,∴△ADE的面积=△BDE的面积,△ADF的面积=△CDF的面积,∴四边形AEDF的面积=×△ABC的面积=12.11.(1)证明:∵∠ACB=90°,∠B=30°,∴AC=AB,∵∠ACB=90°,D是AB的中点,∴CD=AB,∴AC=CD,∵CE垂直于AB于点E,∴AE=ED;(2)解:∵AC=CD=AD=AB,∴△ACD是等边三角形,∴AC=AD=AC=2,∵CE⊥AD,∴DE=AE=1.12.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.13.解:∵∠ACB=90°,∠A=28°,∴∠ABC=62°,∴∠CBD=180°﹣62°=118°,∵BE平分∠CBD,∴∠EBC=∠CBD=59°,∴∠ABE=62°+59°=121°,∵DF∥BE,∴∠D=∠ABE=121°.14.解:∵AB=AC=4,∴∠B=∠ACB=15°,∴∠DAC=∠B+∠ACB=30°,∵∠D=90°,∴CD=AC=2.15.解:(1)EF=CF.证明:∵DE⊥AB,∴∠DEA=90°,在Rt△AED和Rt△ACD中,∵点F是斜边AD的中点,∴EF=AD,CF=AD,∴EF=CF;(2)连接CE,由(1)得EF=AF=CF=AD=3,∴∠FEA=∠F AE,∠FCA=∠F AC,∴∠EFC=2∠F AE+2∠F AC=2∠BAC=2×45°=90°,∴CE===.16.解(1)∵△ABD是等边三角形,∠DBA=60°,又∠ABC=30°,∴∠DBC=90°,∵∠ACB=90°,AB=2,∴BD=AB=2,AC=AB=1,BC==,∴CD===.∴CD的长为.(2)取AB的中点E,连接CE,∵∠ACB=90°,AB=2,CE=AB=1.又点C为AB下方的一动点,∴当CE⊥AB时,点C到AB的距离最大为1.(3)连接DE,∵△ABD为等边三角形,∴DE⊥AB,∵BD=AB=2,∴DE===,根据三角形三边关系CD≤CE+DE=1+,即C,D,E共线时,CD最大,∴CD的最大长度为1+,此时CD⊥AB,四边形ABCD的面积为AB•CD=×2×(1+)=1+,∴四边形ABCD的面积为:1+.17.解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠DFE=30°.(2)∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF,由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=8.又∵CE=CF,∴CF=8.∴DF=DC+CF=8+8=16.18.证明:(1)连接BE,∵DB=BC,点E是CD的中点,∴BE⊥CD.∵点F是Rt△ABE中斜边上的中点,∴EF=;(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;[方法二]由(1)得,EF=AF,∴∠AEF=∠F AE.∵EF∥AG,∴∠AEF=∠EAG.∴∠EAF=∠EAG.∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.19.解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.20.解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。
第一章三角形的证明直角三角形(1)【例1】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,则∠DCB=( )A.50° B.45° C.40° D.25°例11.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )A.140° B.160° C.170° D.150°第1题【例2】已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A.只有② B.①② C.①③ D.②③2.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADC的度数是度.【例3】如图,在△ABC中,AD⊥BC,∠1=∠B.求证:△ABC是直角三角形.第2题3.如图,在△ACB中,∠ACB=90°,∠1=∠B.求证:CD⊥AB.【例4】下列说法中,正确的是( )A.任何一个命题都有逆命题 B.一个真命题的逆命题也是真命题C.任何一个定理都有逆定理 D.任何一个定理都没有逆定理4.以下命题的逆命题属于假命题的是( )A.有两个角相等的三角形是等腰三角形 B.全等三角形的对应角相等C.两直线平行,内错角相等 D.直角三角形两锐角互余第6题5.在Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是( )A.66° B.36° C.56 D.46°6.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有( )A.4对 B.3对 C.2对 D.1对7.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )A.35° B.55° C.60° D.70°第7题8.如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4.则AD为( )A.48 B.24 C.10 D.129.若△ABC中,a=b=5,c=5 2,则△ABC为三角形.10.直角三角形三边长为6,8,10,则它斜边上的高为 . 第8题11.命题“如果ab=0,那么a=0,b=0”的逆命题是12.如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.13.在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BE交AD于点F,试说明AE=AF.14.如图,在四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,CD=13.(1)求证:△ACD是直角三角形;(2)求四边形ABCD的面积.直角三角形(2)【例1】下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条直角边对应相等1.下列条件不可以判定两个直角三角形全等的是( )A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一锐角对应相等 D.一条边和一个角对应相等【例2】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.2.如图,CD⊥AD,CB⊥AB,垂足分别为D和B,AB=AD.求证:CD=CB.【例3】如图,在Rt△ABC中,∠C=90°,且DE⊥AB于点E,CD=ED.求证:AD是∠BAC的角平分线.3.如图,∠ABC=∠ADC=90°,E是AC上一点,AB=AD.求证:EB=ED.4.要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是( )A.AC=A′C′,BC=B′C′ B.∠A=∠A′,AB=A′B′ C.AC=A′C′,AB=A′B′ D.∠B=∠B′,BC=B′C′5.如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件合适的是( )A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( ) A.40° B.50° C.60° D.75°7.如图,AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=°.8.如图,BE,CF为△ABC的高,且BE=CF,BE,CF交于点H,若BC=10,FC=8,则EC= .9.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△≌△,其判定依据是,还有△≌△,其判定依据是 .第5题第6题第7题第8题第9题10.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.11.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)若B,C在DE的同侧(如图1)且AD=CE.求证:AB⊥AC;(2)若B,C在DE的两侧(如图2),其他条件不变,AB与AC仍垂直吗?若是,请给出证明;若不是,请说明理由。
初中数学试卷2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习与解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A4.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.125.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.126.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.57.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.258.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°二.填空题(共8小题)9.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于度.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= .12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为,面积为.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= .三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).四.回顾与思考(1小题)22.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B 的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.4.(2016•百色)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.12【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12AB=12×12=6,故答选A.【点评】本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.5.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.12【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,进而可得答案.【解答】解:∵∠ABC=90°,点D为斜边AC的中点,∴AC=2BD,∵BD=6cm,∴AC=12cm,故选:D.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.6.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.5【分析】由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【解答】解:∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=12AB=12×10=5,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.7.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边2212+16=20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=5a,AB=10a,∵(5a)2+(5a)2=(10a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.二.填空题(共8小题)9.(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 45 度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于30 度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.【点评】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是55°.【分析】设较大的锐角度数是x°,根据直角三角形两锐角互余表示出较小的锐角,然后列出方程求解即可.【解答】解:设较大的锐角度数是x°,则较小的锐角为(90﹣x)°,由题意得,x﹣(90﹣x)=20,解得x=55,即较大锐角的度数是55°.故答案为:55°.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为40°.【分析】设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90度即可求出答案.【解答】解:设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90°可得,x+2x﹣60°=90°,解的x=50°,较小角为90°﹣50°=40°,故答案为40°.【点评】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形中两个锐角之和为90°,此题基础题.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为12cm ,面积为30cm2.【分析】根据直角三角形的斜边上中线性质求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD是Rt△ACB斜边AB上的中线,∴AB=2CD=2×6cm=12cm,∴Rt△ACB的面积S=12AB×CE=1212cm×5cm=30cm2,故答案为:12cm,30cm2.【点评】本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出AB 的长,注意:直角三角形斜边上的中线等于斜边的一半.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= 3 .【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC﹣MC求出OM的长即可.【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=12OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:3【点评】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?【分析】根据三角形外角的性质得到∠CAD=∠ADB﹣∠ACB=15°,根据等腰三角形的性质得到AD=CD=20,由直角三角形的性质即可得到结论.【解答】解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=20,又∵∠ABD=90°,∴AB=12AD=10, ∴树的高度为10米.【点评】本题考查了含30°角的直角三角形的性质,三角形的外角的性质,熟练掌握含30°角的直角三角形的性质是解题的关键.20.如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,DE ⊥AB 于点D ,交AC 于点E .(1)若BC=3,AC=4,求CD 的长;(2)求证:∠1=∠2.【分析】(1)由勾股定理求出AB ,再根据直角三角形斜边上的中线等于斜边的一半解答即可;(2)由直角三角形的锐角关系和等腰三角形的性质即可得出结论.【解答】(1)解:∵∠ACB=90°,BC=3,AC=4,∴22AC BC ,∵CD 是AB 边上的中线,∴CD=12AB=2.5; (2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE ⊥AB ,∴∠A+∠1=90°,∴∠B=∠1,∵CD 是AB 边上的中线,∴BD=CD ,∴∠B=∠2,∴∠1=∠2.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,等腰三角形的判定与性质;熟记性质是解题的关键.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).【分析】(1)根据直角三角形的性质得到EF=12BC,DF=12BC,等量代换即可;(2)根据三角形内角和定理和等腰三角形的性质计算;【解答】解:(1)△DEF是等腰三角形.∵CE,BD分别是边AB,AC上的高,F是BC边上的中点,∴EF=12BC,DF=12BC,∴EF=DF,∴△DEF是等腰三角形;(2)∵FE=FB,FD=FC,∴∠FEB=∠FBE,∠FDC=∠FCD,∴∠FEB+∠FDC=∠FBE+∠FCD=180°﹣∠A=180°﹣x°,∠AED+∠ADE=180°﹣∠A=180°﹣x°,∴∠FED+∠FDE=360°﹣(180°﹣x°)﹣(180°﹣x°)=2x°,∴∠EFD=180°﹣2x°;【点评】本题考查的是直角三角形的性质、三角形内角和定理、等腰三角形的判定,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.四.回顾与思考(1小题)22.(2016•北京)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【分析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
1.3直角三角形全等的判定同步练习一、选择题(本大题共8小题)1.如图,/ A=Z D=90°, AC=DB 则厶 AB3A DCB 的依据是()2. 在下列条件中,不能判定两个直角三角形全等的是 ()A. 两条直角边对应相等B. 两个锐角对应相等C. 一个锐角和它所对的直角边对应相等D. 一条斜边和一条直角边对应相等3. 如图所示,AB=CD,AE 丄BD 于点E,CF 丄BD 于点F,AE=CF,则图中全等的三角形有 ()A.HLB.ASAC.AASA.1 对B.2 D.44.在 Rt △ ABC 和 Rt △ A B' C'中,/ C=Z C =90°,/ A=Z B ', AB=B A ,则下列结论中正确的是( ) A. AC=A ' CB.BC=B' CC.AC=B' CD. /A=/ A 5.如图所示,△ ABC 中, AE =AC ADL BC 交 D 点,E 、 F 分别是DB D.SAS 对A.1B.2C.3D.4三角形的对数是()6.已知在△ ABC 和厶DEF 中,/ A=Z D=90° ,则下列条件中不能判定厶 ABC 和厶DEF 全等的是8. 如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环城路垂 直•如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为()m.二、填空题(本大题共6小题)9. 已知一条斜边和一条直角边,求作直角三角形,作图的依据是___________ .10. 已知:如图,AE ± BC DF 丄BC 垂足分别为 E 、F, AE=DF AB=DC 则厶ABE^A ____________A. AB=DE,AC=DFB. AC=EF,BC=DFC.AB=DE,BC=EFD. / C=Z F,BC=EF 7.如图,在Rt △ ABC 的斜边 BC 上截取CD=CA 过点D 作DEI BC 交AB 于点E,则有() A.DE=DB B.DE=AE C.AE=BED.AE=BDA.400B.60011. 如图,已知BD 丄AE 于点B,C 是BD 上一点,且BC=BE 要使Rt △ AB3 Rt △ DBE,应补充的条 件是/ A=Z D 或 __________ 或 ___________ 或 ___________14.用三角尺可按下面方法画角平分线: 如图,在已知/ AOB两边上分别取 0M=0,再分别过点M N 作OA 0B 的垂线,两垂线交于点 P,画射线0P 则0P 平分/ AOB 作图过程用到了厶 OPM PA 0PN 那么△ 0PM PA 0PN 的依据是 __________ .12.如图,△ ABC 中,AD ± BC 于点D,要使△ ABD^A ACD 若根据“ HL ”判定,还需要加一个条件 __________iy c/ D=60°,则/ A=13.16. 已知:Rt △ ABC 中,/ ACB 是直角,D 是AB 上一点,BD=BC 过D 作AB 的垂线交求证:CD L BE17.用尺规作一个直角三角形,使其中一条边长为 a ,这条边所对的角为 30°a已知:线段a ,求作:Rt △ ABC 使 BC=a / ACB=90,/ A=30°18. 已知△ ABC 中,CD L AB 于D,过D 作DEI AC F 为BC 中点,过F 作FG L DC 求证: 参考答案: 一、选择题(本大题共8小题) 1. A分析:已知/ A=Z D=90 , 题中隐含BC=BC,根据HL 即可推出△ AB 笑 △ DCB■Vi f三、计算题(本大题共4小题)15. 已知:如图△ ABC 中,BD 丄 AC, CE L AB, BD CE 交于O 点,且BD=CE 求证:OB=OC.AC 于 E ,DG=EG解:解:HL,理由是:•/ / A=Z D=90 ,•••在Rt△ ABC和Rt△ DCB 中AC 二BDBC =BC•Rt△ ABC^ Rt△ DCB( HL),故选A.2. D分析:针对每一个条件进行判定验证,从而判断结论。
第讲直角三角形
一、选择题
1、△ABC中,已知∠A、∠B、∠C的度数之比是1:2:3,则△ABC的形状是(
)
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
解:设三个角的度数分别为x,2x,3x,则根据三角形内角和定理可求出三个角分别为30度,60度,90度,因而是直角三角形.故选B.
2、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()
A.120°
B.90°
C.60°
D.30°
3、将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()
A.45°
B.60°
C.90°
D.180°
二、填空题
1、将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为°.
三、解答题
1、已知:如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE垂直平分AB,垂足为E.求∠A的度数.
解∵DE垂直平分AB,
∴DA=DB,
∴∠A=∠DBA,
∵BD平分∠ABC,
∴∠DBA=∠DBC,
∴∠ABC=2∠A,
∵∠C=90°,
∴∠A+∠ABC=90°,
∴∠A+2∠A=90°,
∴∠A=30°.
2、已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:
(1)如果AB=AC,∠BAC=90°.
(i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为______(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,BC⊥CE(点D不与点C,B重合)?试画出相应图形,写出你的探究结果(不用证明).
解:(1)(i)垂直(或BD⊥CE);
(ii)(i)中的结论是否仍然成立,
理由如下:连接EC,
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE,
∴BD=CE,∠B=∠ACE,
∵∠B+∠ACB=90°,
∴∠ACE+∠ACB=∠BCE=90°,
即BD⊥CE;
(2)如右图所示,
当△ABC满足∠ACB=45°时,BC⊥CE.
分析:(1)(i)垂直(或BD⊥CE),相等(或BD=CE);
(ii)(i)中的结论是否仍然成立.由于∠BAC=∠DAE=90°,利用等式性质可得∠BAD=∠CAE,而AB=AC,AD=AE,利用SAS可证△ABD≌△ACE,那么BD=CE,∠B=∠ACE,又知∠B+∠ACB=90°,从而易得∠ACE+∠ACB=∠BCE=90°,即BD⊥CE;
(2)画出和图甲或图乙相似的图即可.
点评:本题考查了全等三角形的判定和性质.解题的关键是证明△ABD≌△ACE.
3、如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;(2)求出∠FHG的度数.
试题分析:(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;
(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.
解:(1)∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;
(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.已知:如图,等边△ABC的边长是4,D是边BC上的一个动点(与点B、C不重合),连
接AD,作AD的垂直平分线分别与边AB、AC交于点E、F.(1)求△BDE和△DCF的周长和;
(2)设CD长为x,△BDE的周长为y,求y关于x的函数解析式,并写出它的定义域;(3)当△BDE是直角三角形时,求CD的长.
(1)∵EF垂直平分AD,
∴AE=DE,AF=DF.(1分)
∴C△BDE+C△CDF=BE+BD+DE+CD+DF+CF=BC+AC+AB.(1分)
∵BC=AC=AB=4,
∴C△BDE+C△CDF=12.(1分)
(2)∵CD=x,BC=4,
∴BD=4-x.(1分)
∵DE=AE,
∴C△BDE=AB+BD,
即y=4+4-x=8-x,
所以,y=8-x.(1分)
定义域为0<x<4.(1分)
(3)∵△ABC是等边三角形,
∴∠B=60°.
①当∠BED=90°时,∠BDE=30°,
已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:(1)BD=AE,(2),AD²+AE²=DE²
证明:(1)∵∠ACB=∠ECD,
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△ACE≌△BCD.
∴BD=AE
(2)∵△ACB是等腰直角三角形,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴AD2+AE2=DE2.
由(1)知AE=DB,
∴AD2+DB2=DE2.。