高中数学高考二轮复习随机变量及其分布教案
- 格式:doc
- 大小:401.00 KB
- 文档页数:10
高中数学备课教案概率与统计中的随机变量与分布高中数学备课教案:概率与统计中的随机变量与分布概率与统计是高中数学重要的内容之一,而在这个领域中,随机变量和分布的概念更是关键。
随机变量是代表随机试验中的某个特定数量的变量,而分布则描述了该随机变量所有可能取值的概率。
教师在备课过程中,应该注重学生对随机变量和分布的理解与应用。
本教案将详细介绍随机变量和分布的概念、分类以及例题应用,帮助教师更好地备课教学。
一、随机变量的概念及分类1.1 随机变量的概念随机变量是在随机试验中可能取到的各个结果所对应的数值,可分为离散型和连续型两种。
1.2 离散型随机变量离散型随机变量是只能取一些特定值的随机变量,其取值通常是整数或有限个数。
常见离散型随机变量有二项分布、泊松分布等。
1.3 连续型随机变量连续型随机变量是可以取得一切可能值的随机变量,其取值通常是实数。
常见连续型随机变量有均匀分布、正态分布等。
二、随机变量的分布2.1 离散型随机变量的分布离散型随机变量具有离散型分布,常见的分布有二项分布、泊松分布等。
在教学中,可以通过实际例题帮助学生理解离散型随机变量的分布特点和应用方法。
2.2 连续型随机变量的分布连续型随机变量具有连续型分布,常见的分布有均匀分布、正态分布等。
通过实际例题,教师可以引导学生探究连续型随机变量的分布特点和应用方法,并与离散型随机变量进行对比。
三、随机变量与分布的应用3.1 随机变量的应用随机变量的应用广泛存在于生活和科学研究中。
例如,在概率论、统计学、物理学等领域,通过引入随机变量来描述和研究不确定的或随机的现象。
3.2 随机变量与分布的问题解答在教学中,可以通过练习题和案例分析等方式,培养学生运用随机变量与分布解决实际问题的能力。
引导学生分析问题,运用相应的分布模型,计算概率或期望,从而得出正确的结论。
四、教学策略与方法4.1 清晰明了的讲解教师应以简洁明了的语言对随机变量和分布的概念进行讲解,避免使用过多的专业术语,使学生能够迅速掌握关键概念。
高二数学教案:随机变量及其概率分布教案
高二数学教案:随机变量及其概率分布教案
一、知识要点
1.随机变量
2.随机变量的概率分布:
⑴分布列: ;
⑵分布表:
这里的满足条件 .
3.两点分布
二、典型例题
例1.⑴掷一枚质地均匀的硬币1次,若用表示掷得正面的次数,则随机变量的可能取值有哪些?
⑵一实验箱中装有标号为1,2,3,4,5的5只白鼠,若从中任取1只,记取到的白鼠的标号为,则随机变量的可能取值有哪些?
例2.从装有6只白球和4只红球的口袋中任取1只球,用表示取到的白球个数即,求随机变量的概率分布.
例3.同时掷两颗质地均匀的骰子,观察朝上一面出现的点数,求两颗骰子中出现的较大点数的概率分布,并求大于2小于5的概率 .
例4.将3个小球随机地放入4个盒子中,盒子中球的最大个数记为,求⑴ 的分布列;⑵盒子中球的最大个数不是1的概率.
值的机会是均等的.试求:。
离散型随机变量及其分布复习课教案一、教学目标1. 回顾和巩固离散型随机变量的概念、性质和常用分布律。
2. 提高学生运用离散型随机变量及其分布解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 离散型随机变量的定义及其性质。
2. 离散型随机变量的分布律及其计算方法。
3. 常用离散型随机变量的分布律(如二项分布、泊松分布、均匀分布等)。
4. 离散型随机变量期望和方差的计算方法及其性质。
5. 离散型随机变量及其分布在实际问题中的应用。
三、教学方法1. 采用案例分析法,通过具体例子引导学生回顾和巩固离散型随机变量及其分布的知识。
2. 运用小组讨论法,培养学生团队合作精神和独立思考能力。
3. 采用互动式教学法,激发学生的学习兴趣,提高课堂参与度。
4. 利用多媒体辅助教学,增强学生对知识点的理解。
四、教学准备1. 教案、课件及教学素材。
2. 计算器、投影仪等教学设备。
3. 练习题及答案。
五、教学过程1. 导入新课:通过一个简单的案例,引导学生回顾离散型随机变量的定义及其性质。
2. 知识回顾:讲解离散型随机变量的分布律及其计算方法,引导学生复习常用分布律。
3. 案例分析:分析实际问题,运用离散型随机变量及其分布解决这些问题,巩固知识。
4. 小组讨论:让学生分组讨论离散型随机变量期望和方差的计算方法及其性质。
5. 课堂练习:布置练习题,让学生运用所学知识解决问题,教师点评答案。
6. 总结与展望:对本节课的主要内容进行总结,并提出下一节课的教学内容。
7. 课后作业:布置课后作业,巩固课堂所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对离散型随机变量及其分布的理解程度。
2. 练习题解答:评估学生运用离散型随机变量及其分布解决实际问题的能力。
3. 小组讨论:观察学生在团队合作中的表现,评价其团队合作精神和独立思考能力。
七、教学拓展1. 介绍离散型随机变量及其分布在其他学科领域的应用。
第1讲 概率、随机变量及其分布[做小题——激活思维]1.若随机变量X 的分布列如表所示,E (X )=1.6,则a -b =( )A .0.2 C .0.8D .-0.8B [由0.1+a +b +0.1=1,得a +b =0.8,又由E (X )=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3,解得a =0.3,b =0.5,则a -b =-0.2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A .0.6B .0.7C .0.8D .0.9C [记“第一个路口遇到红灯”为事件A ,“第二个路口遇到红灯”为事件B ,则P (A )=0.5,P (AB )=0.4,则P (B |A )=P ABP A=0.8,故选C.]3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16B [设事件A :甲实习生加工的零件为一等品;事件B :乙实习生加工的零件为一等品,且A ,B 相互独立,则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=23×⎝ ⎛⎭⎪⎫1-34+⎝⎛⎭⎪⎫1-23×34=512.]4.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥1)=( )A.12B.1681C.6581D .1C [∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13,∴P (Y ≥1)=1-P (Y =0)=1-C 04(1-p )4=1-1681=6581,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X 为取得红球的次数,则X 的方差D (X )的值为________.2425 [因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为35,连续取4次(做4次试验),X 为取得红球(成功)的次数,则X ~B ⎝ ⎛⎭⎪⎫4,35,∴D (X )=4×35×⎝ ⎛⎭⎪⎫1-35=2425.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5)0.135 9 [依题意设X ~N (0,32),其中μ=0,σ=3, ∴P (-3<X <3)=0.682 7,P (-6<X <6)=0.954 5.∴P (3<X <6)=12[P (-6<X <6)-P (-3<X <3)]=12×(0.954 5-0.682 7)=0.135 9.][扣要点——查缺补漏]1.离散型随机变量的分布列的两个性质 (1)p i ≥0 (i =1,2,…,n ); (2)p 1+p 2+…+p n =1.如T 1. 2.变量ξ的数学期望、方差 (1)E (ξ)=x 1p 1+x 2p 2+…+x n p n .如T 1.(2)D (ξ)=[x 1-E (ξ)]2·p 1+[x 2-E (ξ)]2·p 2+…+[x n -E (ξ)]2·p n ,标准差为D ξ.3.期望、方差的性质(1)E (a ξ+b )=aE (ξ)+b ,D (a ξ+b )=a 2D (ξ); (2)若ξ~B (n ,p ),则E (ξ)=np ,D (ξ)=np (1-p ). (3)X 服从两点分布,则E (ξ)=p ,D (ξ)=p (1-p ). 4.常见概率的求法(1)条件概率:在A 发生的条件下B 发生的概率P (B |A )=P ABP A,如T 2.(2)相互独立事件同时发生的概率:P (AB )=P (A )P (B ),如T 3.(3)在n 次独立重复试验中事件A 恰好发生k 次的概率:P (ξ=k )=C k n p k q n -k,(k =0,1,2,…,n ,q =1-p ),如T 4.(4)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -M C n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.(5)正态分布:若X ~N (μ,σ2),则正态曲线关于直线x =μ对称,常借助图象的对称性求随机变量落在某一范围内的概率,如T 6.[教师授课资源] [备考指导]新考纲把概率与统计作为数学思想提出来,必会重点考查,近几年的概率与统计高考题新颖灵活,并且作为压轴题出现,在备考中特别重视.[命题方向]①数据统计分析,通过观察分析计算数据,计算x ,s 2,E X 等来进行方案的选择,同时与概率、正态分布结合,来解决实际问题如控制生产线②以频率分布直方图为载体,研究平均数x ,让x 近似等于正态分布N μ,σ2中的μ,进而考查3σ区间与二项分布结合,研究期望与方差.③以统计案例为载体,考查X 2,r 的同时,考查非线性回归问题,通过换元,取对数等手段,把非线性回归问题转化为线性回归问题,其中要通过数据的计算及灵活变通.④以新颖背景为载体,考查分类讨论,要进行多种情况下概率与统计的特征数的计算进行数据比较分析,进行方案的选择.⑤开放型题目,方案选择理由不唯一,会有多种角度回答,这种题型符合新考纲要求,同时增大阅读量与数字字母化,考查阅读转化能力.,本部分建议重点归类研究近几年全国卷高考题,研究考法与题型,进行总结归纳反思,从而开阔思路和视野,以不变应万变,提升分析问题能力.条件概率、相互独立事件及二项分布(5年5考)[高考解读] 高考对该点的考查可以单独考查也可以与概率统计综合考查,注重双基,属基础性题目.解答的关键是分清事件间的关系,套用相应概率公式求解.预测2020年命题风格不变.1.(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X =6),则p=( )A.0.7 B.0.6C.0.4 D.0.3B[由题意知,该群体的10位成员使用移动支付的人数X概率分布符合二项分布,所以D(X)=10p(1-p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得C410p4(1-p)6<C610p6(1-p)4,即(1-p)2<p2,所以p>0.5,所以p=0.6.]2.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立,在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.[解](1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.[教师备选题]1.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.312A[3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k =3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.]2.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45A[根据条件概率公式,直接代入,可求得随后一天的空气质量为优良的概率.已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.]3.(2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.[解](1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ), 故P (B |A )=P AB P A =P B P A =0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X 元,则X 的分布列为1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.求相互独立事件和独立重复试验的概率的方法(1)直接法:利用相互独立事件的概率乘法公式直接求解.(2)间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.提醒:解决条件概率的关键是明确“既定条件”,即在“谁发生的条件下,求谁的概率”.1.(条件概率)(2019·长沙模拟)已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未损坏,则这个元件使用寿命超过2年的概率为( )A .0.75B .0.6C .0.52D .0.48A [设一个这种元件使用到1年时还未损坏为事件A ,使用到2年时还未损坏为事件B ,则由题意知P (AB )=0.6,P (A )=0.8,则这个元件使用寿命超过2年的概率为P (B |A )=P AB P A=0.60.8=0.75,故选A.] 2.(二项分布)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:命在30天以上的概率为( )A.1316B.2764C.2532D.2732D [由表可知元件使用寿命在30天以上的频率为80+50+20200=34,则所求概率为C 23·⎝ ⎛⎭⎪⎫342×14+C 33·⎝ ⎛⎭⎪⎫343=2732.] 3.(相互独立事件的概率)甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为25,34,13,且各自能否被选中互不影响.则3人中至少有1人被选中的概率为________.9 10[3人都未被选中的概率为P=⎝⎛⎭⎪⎫1-25×⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-13=110,故3人中至少有1人被选中的概率为1-110=910.]随机变量的分布列、均值、方差(5年6考)[高考解读] 高考对该点的考查常以生产、生活实际为背景,考查考生从题干中提取信息建立数学模型,并应用期望或方差对实际问题作出决策的能力.预测2020年会加强对该点的考查.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?切入点:借助独立重复试验的概率公式建立概率函数f(p),并用导数求f(p)的最大值点P0.[解](1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.[教师备选题](2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?[解](1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.解决分布列、期望、方差问题的3关(1)判断关:即依据题意判断随机变量的取值及判断所求分布列的类型.(2)概率关:即依据事件间的相互关系,结合相应的概率公式求出每个随机变量取值的概率.(3)决策关:即借助分布列,计算随机变量的数学期望,并结合实际问题作出合理决策.1.(以统计图表为背景)随着移动互联网的发展,与餐饮美食相关的手机A PP软件层出不穷.为调查某款订餐软件的商家的服务情况,统计了10次订餐“送达时间”(时间:分钟),得到茎叶图如下:(1)请计算“送达时间”的平均数与方差;(2)根据茎叶图,求A,B,C,D的值;(包括35分钟)收到餐品的人数X的分布列,并求出数学期望.[解](1)“送达时间”的平均数为28+29+32+34+34+35+36+38+41+43=35(分钟),10方差为-2+-2+-2+-2+-2+02+12+32+62+8210=20.6.(2)A=6,B=4,C=0.6,D=0.4.(3)由已知,人数X的可能取值为0,1,2,3,P(X=0)=C03×0.60×0.43=0.064;P(X=1)=C13×0.61×0.42=0.288;P(X=2)=C23×0.62×0.41=0.432;P(X=3)=C33×0.63×0.40=0.216.所以随机变量X的分布列为X服从二项分布E(X)=3×0.6=1.8.2.(函数与概率统计的交汇)某医院为筛查某种疾病,需要检验血液是否为阳性,现有n (n ∈N *)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验n 次;(2)混合检验,将其中k (k ∈N *且k ≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为k +1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (0<p <1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率;(2)现取其中k (k ∈N *且k ≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.①试运用概率统计的知识,若E ξ1=E ξ2,试求p 关于k 的函数关系式p =f (k ); ②若p =1-13e,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln 2≈0.693 1,ln 3≈1.098 6,ln 4≈1.386 3,ln 5≈1.609 4,ln 6≈1.791 8.[解](1)p =C 12C 13A 23A 22A 55=35.∴恰好经过4次检验就能把阳性样本全部检验出来的概率为35.(2)①由已知得E ξ1=k ,ξ2的所有可能取值为1,k +1. ∴P (ξ2=1)=(1-p )k,P (ξ2=k +1)=1-(1-p )k, ∴E ξ2=(1-p )k+(k +1)[1-(1-p )k]=k +1-k (1-p )k.若E ξ1=E ξ2,则k =k +1-k (1-p )k ,∴k (1-p )k =1,(1-p )k=1k,∴1-p =⎝ ⎛⎭⎪⎫1k 1k,∴p=1-⎝ ⎛⎭⎪⎫1k 1k. ∴p 关于k 的函数关系式p =1-⎝ ⎛⎭⎪⎫1k 1k(k ∈N *且k ≥2).②由题意可知E ξ2<E ξ1,得1k<(1-p )k,∵p =1-13e ,∴1k <⎝ ⎛⎭⎪⎪⎫13e k ,∴ln k >13k , 设f (x )=ln x -13x (x >0) , 则f ′(x )=3-x 3x, ∴当x >3时,f ′(x )<0,即f (x )在(3,+∞)上单调递减, 又ln 4≈1.386 3, 43≈1.333 3, ∴ln 4>43, ∵ln 5≈1.609 4,53≈1.666 7,∴ln 5<53. ∴k 的最大值为4.样本的均值、方差与正态分布的综合(5年2考)[高考解读] 正态分布可与二项分布、控制生产线结合,很受命题者的青睐,主要考查3σ区间与对称性;考查正态分布的题目,要重视题后数据的利用,题后数据作用:①提供方向(计算)与目标;②切勿掉入题后数据误导的陷阱.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.9810.04 10.26 9.91 10.13 10.02 9.22 10.0410.05 9.95经计算得=,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.[解](1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6).因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8. X 的数学期望E (X )=16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.x 2i =16×0.2122+16×9.972≈1 591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.[教师备选题](2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E (X ). 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4.[解](1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以E (X )=100×0.682 6=68.26.解决正态分布问题有4个关键点(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性求指定范围内的概率值,由μ,σ分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率;(4)曲线与x 轴之间面积为1.(与频率分布直方图交汇)某质检部门从某烤鳗鱼有限公司生产的某批次的烤鳗鱼中随机抽取200箱,检测这些产品的某项质量指标值(记为Z ),由检测结果得到如下图所示的频率分布直方图.(1)质检部门规定,当Z ≥95时,产品为合格品;当Z <95时,产品为不合格品.该公司每生产一箱这种产品,若是合格品,则盈利90元;若是不合格品,则亏损30元.记Y 为生产一箱这种产品的利润,求Y 的分布列和E (Y );(2)由频率分布直方图可以认为,Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2(同一组中的数据用所在区间的中点值作代表).①利用该正态分布,求P (75.6<Z ≤124.4);②某客户从该公司购买了500箱这种产品,记X 表示这500箱产品中该质量指标值位于(75.6,124.4)上的产品箱数,利用①的结果,求X 的期望与方差.附:150≈12.2,若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)≈0.682 7,P(μ-2σ<Z≤μ+2σ)≈0.954 5,P(μ-3σ<Z≤μ+3σ)≈0.997 3.[解](1)由频率估计概率,产品为合格品的概率为(0.033+0.024+0.008+0.002)×10=0.67,为不合格品的概率为1-0.67=0.33.所以随机变量Y的分布列为所以E(Y(2)由频率分布直方图知,抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=70×0.02+80×0.09+90×0.22+100×0.33+110×0.24+120×0.08+130×0.02=100,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+02×0.33+102×0.24+202×0.08+302×0.02=150,所以Z~N(100,150).①因为Z~N(100,150),所以P(75.6<Z≤124.4)=P(100-12.2×2<Z≤100+12.2×2)≈0.954 5.②由①可知,一箱产品中该质量指标值位于(75.6,124.4)上的概率为0.954 5,依题意知X~B(500,0.954 5),所以E(X)=500×0.954 5=477.25,D(X)=500×0.954 5×(1-0.954 5)≈21.7.。
课题概率、随机变量及其分布列课时共 3课时本节第1 课时选用教材专题七知识模块概率与统计课型复习教学目标熟练掌握概率、随机变量及其分布列重点熟练掌握概率、随机变量及其分布列难点熟练掌握概率、随机变量及其分布列关键熟练掌握概率、随机变量及其分布列教学方法及课前准备多媒体辅助教学学生自主探究讲练结合教学流程多媒体辅助教学内容网络构建考点溯源[思考1] 若事件A、B是相互独立事件,则P(B|A)=P(B).正确吗?提示:正确.[思考2] 若离散型随机变量X的分布列为X x1x2…x i…x n P p1p2…p i…p n 试写出计算X的数学期望E(X),方差D(X)的公式.复习知识点,用多媒体展示,带领学生对相关知识进行回忆与记忆又事件发生的概率P =P 1P 3CD =12,则P 1P 3=12CD , 根据对称性知,DP 1=14CD ,P 1C =34CD =34AB ,此时AB =BP 1,则AB 2=AD 2+⎝ ⎛⎭⎪⎫34AB 2,∴AD 2=716AB 2,则AD AB =74.答案 D[探究提升] (1)本题求解的关键:①点P 1、P 3位置的探求.②等量关系AB =BP 1的确定.(2)几何概型中的基本事件是无限的,但其构成的区域却是有限的,因此可用“比例法”求概率.在利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的确定.【变式训练1】 (2013·某某高考)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个小球,从中任意取出两个,则这两个球的编号之积为偶数的概率是________(结果用最简分数表示). 解析 从9个小球中,任取两个,有n =C 29=36种方法,设A 表示“两球编号之积为偶数”,则A 表示“取出两球编号之积为奇数”. 由P (A )=C 2536=518,得P (A )=1-P (A )=1318.答案1318考向二 互斥事件与相互独立事件的概率互斥事件、相互独立事件的概率在求随机变量的分布列时往往起工具性作用,试题素材贴近生活,考查阅读理解能力及对概率知识的应用能力.【例2】 某居民小区有两个相互独立的安全防X 系统(简称系统)A 和B ,系统A 和系统B 在任意∵事件A 与B 相互独立,A 与B 相互独立.则A ·B 表示事件“甲选中3号歌手,且乙没选中3号歌手”. ∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=23×25=415,(2)设C 表示事件“观众丙选中3号歌手”, 则P (C )=C 24C 35=35,依题意,A 、B 、C 相互独立,A ,B ,C 相互独立,且AB C ,A B C ,A BC ,ABC 彼此互斥. 又P (X =2)=P (AB C )+P (A B C )+P (A BC ) =23×35×25+23×25×35+13×35×35=3375, P (X =3)=P (ABC )=23×35×35=1875,∴P (X ≥2)=P (X =2)+P (X =3)=3375+1875=1725.课堂同步练习:1.(2013·新课标全国Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A.12B.13 C.14D.16解析 从4个数字中任取2个不同数字,有C 24=6种取法.构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2.所以,所求概率P =26=13.答案 B2.(2013·某某高考) 如图,在矩形区域ABCD 的A ,C 两点处各有一个通信 基站,假设其信号的覆盖X 围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( ).考点探究突破典型例题讲解,先让学生自己思考,老师再给出思路,最后用多媒体展示解答A .1-π4B.π2-1C .2-π2D.π4解析 无信号的区域面积S =2×1-2×14π·12=2-π2,∴由几何概型,所求事件概率P =⎝ ⎛⎭⎪⎫2-π2÷2=1-π4. 答案 A过程,要求学生自己做题时要规X 。
第6讲 随机变量及其分布题型1 相互独立事件的概率与条件概率(对应学生用书第18页)■核心知识储备………………………………………………………………………· 1.条件概率在A 发生的条件下B 发生的概率为P (B |A )=P AB P A =n ABn A.2.相互独立事件同时发生的概率P (AB )=P (A )P (B ).3.独立重复试验的概率如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k·(1-p )n -k,k =0,1,2,…,n .■典题试解寻法………………………………………………………………………·【典题1】 (考查条件概率)如图61,△ABC 和△DEF 是同一个圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )图61A.334π B.32π C.13 D.23[解析] 如图,作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件N M 的有3个小三角形,所以P (N |M )=nN M n M=39=13,故选C. [答案] C【典题2】 (考查相互独立事件的概率)(2017·福州五校联考)为了检验某大型乒乓球赛男子单打参赛队员的训练成果,某校乒乓球队举行了热身赛,热身赛采取7局4胜制(即一场比赛先胜4局者为胜)的规则.在队员甲与乙的比赛中,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在5局以内(含5局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和数学期望.【导学号:07804040】[解] (1)由题意得,甲在5局以内(含5局)赢得比赛的概率P =⎝ ⎛⎭⎪⎫234+C 14⎝ ⎛⎭⎪⎫234×13=112243. (2)由题意知,X 的所有可能取值为4,5,6,7,且P (X =4)=⎝ ⎛⎭⎪⎫234+⎝ ⎛⎭⎪⎫134=1781,P (X =5)=C 14⎝ ⎛⎭⎪⎫234×13+C 14×23×⎝ ⎛⎭⎪⎫134=72243=827, P (X =6)=C 25⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫134=200729, P (X =7)=C 36⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫133+C 36⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫134=160729. 所以X 的分布列为E (X )=4×81+5×27+6×729+7×729=729. [类题通法]1.解决条件概率的关键是明确“既定条件”.2.求相互独立事件和独立重复试验的概率的方法直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.■对点即时训练………………………………………………………………………·1.某同学用计算器产生了两个[0,1]之间的均匀随机数,分别记作x ,y .当y <x 2时,x >12的概率是( ) A.724 B .12 C.712D .78D [记“y <x 2”为事件A ,“x >12”为事件B ,所以(x ,y )构成的区域如图所示,所以S 1==124,S 2=⎠⎛01x 2d x-S 1=,则所求概率为=S 2S 1+S 2=724124+724=78,故选D.]2.如图62,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()图62A .0.960B .0.864C .0.720D .0.576B [法一:(直接法)由题意知K ,A 1,A 2正常工作的概率分别为P (K )=0.9,P (A 1)=0.8,P (A 2)=0.8,因为K ,A 1,A 2相互独立,所以A 1,A 2至少有一个正常工作的概率为P (A 1A 2)+P (A 1A 2)+P (A 1A 2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.所以系统正常工作的概率为P (K )[P (A 1A 2)+P (A 1A 2)+P (A 1A 2)]=0.9×0.96=0.864.法二:(间接法)A1,A2至少有一个正常工作的概率为1-P(A1A2)=1-(1-0.8)(1-0.8)=0.96,故系统正常工作的概率为P(K)[1-P(A1A2)]=0.9×0.96=0.864.]■题型强化集训………………………………………………………………………·(见专题限时集训T1、T3、T4、T6、T12)题型2 离散型随机变量的分布列、期望和方差的应用(答题模板)(对应学生用书第19页)离散型随机变量的分布列问题是高考的热点,常以实际生活为背景,涉及事件的相互独立性、互斥事件的概率等,综合性强,难度中等.(2017·全国Ⅱ卷T13、2017·全国Ⅲ卷T18、2016·全国Ⅰ卷T19、2016·全国Ⅱ卷T18、2013·全国Ⅰ卷T19、2013·全国Ⅱ卷T19)■典题试解寻法………………………………………………………………………·【典题】(本小题满分12分)(2016·全国Ⅰ卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.在三年使用期内更换的易损零件数,得下面如图63所示的柱状图:②图63以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,③n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P X≤n,④确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【导学号:07804041】[审题指导][零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2. 1分由题意可知X的所有可能取值为16,17,18,19,20,21,22.⑤从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04. 4分所以X的分布列为(2)由(1)知P X=0.44,P X=0.68,⑥故n的最小值为19. 7分(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,⑦E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;9分当n=20时,⑧E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.11分可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.12分[阅卷者说]解答离散型随机变量的分布列及相关问题的一般思路:明确随机变量可能取哪些值.结合事件特点选取恰当的计算方法计算这些可能取值的概率值.根据分布列和期望、方差公式求解.提醒:明确离散型随机变量的取值及事件间的相互关系是求解此类问题的关键.■对点即时训练………………………………………………………………………·(2016·湖南益阳4月调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂.现随机抽取这两种产品各60件进行检测,检测结果统计如下:(1)试分别估计甲,乙两种产品下生产线时为合格品的概率;(2)生产一件甲种产品,若是合格品,可盈利100元,若是不合格品,则亏损20元;生产一件乙种产品,若是合格品,可盈利90元,若是不合格品,则亏损15元.在(1)的前提下:①记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;②求生产5件乙种产品所获得的利润不少于300元的概率. [解] (1)甲种产品为合格品的概率约为4560=34 ,乙种产品为合格品的概率约为4060=23.(2)①随机变量X 的所有可能取值为190,85,70,-35, 且P (X =190)=34×23=12,P (X =85)=34×13=14, P (X =70)=14×23=16, P (X =-35)=14×13=112.所以随机变量X 的分布列为所以E (X )=2+4+6-12=125.②设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,又因为0≤n ≤5,且n 为整数,所以n =4或n =5,设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 45⎝ ⎛⎭⎪⎫234×13+⎝ ⎛⎭⎪⎫235=112243. ■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 7、T 8、T 11、T 13)题型3 正态分布问题 (对应学生用书第21页)■核心知识储备………………………………………………………………………·正态分布的性质(1)正态曲线与x 轴之间面积为1.(2)正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相同. (3)P (X ≤a )=1-P (X ≥a ),P (X ≤μ-a )=P (X ≥μ+a ). (4)求概率时充分利用3σ原则.■典题试解寻法………………………………………………………………………· 【典题】 (2017·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸: x i -=116∑16i =1x 2i -16x 2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).【导学号:07804042】附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.[思路分析] (1)先由对立事件的概率公式求出P (X ≥1)的值,再利用数学期望的公式求解.(2)利用独立性检验的思想判断监控生产过程方法的合理性;确定μ^-3σ^,μ^+3σ^的取值,以剔除(μ^-3σ^,μ^+3σ^)之外的数据,再用剩下的数据估计μ和σ. [解] (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6). 因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8.X 的数学期望E (X )=16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.∑16i =1x 2i =16×0.2122+16×9.972≈1 591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008, 因此σ的估计值为0.008≈0.09. [类题通法]由于正态分布与频率分布直方图有极大的相似性,故最近五年比较受命题人青睐. 解决正态分布问题有三个关键点:对称轴x =μ;标准差σ;分布区间.利用对称性求指定范围内的概率值;由μ,σ分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.■对点即时训练………………………………………………………………………·1.设X ~N (1,σ2) ,其正态分布密度曲线如图64所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )图64(附:随机变量X 服从正态分布N (μ,σ2),则P (μ-σ<X <μ+σ)=68.26%,P (μ-2σ<X <μ+2σ)=95.44%) A .6 038 B .6 587 C .7 028D .7 539B [由题意得,P (X ≤-1)=P (X ≥3)=0.022 8,∴P (-1<X <3)=1-0.022 8×2=0.954 4,∴1-2σ=-1,σ=1,∴P (0≤X ≤1)=12P (0≤X ≤2)=0.341 3,故估计的个数为10 000×(1-0.341 3)=6 587,故选B.] 2.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如65的频率分布直方图.图65(1)求这100份数学试卷的样本平均分x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表).(2)由直方图可以认为,这批学生的数学总分Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2. ①利用该正态分布,求P (81<Z <119);②记X 表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求E(X)(用样本的分布区估计总体的分布).【导学号:07804043】附:366≈19,326≈18,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.[解](1)x=60×0.02+70×0.08+80×0.14+90×0.15+100×0.24+110×0.15+120×0.1+130×0.08+140×0.04=100.s2=(60-100)2×0.02+(70-100)2×0.08+(80-100)2×0.14+(90-100)2×0.15+(110-100)2×0.15+(120-100)2×0.1+(130-100)2×0.08+(140-100)2×0.04=366.(2)①由题意可知Z~N(100,366).又σ=366≈19,故P(81<Z<119)=P(100-19<Z<100+19)=0.6826.②由①可知一名学生总分落在(81,119)的概率为0.6826.因为X~B(2400,0.6826),所以E(X)=2400×0.6826=1638.24.■题型强化集训………………………………………………………………………·(见专题限时集训T5、T9、T10、T14)三年真题| 验收复习效果(对应学生用书第22页)1.(2015·全国Ⅰ卷)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432 C.0.36 D.0.312A[3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.]2.(2017·全国Ⅱ卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=________.1.96 [由题意得X~B(100,0.02),∴DX=100×0.02×(1-0.02)=1.96.]3.(2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值. [解] (1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ),故P (B |A )=P AB P A =P B P A =0.150.55=311. 因此所求概率为311. (3)记续保人本年度的保费为X ,则X 的分布列为+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【导学号:07804044】[解] (1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4. 因此X 的分布列为(2)200≤n ≤500.当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n .因此EY =2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n .当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n ,因此EY =2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n .所以n =300时,Y 的数学期望达到最大值,最大值为520元.。
离散型随机变量及其分布复习课教案一、教学目标1. 复习离散型随机变量的概念及其性质。
2. 掌握离散型随机变量的概率分布及其数学期望。
3. 能够运用离散型随机变量及其分布解决实际问题。
二、教学内容1. 离散型随机变量的定义及其性质。
2. 离散型随机变量的概率分布,包括概率质量函数和累积分布函数。
3. 离散型随机变量的数学期望。
4. 离散型随机变量的方差及其性质。
5. 实际问题中的离散型随机变量及其分布的应用。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过具体的例子和问题,引导学生理解离散型随机变量及其分布的概念和性质。
3. 利用数学软件或图形计算器,进行离散型随机变量的模拟实验,增强学生对离散型随机变量分布的理解。
四、教学准备1. 教学PPT或教案。
2. 数学软件或图形计算器。
3. 相关的练习题和案例分析题。
五、教学过程1. 复习离散型随机变量的定义及其性质,通过具体的例子进行解释和说明。
2. 讲解离散型随机变量的概率分布,包括概率质量函数和累积分布函数的定义和计算方法。
3. 引入离散型随机变量的数学期望的概念,讲解其计算方法和性质。
4. 引入离散型随机变量的方差的概念,讲解其计算方法和性质。
5. 通过案例分析,让学生运用离散型随机变量及其分布解决实际问题,如概率计算、期望和方差的估计等。
教案内容待补充六、教学评估1. 通过课堂练习和讨论,评估学生对离散型随机变量及其分布的理解程度。
2. 通过课后作业和练习题,评估学生对离散型随机变量及其分布的掌握程度。
3. 结合学生的参与度和提问反馈,评估学生的学习效果。
七、教学拓展1. 介绍离散型随机变量及其分布在其他学科领域的应用,如物理学、化学、生物学等。
2. 探讨离散型随机变量及其分布在实际问题中的应用,如统计学、经济学、社会学等。
八、教学资源1. 离散型随机变量及其分布的教材或参考书。
2. 离散型随机变量的模拟实验软件或图形计算器。
1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。
第2讲 概率、随机变量及其分布列自主学习导引 真题感悟1.(2012·北京)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A.π4B.π-22C.π6D.4-π4解析 如图,平面区域D 是面积为4的正方形,D 内到坐标原点的距离大于2的点所组成的区域为图中阴影部分,其面积为4-π,故此点到坐标原点的距离大于2的概率为4-π4,故选D.答案 D2.(2012·山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .解析 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34+23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意知X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136. P (X =1)=P (B C -D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B -CD )=⎝⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×36+1×12+2×9+3×3+4×9+5×3=4112. 考题分析本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意. 网络构建高频考点突破考点一:古典概型与几何概型【例1】(1)(2012·衡水模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是A.18125B.36125C.44125D.81125(2)(2012·海淀二模)在面积为1的正方形ABCD 内部随机取一点P ,则△PAB 的面积大于等于14的概率是________.[审题导引] (1)解题的关键是理解题意,应用计数原理与排列组合公式计算基本事件的个数;(2)首先找到使△PAB 的面积等于14的点P ,然后据题意计算.[规范解答] (1)设事件“取球次数恰为3次”为事件A ,则P (A )=2C 12·C 13·C 1353=36125. 2)如图所示,设E 、F 分别是AD 、BC 的中点,则当点P 在线段EF 上时,S △PAB =14,要使S △PAB >14,需点P位于矩形EFCD 内,故所求的概率为:P (A )=S 矩形EFCD S 正方形ABCD =121=12.[答案] (1)B (2)12【规律总结】解答几何概型、古典概型问题时的注意事项(1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性.(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.(4)利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 【变式训练】1.(1)(2012·石景山一模)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是________.解析 阴影部分的面积为S 阴=2⎠⎛0πsin x d x=-2cos x |π0=4,故P =S 阴S ⊙O =4π3答案 4π32.(2012·广州模拟)从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3435,则n =________.解析 据题意知,所选3人中都是男生的概率为C 33C 3n +3,∴至少有1名女生的概率为1-C 33C 3n +3=3435,∴n =4. 答案 4考点二:相互独立事件的概率与条件概率【例2】(1)甲射击命中目标的概率为34,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为A.12 B .1 C.1112 D.56(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=A.18B.14C.25D.12 [审题导引] (1)把事件“目标被击中”分解为三个互斥事件求解;(2)据古典概型的概率分别求出P (A )与P (AB ),然后利用公式求P (B |A ).[规范解答] (1)解法一 设甲、乙射击命中目标分别记作事件A 、B ,则P (A )=34,P (B )=23,则该目标被击中的概率为 P (A B -)+P (A -B )+P (AB )=34×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23+34×23=1112. 解法二 若采用间接法,则目标未被击中的概率为 P (A - B -)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23=112,则目标被击中的概率为1-P (A - B -)=1-112=1112.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P ABP A =110410=14.【规律总结】(1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解. (2)一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.(3)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(4)牢记公式P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n ,并深刻理解其含义. 2.解答条件概率问题时应注意的问题(1)正确理解事件之间的关系是解答此类题目的关键.(2)在求P (AB )时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求P (AB ).其中,若B ⊆A ,则P (AB )=P (B ),从而P (B |A )=P BP A. 【变式训练】3.(2012·宜宾模拟)设某气象站天气预报准确率为0.9,则在4次预报中恰有3次预报准确的概率是A .0.287 6B .0.072 9C .0.312 4D .0.291 6解析 据题意知在4次预报中恰有3次预报准确的概率为C 34·0.93·0.1=0.291 6.答案 D4.(2012·枣庄模拟)如图,CDEF 是以圆O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在扇形OCFH 内”(点H 将劣弧»EF二等分),B 表示事件“豆子落在正方形CDEF 内”,则P (B |A )=A.3πB.2πC.38D.3π16解析 ∵圆的半径为1,则正方形的边长为2,∴P (A )=S 扇形OCFH S ⊙O =12·34ππ=38,P (AB )=38×22π=34π,则P (B |A )=P ABP A =34π38=2π.答案 B考点三:离散型随机变量的分布列、期望、方差【例3】(2012·合肥模拟)某公司设有自行车租车点,租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14、12;一小时以上且不超过两小时还车的概率分别为12、14;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ. [审题导引] (1)把事件“甲、乙两人所付租车费用相同”分解为三个互斥事件:租车费用为2元、租车费用为4元、租车费用为6元,分别求其概率,然后求和;(2)甲、乙两人所付的租车费用之和可能为4元、6元、8元、10元、12元,分别求出ξ取上述各值的概率即可得到其概率分布列.[规范解答] (1)甲、乙两人所付费用相同即为2,4,6元.都付2元的概率为P 1=14×12=18; 都付4元的概率为P 2=12×14=18;都付6元的概率为P 3=14×14=116;故所付费用相同的概率为P =P 1+P 2+P 3 =18+18+116=516. (2)依题意,ξ的可能取值为4,6,8,10,12.P (ξ=4)=18;P (ξ=6)=14×14+12×12=516;P (ξ=8)=14×14+12×14+12×14=516;P (ξ=10)=14×14+12×14=316;P (ξ=12)=14×14=116.故ξ的分布列为所求数学期望Eξ=4×18+6×516+8×516+10×316+12×116=152【规律总结】解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题. 【变式训练】5.(2012·西城二模)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.解析 (1)设乙答题所得分数为X ,则X 的可能取值为-15,0,15,30.P (X =-15)=C 35C 310=112;P (X =0)=C 25C 15C 310=512;P (X =15)=C 15C 25C 310=512;P (X =30)=C 35C 310=112.EX =112×(-15)+12×0+12×15+12×30=2.(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则P (A )=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25+⎝ ⎛⎭⎪⎫353=81125,P (B )=512+112=12. 故甲乙两人至少有一人入选的概率P =1-P (A -·B -)=1-44125×12=103125.名师押题高考【押题1】在不等式组⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0,x ≥0,y ≥0所表示的平面区域内,点(x ,y )落在x ∈[1,2]区域内的概率是________.解析 如图所示,不等式组所表示的平面区域的面积是72,在这个区域中,x ∈[1,2]区域的面积是1,故所求的概率是27.答案 27[押题依据] 几何概型与线性规划问题都是高考的热点,二者结合命题,立意新颖、内涵丰富,能够很好地考查基础知识与基本能力,故押此题.【押题2】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的分布列.解析 (1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12.记“甲以4比1获胜”为事件A ,则P (A )=C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=18.(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-312=532, 乙以4比3获胜的概率为P 2=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-312=532,所以P (B )=P 1+P 2=516.(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P (X =4)=2C 44⎝ ⎛⎭⎪⎫124=18,P (X =5)=2C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=14, P (X =6)=2C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-2·12=516,P (X =7)=2C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-3·12=516.[押题依据] 赛为模型的概率问题又是高考的经典题型,故押此题.。
河北省张家口一中高二数学选修2-3 随机变量及其分布 教案【考纲知识梳理】 一、随机变量及其分布列 1.离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量。
2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n =的概率()i i P X x p ==,则表X 1x 2x …… i x…… n x P1p 2p…… i p……n p称为X 的分布列,(),1,2,,i i P X x p i n === 为X 的分布列。
(2)离散型随机变量的分布列的性质 ①i p ≥0(1,2,,i n =);②11ni i p ==∑。
3.常见离散型随机变量的分布列 (1)两点分布若随机变量X 服从两点分布,即其分布列为(2)超几何分布其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈*N ,称分布列X 01……mP00n M N M n N C C C -- 11n M N MnNC C C --m n mM N MnNC C C -- 为超几何分布列。
二、二项分布及其应用1.条件概率及其性质(1)条件概率的定义A 、B 为两个事件,且P (A )>0,P (B|A )=P (AB )/P (A ) 若A ,B 相互独立,则P (B|A )=P (B )。
(2)条件概率的性质 ①0≤P (B|A )≤1;②如果B 、C 是两个互斥事件,则P (B ∪C|A )=P (B|A )+P (C|A )。
2.事件的相互独立性如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立。
3.独立重复试验与二项分布那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k )=(1)(0,1,2,,)k k n kn C p p k n --=,此时称随机变量X 服从二项分布,记作X ~B (n,p )三、离散型随机变量的均值与方差 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为EX=1x 1p +2x 2p +……+i x i p +……+n x n p 为随机变量X 的均值或数学期望DX=21()nii i x EX p =-∑为随机变量X 的方差,DX X 的标准差,记作X σ。
突破点9 随机变量及其分布离散型随机变量X则(1)p i ≥0.(2)p 1+p 2+…+p i +…+p n =1(i =1,2,3,…,n ).(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为X 的均值或数学期望(简称期望).D (X )=(x 1-E (X ))2·p 1+(x 2-E (X ))2·p 2+…+(x i -E (X ))2·p i +…+(x n -E (X ))2·p n 叫做随机变量X 的方差.(4)均值与方差的性质 ①E (aX +b )=aE (X )+b ;②D (aX +b )=a 2D (X )(a ,b 为实数). (5) 两点分布与二项分布的均值、方差①若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); ②若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).(1)条件概率在A 发生的条件下B 发生的概率为P (B |A )=P AB P A =n ABn A.(2)相互独立事件同时发生的概率P (AB )=P (A )P (B ).(3)独立重复试验的概率如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k(1-p )n -k,k =0,1,2,…,n .(1)若X ~N (μ,σ2),则①;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.9974.(2)若X ~N (μ,σ2),则正态曲线关于直线x =μ对称且P (X <a )=1-P (X ≥a );P (X <μ-a )=P (X >μ+a ).回访1 条件概率1.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312A 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.]2.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45A 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.]回访2 正态分布 3.(2012·全国卷)图91某一部件由三个电子元件按如图91所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.38 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(A B +A B +AB )C , ∴该部件的使用寿命超过1 000小时的概率P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.] 回访3 随机变量的分布列、期望、方差4.(2016·全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:图92以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解](1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.1分从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.3分所以X的分布列为4分(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,7分故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;9分当n=20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.11分可知当n =19时所需费用的期望值小于当n =20时所需费用的期望值,故应选n =19.12分件相互独立性的考查相对较频繁,难度中等.(1)(2016·山西考前模拟)某同学用计算器产生了两个0,1]之间的均匀随机数,分别记作x ,y .当y <x 2时,x >12的概率是( ) 【导学号:85952034】A.724 B.12 C.712D.78(2)如图93,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.图93①求p ;②求电流能在M 与N 之间通过的概率.(1)D 记“y <x 2”为事件A ,“x >12”为事件B ,所以(x ,y )构成的区域如图所示,所以S 1=∫120x 2d x =13x 3| 120=124,S 2=⎠⎛01x 2d x -S 1=13x 3| 10-124=724,则所求概率为P AB P A =S 2S 1+S 2=724124+724=78,故选D .] (2)记A i 表示事件:电流能通过T i ,i =1,2,3,4,A 表示事件:T 1,T 2,T 3中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过. ①A -=A -1A -2A -3,A -1,A -2,A -3相互独立,2分 P(A -)=P(A -1A -2A -3)=P(A -1)P(A -2)P(A -3)=(1-p)3.3分 又P(A -)=1-P(A)=1-0.999=0.001,4分 故(1-p)3=0.001,p =0.9.6分 ②B=A 4∪A -4A 1A 3∪A -4A -1A 2A 3,8分 P(B)=P(A 4∪A -4A 1A 3∪A -4A -1A 2A 3) =P(A 4)+P(A -4A 1A 3)+P(A -4A -1A 2A 3)=P(A 4)+P(A -4)P(A 1)P(A 3)+P(A -4)P(A -1)P(A 2)P(A 3) =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.989 1.12分1.解决条件概率的关键是明确“既定条件”. 2.求相互独立事件和独立重复试验的概率的方法(1)直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.(2)间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.变式训练1] (2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.解] (1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.2分。