金属的电化学腐蚀与防护
- 格式:ppt
- 大小:1.43 MB
- 文档页数:23
第二章金属的电化学腐蚀通常规定凡是进行氧化反应的电极称为阳极;进行还原反应的电极就叫做阴极。
由此表明,作为一个腐蚀电池,它必需包括阴极、阳极、电解质溶液和电路四个不可分割的部分。
而腐蚀原电池的工作历程主要由下列三个基本过程组成:1、阳极过程:金属溶解,以离子的形式进入溶液,并把当量的电子留在金属上;2、阴极过程:从阳极过来的电子被电解质溶液中能够吸收电子的氧化性物质所接受;3、电流的流动:金属部分:电子由阳极流向阴极;溶液部分:正离子由阳极向阴极迁移。
4、腐蚀电池的类型可以把腐蚀电池分为两大类:宏观腐蚀电池和微观腐蚀电池一、宏观腐蚀电池1)、异金属接触电池2)、浓差电池3)、温差电池二、微观腐蚀电池在金属表面上由于存在许多极微小的电极而形成的电池称为微电池。
微电池是因金属表面的电化学的不均匀性所引起的1、金属化学成分的不均匀性2、组织结构的不均匀性3、物理状态的不均匀性4、金属表面膜的不完整性当参与电极反应的各组分活度(或分压)都等于1,温度规定为25 C,这种状态称为标准状态,此时,平衡电位Ee等于E0,故E0称为标准电位。
由于通过电流而引起原电池两极间电位差减小并因而引起电池工作电流强度降低的现象,称为原电池的极化作用。
当通过电流时阳极电位向正的方向移动的现象,称为阳极极化。
当通过电流时阴极电位向负的方向移动的现象,称为阴极极化。
消除或减弱阳极和阴极的极化作用的电极过程称为去极化作用或去极化过程根据控制步骤的不同,可将极化分为两类:电化学极化和浓度极化极化分类:电化学极化:电子转移步骤最慢为控制步骤所导致浓度极化:电子转移步骤快,而反应物从溶液相中向电极表面运动成产物自由电极表面向溶液相内部运动的液相传质成为控制步骤电阻极化:电流通过电解质溶液和电极表面的某种类型膜而产生的欧姆降。
产生阳极极化的原因:1、阳极的电化学极化2、阳极的浓度极化3、阳极的电阻极化。
析氢腐蚀以氢离子作为去极化剂的腐蚀过程,称为氢离子去极化腐蚀吸氧腐蚀以氧作为去极化剂的腐蚀过程,称为氧去极化腐蚀氢去极化腐蚀的特征1、阴极反应的浓度极化小,一般可以忽略。
金属材料的电化学腐蚀行为与防护引言:金属材料是广泛应用于工业和日常生活中的重要材料之一。
然而,金属材料在使用过程中往往会受到电化学腐蚀的影响,而腐蚀会导致金属材料性能下降、损坏甚至失效。
因此,了解金属材料的电化学腐蚀行为及其防护对于延长材料寿命、提高使用性能具有重要意义。
一、电化学腐蚀行为1. 腐蚀机理金属腐蚀主要是通过电化学反应进行的。
在电化学腐蚀中,金属表面发生氧化和还原反应,形成电荷传递过程,导致金属离子溶解和产生腐蚀产物。
2. 影响因素电化学腐蚀行为受多种因素影响,包括金属材料的组成、结构、表面状态、溶液环境等。
其中,溶液环境的酸碱度、温度、溶解氧含量等因素对金属腐蚀具有重要影响。
3. 腐蚀类型金属腐蚀可分为多种类型,包括常见的均匀腐蚀、局部腐蚀和应力腐蚀等。
均匀腐蚀是指金属表面均匀溶解,而局部腐蚀则是指局部区域发生腐蚀。
应力腐蚀是指金属在受到应力作用下发生腐蚀。
二、电化学腐蚀防护方法1. 材料选择选择耐腐蚀性能好的金属材料是防护的首要措施。
不同金属的耐腐蚀性能不同,可以通过选择具有更好耐腐蚀性能的金属或合金来减轻腐蚀问题。
2. 表面处理通过表面处理来改变金属表面的状态,形成保护层来防止腐蚀的产生。
常见的表面处理方法包括电镀、喷涂、阳极氧化等。
3. 缓蚀剂缓蚀剂是一种能够与金属表面形成保护膜的物质,可以减缓金属腐蚀速率的发展。
常见的缓蚀剂包括钝化剂、缓蚀剂添加剂等。
4. 阴极保护阴极保护是通过将金属材料变为阴极,从而减少其腐蚀速度。
常见的阴极保护方法有外加电流阴极保护和阳极保护。
5. 涂层保护将金属表面涂覆一层抗腐蚀的涂层,形成保护层来防止金属腐蚀。
常见的涂层材料包括有机涂层、无机涂层等。
三、电化学腐蚀行为与防护应用举例1. 钢铁的电化学腐蚀行为与防护钢铁作为常见的金属材料,其电化学腐蚀问题尤为突出。
可以通过合金化、阴极保护等方式来减缓钢铁腐蚀速率。
2. 铜及其合金的电化学腐蚀行为与防护铜及其合金在湿润环境中易受电化学腐蚀。
金属的电化学腐蚀与防护在我们的日常生活和工业生产中,金属材料无处不在,从建筑结构到交通工具,从家用电器到机械设备。
然而,金属的腐蚀问题却始终困扰着我们,给社会带来了巨大的经济损失和安全隐患。
其中,电化学腐蚀是金属腐蚀中最常见、危害最大的一种形式。
那么,什么是金属的电化学腐蚀?它是如何发生的?又该如何进行有效的防护呢?让我们一起来深入了解一下。
首先,我们来认识一下什么是电化学腐蚀。
简单来说,电化学腐蚀就是金属在电解质溶液中发生的氧化还原反应,导致金属原子失去电子变成离子而被腐蚀的过程。
与化学腐蚀不同,电化学腐蚀需要有电解质溶液的存在,并且会形成原电池,从而加速腐蚀的进行。
电化学腐蚀的发生通常需要满足几个条件。
第一,金属表面存在不均匀性,比如化学成分的差异、组织结构的不同或者物理状态的差别。
第二,要有电解质溶液,它可以是水、酸、碱或者盐溶液等。
第三,还需要有氧气或者其他氧化性物质的存在。
为了更清楚地理解电化学腐蚀的过程,我们以钢铁在潮湿空气中的腐蚀为例。
钢铁中通常含有碳等杂质,在潮湿的空气中,钢铁表面会吸附一层薄薄的水膜,水膜中溶解了氧气和二氧化碳等物质,形成了电解质溶液。
此时,钢铁中的铁和碳就构成了无数微小的原电池。
铁作为负极,失去电子被氧化成亚铁离子:Fe 2e⁻= Fe²⁺;碳作为正极,氧气在正极得到电子被还原:O₂+ 2H₂O + 4e⁻= 4OH⁻。
亚铁离子进一步与氢氧根离子结合生成氢氧化亚铁,氢氧化亚铁再被氧气氧化成氢氧化铁,最终脱水形成铁锈。
电化学腐蚀的危害是巨大的。
它不仅会导致金属材料的强度降低、性能下降,缩短设备的使用寿命,还可能引发严重的安全事故。
例如,桥梁的钢梁因为腐蚀而强度减弱,可能会发生坍塌;石油管道因为腐蚀而破裂,会造成环境污染和资源浪费。
既然电化学腐蚀如此可怕,那么我们应该如何进行防护呢?常见的防护方法主要有以下几种:第一种是涂层防护。
在金属表面涂上一层防腐涂料,如油漆、塑料、橡胶等,将金属与外界的电解质溶液隔离开来,从而阻止腐蚀的发生。
一、名词解释:1、腐蚀电池:发生了腐蚀反应而不能对外界做有用功的短路原电池被称为腐蚀电池。
2、极化:在电极过程动力学的研究中,将这种当有外电流通过电极/电解质溶液界面时,电极电位随电流密度改变所发生的偏离平衡电极电位的现象被称为极化。
3、阳极极化:电极电位偏离平衡电位向正方向移动称为阳极极化。
4、阴极极化:电极电位偏离平衡电位向负方向移动称为阴极极化。
5、去极化:有电流通过电极界面时,电子的流动起着在电极表面积累电荷,使电极电位偏离平衡状态的作用,发生在电极界面的电极反应是吸收电子、传递电荷,起着使电极电位恢复平衡状态的作用称为去极化作用。
6、极化率:计划曲线上某一点的斜率d φ/di 称为该电流密度下的极化率。
即电极电位随电流密度的变化率一般用P 表示。
P=d φ/di=tan α7、氢脆:是指由于氢扩散到金属以固溶态存在或生成氢化物而导致材料断裂的现象。
8、应力腐蚀开裂(SCC ):是指受固定拉伸应力作用的金属材料在某些特定的腐蚀介质中,由于腐蚀介质与应力的协同作用而发生的脆性断裂现象。
9、活化极化:当电极反应的速度控制步骤是电极界面上的电子传递步骤,即由电化学步骤的动力学来控制电极反应过程速度的电极极化,称为活化极化。
10、电化学保护:是指通过改变金属的电位,使其极化到金属电位-PH 图中的免蚀区或钝化区,从而降低金属腐蚀速度的一种方法。
11、缓蚀剂:是防止或减缓金属腐蚀的方法之一,即在腐蚀介质中添加某些化学试剂,达到抑制金属腐蚀速率的目的。
12、点蚀:金属材料在腐蚀介质中经过一定的时间后,在整个暴露于腐蚀介质中的表面上个别的点或微笑区域内出现腐蚀小孔,而其他大部分表面不发生腐蚀或腐蚀很轻微,且随着时间的推移,蚀孔不断向纵深方向发展,形成小孔在状腐蚀坑。
13、缝隙腐蚀:因金属与金属、金属与非腐蚀的表面间存在狭小缝隙,并有腐蚀介质存在时而发生的局部腐蚀形态。
二、填空题:1、腐蚀电池有两种类型(宏观电池)和(微观电池)。
金属的电化学腐蚀与防护在我们的日常生活和工业生产中,金属材料无处不在,从建筑结构中的钢铁到电子产品中的微小零部件,金属的应用极其广泛。
然而,金属材料面临着一个严重的问题——电化学腐蚀。
这种腐蚀现象不仅会导致金属材料的性能下降,缩短其使用寿命,还可能引发安全隐患和巨大的经济损失。
因此,了解金属的电化学腐蚀机制以及掌握有效的防护方法至关重要。
首先,我们来了解一下什么是金属的电化学腐蚀。
简单来说,电化学腐蚀是指金属在电解质溶液中形成原电池,从而发生氧化还原反应导致金属腐蚀的过程。
在这个过程中,金属原子失去电子变成金属离子,进入溶液中,而电子则通过金属导体传递到另一个区域,与溶液中的氧化剂发生反应。
为了更清楚地理解电化学腐蚀,让我们以铁在潮湿空气中的生锈为例。
当铁暴露在潮湿的空气中时,表面会吸附一层薄薄的水膜,这层水膜中溶解了氧气和二氧化碳等物质,形成了电解质溶液。
铁中的杂质(如碳)与铁形成了无数微小的原电池。
在这些原电池中,铁作为负极失去电子,发生氧化反应:Fe 2e⁻= Fe²⁺。
电子通过铁传递到杂质处,氧气在杂质处作为正极得到电子,发生还原反应:O₂+ 2H₂O + 4e⁻= 4OH⁻。
生成的 Fe²⁺与 OH⁻结合形成氢氧化亚铁,氢氧化亚铁进一步被氧化为氢氧化铁,最终形成铁锈。
电化学腐蚀的类型多种多样,常见的有析氢腐蚀和吸氧腐蚀。
析氢腐蚀通常发生在酸性较强的环境中,例如酸洗车间。
在这种环境下,氢离子作为氧化剂得到电子生成氢气。
而吸氧腐蚀则更为常见,如上述铁在潮湿空气中的生锈就属于吸氧腐蚀,氧气作为氧化剂参与反应。
金属电化学腐蚀的影响因素众多。
首先是金属的本性,不同的金属在相同的环境中腐蚀速率可能相差很大。
一般来说,化学性质越活泼的金属越容易发生腐蚀,例如钾、钠等活泼金属在空气中极易被氧化。
其次,电解质溶液的性质也起着关键作用。
溶液的酸碱度、离子浓度、导电性等都会影响腐蚀的速率。