排队论模型
- 格式:doc
- 大小:133.00 KB
- 文档页数:8
排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:➢有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
➢有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
➢顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:➢输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
➢排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
➢服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξn表示服务员为第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn},n=1,2,…所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ1,ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{Tn}也是独立的。
mm1n排队论模型参数
M/M/1 排队论模型是一种简单的排队系统模型,用于分析单一服务台、顾客到达服从泊松分布、服务时间服从指数分布的系统。
在M/M/1 模型中,有三个主要参数:
1. 到达率(λ):表示单位时间内到达系统的顾客数的期望值,服从参数为λ的泊松分布。
到达率决定了系统中的顾客数量变化速率。
2. 服务率(μ):表示单位时间内一个顾客被服务完成的期望值,服从参数为μ的指数分布。
服务率决定了系统中顾客等待服务的速度。
3. 顾客到达和服务时间是独立的:这个条件表明顾客的到达和服务的完成之间没有影响,使得模型更具有现实意义。
通过平衡方程法,可以对M/M/1 模型进行稳态分析,计算出以下几个重要性质:
1. 队长(Ls):表示系统中的顾客数(n)的期望值。
2. 排队长(Lq):表示系统中排队等待服务的顾客数(n)的期望值。
3. 逗留时间(Ws):指一个顾客在系统中的全部停留时间,为期望值。
4. 等待时间(Wq):指顾客在系统中等待服务的時間,为期望值。
了解这些参数后,可以对M/M/1 模型进行评估和优化,以提高系统的效率和服务质量。
M/M/1 模型虽然简单,但在实际应用中具有广泛的价值,如电话交换系统、计算机网络、银行窗口等。
掌握M/M/1 模型的基本原理和分析方法对于学习排队论和实际应用具有重要意义。
优先权排队论模型带优先权的排队论模型在优先权排队模型中,队中的成员被服务的顺序基于他们被赋予的优先级。
相⽐⼀般的排队模型,很多真实存在的排队系统实际上更符合带优先权的排队论模型,⽐如紧急⼯作的招聘优先于其他⼀般的⼯作;VIP客户较其他⼀般客户,在服务上享有优先权等等。
因此,带优先权的排队论模型有其实际意义。
这⾥介绍两种最基本的优先权排队模型——⾮强占性优先权模型和强占性优先权模型。
两个模型除优先权⾏使⽅式之外,其他假设均⼀致。
我们⾸先描述这两个模型,之后分别给出其结论,最后通过⼀个案例来阐述其在实际中的应⽤。
1.模型公共假设:(1)两个模型都存在N个优先级(1级代表最⾼)(2)服务顺序⾸先基于优先级,同⼀优先级内,依据“先到先服务”(3)对任意优先级,顾客到达服从Poisson分布,服务时间服从负指数分布(4)对任意优先级顾客的服务时间相同(5)不同优先级顾客的平均到达率可以不同⾮强占性优先权(Nonpreemptive Priorities)是指,即使⼀个⾼优先级的顾客到达,也不能强制让⼀个正在接受服务的低优先级顾客返回排队。
也就是说,⼀旦服务员开始对⼀个顾客服务,这项服务就不能被打断直⾄服务结束。
强占性优先权(Preemptive Priorities)是指,⼀旦有⾼优先级的顾客到达,服务员即中断对低优先级顾客的服务(这名顾客重新回到排队中),并马上开始为⾼优先级顾客服务。
结束这项服务后,再按照公共假设中的原则选取下⼀个被服务的顾客。
(这⾥由于负指数分布的⽆记忆性,我们不必关注被中断顾客的服务进度,因为剩余服务时间的分布与从起点开始的服务时间的分布总是相同的。
)对这两个模型来说,如果忽略顾客的优先级,它们是完全等同于⼀般的M/M/s排队模型的。
因此,当计算整个队列中顾客的总⼈数(L,L q)时,M/M/s模型的结论是适⽤的;实际上,若随机选择⼀个顾客,其等待时间(W,W q)也可以通过Little公式计算得出。
计算机网络的排队论模型计算机网络的排队论模型是一种理论模型,用于研究计算机网络中传输数据时产生的排队现象和性能表现。
排队论模型可以帮助我们理解计算机网络中的数据传输过程,优化网络性能,提高网络的吞吐量和响应速度。
在本文中,我们将介绍计算机网络排队论模型的基本概念、分类和应用。
一、排队论模型的基本概念1.1 排队系统排队系统是指在一个服务设施之前等待服务的顾客队列。
在计算机网络中,排队系统可以看作是数据包在网络节点之间传输时产生的排队现象。
排队系统包括输入过程、服务机构和排队规则。
1.2 排队论模型排队论模型是对排队系统进行数学建模和分析的方法。
排队论模型通常包括顾客到达过程、服务时间分布、队列容量和服务规则等因素。
排队论模型可以帮助我们预测排队系统的性能表现,如平均等待时间、系统繁忙度和响应时间等指标。
二、排队论模型的分类2.1 M/M/1排队模型M/M/1排队模型是最简单的排队论模型之一,其中"M"代表顾客到达过程和服务时间满足指数分布,"1"代表只有一个服务设施。
M/M/1排队模型可以用来分析单一服务节点的性能表现,如平均等待时间和系统繁忙度等指标。
2.2 M/M/C排队模型M/M/C排队模型是相对复杂一些的排队论模型,其中"C"代表有C个服务设施。
M/M/C排队模型可以用来分析多个服务节点的性能表现,如系统的吞吐量和响应时间等指标。
2.3 其他排队模型除了M/M/1和M/M/C排队模型,还有很多其他类型的排队论模型,如M/M/∞排队模型、M/G/1排队模型和多类别排队模型等。
每种排队模型都有其独特的特点和适用范围,可以根据实际情况选择合适的模型进行性能分析。
三、计算机网络排队论模型的应用3.1 网络流量建模计算机网络排队论模型可以用来建模网络中的数据传输过程,分析网络节点的繁忙度和数据包的平均等待时间。
通过对网络流量进行建模,可以优化网络拓扑结构、改进路由算法和提高网络性能。
随机服务系统排队论模型随机服务系统排队论模型随机服务系统排队论模型是一种用于研究排队现象的数学模型。
排队现象无处不在,无论是在日常生活中的超市、银行,还是在工业生产中的生产线,都存在着等待服务的过程。
排队论通过建立数学模型,可以对排队系统中的各种指标进行预测和优化,以提高服务效率和顾客满意度。
在随机服务系统排队论模型中,通常包括以下几个要素:顾客到达过程、服务过程、服务台数量和服务策略。
顾客到达过程是指顾客到达系统的时间间隔,可以是按照某种概率分布进行模拟;服务过程是指服务台为顾客提供服务的时间,也可以按照概率分布进行模拟;服务台数量是指系统中可同时提供服务的服务台数量,可以是一个或多个;服务策略是指服务台的调度规则,如先来先服务、最短任务优先等。
----宋停云与您分享----通过建立数学模型,可以计算出排队系统的一些重要指标,如平均等待时间、顾客平均逗留时间、服务台利用率等。
这些指标可以帮助管理者评估当前系统的性能,并提出改进措施。
例如,如果发现系统的平均等待时间过长,可以考虑增加服务台数量或改变服务策略,以提高服务效率。
随机服务系统排队论模型在实际应用中具有广泛的价值。
在超市或银行等零售行业,可以通过对顾客到达过程进行建模,预测顾客的到达情况,从而合理安排服务台的工作人员;在工业生产中,可以通过对生产线的排队进行建模,优化生产过程,降低生产成本。
除了传统的排队论模型,近年来还出现了基于仿真的排队论模型。
基于仿真的排队论模型利用计算机技术,通过模拟大量的顾客到达和服务过程,可以更加真实地模拟排队系统的运行情况。
这种模型可以帮助管理者直观地了解系统的运行状况,以及不同决策对系统性能的影响。
----宋停云与您分享----总之,随机服务系统排队论模型是一种重要的数学工具,可以帮助我们理解和优化排队系统的运行。
通过合理应用排队论模型,可以提高系统的效率和顾客的满意度,为各行各业的管理者提供有力的决策支持。
数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
排队论模型1. 引言排队论是运筹学中的一个重要分支,研究的是排队系统中顾客的到达、等待和服务过程。
在现实生活中,我们经常会遇到排队的场景,如银行、超市、医院等。
通过排队论模型的分析,可以帮助我们优化服务过程,提高效率和顾客满意度。
本文将介绍排队论模型的基本概念和常用模型。
2. 基本概念2.1 排队系统排队系统是指顾客到达一个系统,并等待被服务的过程。
一个排队系统通常包含以下几个要素:•到达过程:顾客到达系统的时间间隔可以是随机的,也可以是确定的。
•排队规则:系统中的顾客通常按照先来先服务原则排队。
•服务过程:系统中的服务员或服务设备为顾客提供服务,服务时间也可以是随机的或确定的。
•系统容量:排队系统中通常有一定的容量限制,即同时能够容纳的顾客数量。
2.2 基本符号在排队论中,通常使用以下符号来表示不同的概念:•λ:到达率,表示单位时间内系统的平均到达顾客数量。
•μ:服务率,表示单位时间内系统的平均服务顾客数量。
•ρ:系统利用率,表示系统的繁忙程度,计算公式为ρ = λ / μ。
•L:系统中平均顾客数,包括正在排队等待服务的顾客和正在接受服务的顾客。
•Lq:系统中平均等待队列长度,即正在排队等待服务的顾客数。
•W:系统中平均顾客逗留时间,包括等待时间和服务时间。
•Wq:系统中平均顾客等待时间,即顾客在排队等待服务的平均时间。
3. 常用模型3.1 M/M/1模型M/M/1模型是排队论中最简单的模型之一,其中M表示指数分布。
M/M/1模型满足以下几个假设:•顾客到达率λ满足均值为λ的指数分布。
•服务率μ满足均值为μ的指数分布。
M/M/1模型的特点是顾客到达率和服务率是独立的,且符合指数分布。
根据排队论的理论分析,可以计算出系统的性能指标,如系统利用率、平均顾客数、平均等待队列长度等。
3.2 M/M/c模型M/M/c模型是M/M/1模型的扩展,其中c表示服务员的数量。
M/M/c模型满足以下假设:•顾客到达率λ满足均值为λ的指数分布。
队列问题的公式通常用于解决一些具有队列特性的数学问题。
下面列举几个常见的队列问题公式:
1.排队论中的M/M/1公式:M/M/1模型表示一个系统有无限个顾客和有限
个服务台,顾客以泊松流到达,服务时间和服务时间是相互独立的,服从
相同的指数分布。
该模型可以用以下公式表示:L = λW,其中L是队列长
度,λ是平均到达率,W是平均服务时间。
2.排队论中的M/M/c公式:M/M/c模型表示一个系统有无限个顾客和c个服
务台,顾客以泊松流到达,服务时间和服务时间是相互独立的,服从相同
的指数分布。
该模型可以用以下公式表示:L = (c / (c - λ)) * λ * W,其中L
是队列长度,λ是平均到达率,W是平均服务时间。
3.优先队列公式:优先队列是一种数据结构,其中元素具有优先级。
最常见
的优先队列公式是查找具有最大优先级的元素的时间复杂度为O(log n),插入新元素的时间复杂度为O(log n),删除具有最大优先级的元素的时间复杂度为O(log n)。
4.循环队列公式:循环队列是一种使用固定大小的数组实现队列的方法,其
中头尾指针可以指向队列的开头和结尾。
循环队列的公式包括:front =
(front + enqueue) % size和rear = (rear + enqueue) % size,其中front是头指针,rear是尾指针,enqueue是入队操作,size是数组大小。
以上是一些常见的队列问题公式,它们可以帮助我们解决一些具有队列特性的数学问题。
医院排队论模型(1)医院排队论模型指的是人在医院排队就诊的过程中,如何利用排队论模型来优化排队过程,提高就诊效率,降低排队时间。
下面从排队论模型的三要素(到达率、服务率、队列容量)出发,探讨在医院排队过程中如何优化流程。
第一、到达率到达率指的是单位时间内到达就诊的人数。
在医院排队过程中,到达率的分析可以帮助医院预测每天需要接待的患者数量,从而根据就诊人数、科室人员数量等资源来合理安排诊疗流程,避免出现拥堵的情况。
在医院安排就诊计划时,可以根据就诊需求、人员数量、诊室开放时长等来制定排班计划,如早上安排主诊医生接待复杂病人,下午安排副诊医生接待一般患者等。
第二、服务率服务率指的是单位时间内完成服务的人数。
在医院排队过程中,每个病人的就诊时间不同,有的患者需要进行详细检查、化验,需要较长时间,有的患者可能只需要短暂检查,大约十几分钟左右。
因此,为了提高个体效率,医院可以根据病人种类、健康状况等特不同性制定不同的服务时间,避免患者等待时间过久。
医院服务行业,提高服务水平可以吸引更多患者就诊,轻松排队也能提高了患者就诊时的舒适度和安全感。
第三、队列容量队列容量指的是医院可以容纳等待就诊人数和等待空间。
医院到达的患者数量与就诊人数不匹配,往往会造成人流混乱,交通拥堵等问题。
因此,医院应该合理利用队列容量,充分利用场地现有资源,设置等待区域、设立排队标识等措施,通过这些技术手段,既可以避免人流混乱,也可以避免就诊过程中因不注意安全方面出现不必要的伤害。
以上是基本的医院排队论模型,通过对到达率,服务率和队列容量的分析可以合理安排医院就诊计划,优化流程,提高服务水平、减少等待时间,使得医院就诊流程得到良性循环。
排队论模型随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。
排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。
随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。
随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。
排队论模型及其在医院管理中的作用每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。
排队论就是对排队进行数学研究的理论。
在医院系统内,“三长一短”的现象是司空见惯的。
由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。
但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。
一、医院系统的排队过程模型医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。
如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。
图1 医院系统的多级排队过程模型二、排队系统的组成和特征一般的排队系统都有三个基本组成部分:1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。
2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。
排队的列数还分单列和多列。
3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。
三、排队模型的分类方法一个实际问题作为排队问题求解时,首先要研究它属于哪个模型。
如果按照排队系统特征的各种可能情形来分类,是很多的。
但通用的分类方法为:X/Y/Z其中X处填写表示相继到达间隔时间的分布;Y处填写表示服务时间的分布;Z处填写并列的服务台的数目。
按照惯例,下面的符号常用来代替上式中的符号。
M——泊松到达或离去(或者到达间隔为指数分布或服务时间为指数分布)G——一般离去分布(或一般服务时间分布)D——定长服务时间如M/M/1即表示到达过程服从泊松分布,服务时间服从负指数分布,服务台为一个的情形。
四、排队系统的数量指标1. 队长指在系统中的顾客数,它的期望值记作Ls;(这里及以后的顾客都可理解为病人)排队长(队列长),指在系统中排队等待服务的顾客数,它的期望值记作Lq;队长=排队长+正被服务的顾客数。
一般情形,Ls(或Lq)越大,说明服务率越低。
2. 逗留时间指一个顾客在系统中的停留时间,它的期望值记作Ws。
等待时间,指一个顾客在系统中排队等待的时间,它的期望值记作Wq。
逗留时间=等待时间+服务时间据心理学调查,诊病问题中仅仅等待时间是病人们所关心的。
五、排队模型1. M/M/1模型M/M/1模型即指顾客到达服从泊松分布,服务时间服从负指数分布,单服务台的情形。
它又分为标准型、顾客源有限型和服务系统容量有限型三种。
由于一个城市或任何地区的所有人都被认为是医院的可能“顾客”,这样大的数目可以认为是无限的,因此顾客源为有限的这种情形本文就不讨论了。
有些服务系统的容量是有限的,医院也有这种情形,如规定一天门诊挂100个号,那么第101个病人就会被拒绝。
但是笔者近期观察了几家医院,发现由于实行了“门诊计量奖”,一般在日班门诊这段时间内到来的病人不会被拒绝(特殊科室除外)。
因此我们也可假定医院系统的容量一般是无限的。
这样我们就只讨论标准型。
标准的M/M/1模型是指适合下列条件的排队系统:(1)输入过程——病人源是无限的,单个到来且相互独立,一定时间的到达数服从泊松分布,到达过程已是平稳的(到达间隔时间及期望值、方差均不受时间影响)。
(2)排队规则——单队,且对队长设有限制,先到先服务。
(3)服务机构——单服务台,各病人的诊治时间是相互独立的,服从相同的负指数分布。
此外,还假定病人到达间隔时间和诊治时间是相互独立的。
因M/M/1模型要求到达规律服从参数为λ的泊松过程,服务时间服从参数为μ的负指数分布,所以先介绍这两个概念:λ——平均到达率,表示单位时间平均到达的病人数。
μ——平均服务率,表示单位时间能被服务完的病人数(期望值),而1/μ就表示一个病人的平均服务时间。
在排队论中“平均”就指概率论中的数学期望,这是一种习惯用法。
这两个参数都需要实测的数据经过统计学检验来确定(方法见例1)。
λ/μ有着重要意义,它是相同时间区间内病人到达的期望值与能被服务的期望值之比,这个比是刻划服务效率和服务机构利用程度的重要标志。
令ρ=λ/μ我们称ρ为服务强度。
在解排队论问题时,要求求出系统在任意时间的状态为n(系统中有几个病它决定了系统运行的特征。
人数)的概率Pn,关于服务的排队系统对于呼叫中心来说,服务水平是最重要的KPI之一,是衡量呼叫中心服务质量的指标,提高并维护服务水平是每一个呼叫中心管理者都应该认真面对的问题。
但是服务水平的控制却不是那么容易,原因是服务水平不像接通率那样,可以直接由现成的容易理解的数据得到,并且服务水平的波动也非常大。
要控制服务水平,首先要理解服务水平,了解影响服务水平的因素。
所以在此,我们对服务水平进行深度的数学分析,全面了解服务水平的计算方法与主要的影响因素,并且给出控制服务水平的方法。
服务水平(Service Level)是一个百分比,指的是在指定时间内接听的电话的比例。
在业内,一般来说服务水平采用的是20秒内接通率或者15秒内接通率。
从理论上来说,只要我们可以知道每一通呼入的具体数据,就可以通过每通电话从转入人工到客户代表接起的时间,把在20秒或者15秒之内接听的呼入统计出来,再与总体呼入量相比,就可以得到准确的服务水平。
但是每天面对成千上万的呼入量,要得到每一通电话的具体数据是非常烦琐的,也是没有必要的。
我们使用的CMS系统会自己帮我们统计这些数据,并且经过后台计算,得到服务水平的结果。
但是CMS系统只告诉我们数据,服务水平与其他指标之间的关系还是需要我们自己去分析和理解,然后去控制。
其实,把呼叫中心简单化来看,就是一个非常标准的排队论模型。
从模型本身来看,是非常简单的三个过程,顾客到来、接受服务和离开。
其中当顾客比较多,而服务台不能同时服务足够多的顾客时,就有顾客开始排队,直到自己被服务为止。
对于呼叫中心,情况基本相同,服务水平就是本模型中有多少顾客等待时间少于20秒或者15秒。
所以我们就可以利用排队论模型来对呼叫中心的相关数据进行分析。
在排队论模型中,几个关键前提是:1.顾客的到来服从固定的分布;2.服务台的服务时间服从固定的分布;3.服务规则。
下面就根据排队论模型的关键前提来对呼叫中心进行建模。
相信每个呼叫中心都有预测分析人员,会掌握每日的呼入分布,例如:上午的9:00-11:00和下午的3:00-5:00是呼入的高峰期,而吃饭时间呼入会比较小。
呼入的分布从大的时段上看是有规律的,例如年周期、月周期、周周期等等。
但是小到一定的程度呼入量就会趋向于随机分布。
例如,从上午9:00-9:30的半小时,我们可以预测大约有300通呼入,但是我们不能预测呼入在这半小时中的分布情况,因为在半小时之内,呼入是随机的。
那么,我们认为在半小时的时间内,呼入服从泊松分布。
相信每个呼叫中心的班次不同,各个时段的上班人数也不同,但是经过时段细分后,每半小时的上班人数是固定的。
在我们的呼叫中心里,服务时间服从于以平均ACD与平均ACW之和为数学期望的负指数分布。
在每个呼叫中心,CTI和PBX对呼入进行分配,一般都采用了先到先服务的排队规则。
这样,以我们的呼叫中心为例,就得到排队论模型如下:时间段:半小时顾客:呼入的电话……服从泊松分布服务台:所有的客户代表……服从负指数分布服务规则:先到先服务如果有的呼叫中心设定了系统容量或者到时间自动放弃等,也可以加入排队论模型,本模型只讨论系统容量默认为无限大,没有限时自动放弃(例如)的情况。
这样,此模型中的指标也与呼叫中心的指标相对应,如下:顾客离开……呼叫放弃(半小时)平均排队时长……平均速度应答(半小时)平均顾客离开前等待时间……平均放弃时长(半小时)这样通过对呼叫中心进行建模,我们可以掌握每半小时内的呼入等待分布、平均放弃分布、平均ACD与平均ACW之和的分布。
进而明确影响这些指标的因素,通过对每半小时的指标控制来对整日、整周、整月的KPI指标进行控制。
在此,先考虑呼入不会放弃的情况,假设在半小时之内,呼入的电话服从参数为λ的泊松分布,客户代表的服务时间服从参数为?的负指数分布,目前有n 个客户代表上班,系统内有i个客户的概率为P(i),分析这个时候的排队系统,得到状态转移关系图:由此得到差分方程:求解,可以得到:之后便可以进一步得到平均等待电话数和平均速度应答的公式:由此数学模型,我们就可以计算出在半小时之内的平均速度应答情况,例如:在上午10:00-10:30之间,平均呼入为200通,则可设定λ=200。
客户代表的平均ACD+平均ACW为180秒,则可设定?=10。
本时段有25名客户代表上班,则可设定c=25。
通过公式计算,可以得到,平均速度应答为7.5秒,平均等待人数为0.8个。
当然这只是理想的情况,在实际工作中,客户在等待时间过长的时候会主动放弃,不过在CMS系统中,我们可以得到客户的平均放弃时长,把这个参数也加入到模型之中。
如果CTI和PBX的设定不同,也可以在本模型中修改参数。
根据最简单的模型演示,我们也可以得到呼入的速度应答分布,如下图:从图中可以看到,根据?、λ、c等参数的变化,分布曲线也是不同的,但是大体形状相同。
因为呼入进线都需要客户代表有一个反映时间与震铃时间,所以在0秒处应答的电话为0。
平均服务水平就是曲线与时间轴之间的面积。
例如:20秒内接通率为曲线从0到20所做的定积分。
而平均速度应答就是使积分面积等于总面积一半的点。
在本图中需要注意一点,当把呼入放弃加入本模型之后,主动放弃的呼入将不计入本曲线之内。
在本曲线中,?、λ、c等参数的变化是会影响图形形状的,如果λ很大,而c过小,则曲线将会便矮。
如果λ>c?,则曲线形状将发生比较大的变化,因为变化后的曲线类型比较多,在此不一一讲述。