贝努里概型
- 格式:ppt
- 大小:172.00 KB
- 文档页数:7
伯努利概型和贝利努概型
伯努利概型和贝利努概型都是三种简单概型中的一个,相对伯努利概型是考研中概率题型中常考考点之一,并且考研中对伯努利概型的考察经常和实际问题相结合,所以考生对伯努利概型的掌握,不仅仅限于对符号和分布律的记忆了,也要理解伯努利概型,知道什么时候应该使用伯努利概型。
首先,我们先看看伯努利概型是怎样定义的:2021考研管综初数管综初数备考伯努利概型,关于伯努利概型中,最主要抓住的关键点三个:1.独立,2.重复,3.两种结果。
而其中两种结果可以通过人为的方式来规定,所以一般伯努利概型的问题,常常会解读出独立重复试验。
伯努利概型对考生的要求是要从题干中抽象出来伯努利概型的问题。
所以各位考生复习伯努利概型从这三个角度进行复习。
以上是为管综考研考生整理的“20XX考研管综初数强化备考:浅析伯努利概型”相关内容,希望整理的能有所帮助。
高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。
在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。
一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。
3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。
对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。
“独立是指是指各次试验的结果是相互独立的。
基于n重贝努利试验建立的模型,即为贝努利模型。
4、超几何分布:是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
贝努里概型伯努利家族在数学与科学上的地位正如巴赫家族在音乐领域的地位一样地显赫。
这个非凡的瑞士家族在三代时间里产生了十余位数学家和物理学家,其中有八位数学家(其中三位是杰出的,他们是雅可布、约翰、丹尼尔),他们又生出了在许多领域里崭露头角的成群后代。
雅可布发明了极坐标,他和他的弟弟约翰是莱布尼茨的朋友,经常书信往来讨论数学问题。
他们对于莱布尼茨发明的微积分方法极为推崇,迅速地接受了莱布尼茨的学说,并且加以发扬光大。
雅可布曾当过洛必达的私人教师,最先提出洛必达法则,是欧拉的老师。
雅可布和约翰两兄弟有时致力于研究同一个问题,但是由于彼此嫉妒和易于激动,这一情况是很遗憾的。
有时两人之间的摩擦爆发成为公开的嫉恨诟骂。
由于解决“最速降线”问题,兄弟两个因为解法的优劣而争论不休,两人之间的口角纷争达数年之久,其所用言辞之粗野很像市井上的对骂而非科学讨论。
这两人之中约翰的脾气似乎更坏,因为多年之后,由于他的二儿子丹尼尔获得了他自己渴望获得的法兰西科学院奖金,约翰竟把他摔出窗外。
n次重复独立试验:(1)相同的条件下重复地做某试验n次;可重复性(2)每次试验结果不受其它各次试验影响;独立性如:掷骰子n重贝努里试验:每次试验结果只有两种可能的n重独立试验1.共进行n次试验;2.各次试验相互独立;3.在每次试验中某事件A或者发生或者不发生;4.在每次试验中事件A出现的概率都是p(0p1)。
n重贝努里试验中事件A恰好发生k(0kn)次的概率为kknkPn(k)Cnp(1p)证明:设Ai={第i次贝努里试验中出现A},B={n重贝努里试验中A出现k次}分步:(1)A在指定的前k次试验中出现,后n-k次中不出现pP(A1...Akk1...n)P(A1)...P(Ak)P(k1)...P(n)pkqnkk(2)事件A可能出现在n次试验中的任何k次,共Cn中情况。
kknk所以Pn(k)Cnpq例1(1)将一个对称的硬币掷2次,求出现:恰好一次正面的概率;(2)将一个对称的硬币掷10次,求出现:恰好4次正面的概率。
§1、6 贝努利概型一、试验的相互独立性二、贝努利概型一、试验的相互独立性定义6.1若在同样条件下,将试验E重复进行n次,若各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这n次试验是相互独立的。
例6.1在同样条件下,抛掷一均匀硬币n次,易见每次投掷的结果,即不管出现“正面”或“反面”,均不会影响其它各次投掷结果,即此为n次重复且相互独立试验。
例6.2从一批灯泡中,任取n只作寿命试验,而每只灯泡的寿命结果不会影响其它灯泡的寿命结果,故此亦为n 次重复且相互独立试验。
注意到例6.1 与例6.2的试验,前者每次试验只有两个结果{H,T},而后者有无穷多结果{t | t≥0},本节重在讨论前一种试验类型,即贝努利概型。
二、贝努利概型。
记为概率,,这个概率常称为二项概率是实际中常遇到的次的恰恰出现重贝努利概型中时间广泛的运用。
在常要的数学模型,有着非贝努利概型是一种很重概型。
或称贝努利重贝努利试验为这一串重复的独立试验则称次独立地重复进行将且或的结果只有两个,即设试验)(,,),10(1)(,)(,k k A n n n E p q p A P p A P A A E P n <<=−==定义6.2)3.6()1(1)1()()2.6()1(1)1()()1.6(1010∑∑∑∑+=−=−−=−=−−−=−=−−=−=n i k k n k kn i k k n k k n n i k k n k k n n i k k n k k n n p p C p p C i A P p p C p p C i A P 次至多发生次至少发生可得由()(1);0,1,,,(01)(6.1)(6.1)kk n k n n n A k P k C p p k n p −=−=<<"次贝努利试验中恰出现次的概率式称为二项概率公式。
例某织布车间有30台自动织布机,由于检修、上纱等各种工艺上的原因,每台布机时常停车。
贝努利概率型公式贝努利概率是一种用来计算两个事件发生的概率的方法。
它的基本公式如下:P(A) = p其中,P(A)表示事件A发生的概率,p表示事件A发生的概率(介于0到1之间)。
例如,如果你想计算一枚硬币抛出后正面朝上的概率,则可以使用贝努利概率公式。
假设你抛出了一枚硬币,则事件A为硬币正面朝上,概率p为0.5。
根据贝努利概率公式,硬币正面朝上的概率P(A)就是0.5。
贝努利概率公式通常用于计算两个互斥事件发生的概率,即两个事件中至少有一个事件发生。
在这种情况下,公式为:P(A or B) = P(A) + P(B)其中,P(A or B)表示事件A或B中至少有一个发生的概率,P(A)和P(B)分别表示事件A和B 发生的概率。
例如,假设你有两枚硬币,你想计算至少有一枚硬币正面朝上的概率。
如果每枚硬币正面朝上的概率都是0.5,则根据贝努利概率公式,至少有一枚硬币正面朝上的概率P(A or B)就是0.5 +0.5 = 1。
这意味着两枚硬币中至少有一枚正面朝上的概率是100%。
贝努利概率公式也可以用来计算两个事件同时发生的概率。
在这种情况下,公式为:P(A and B) = P(A) * P(B)其中,P(A and B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。
例如,假设你有两枚硬币,你想计算两枚硬币同时正面朝上的概率。
如果每枚硬币正面朝上的概率都是0.5,则根据贝努利概率公式,两枚硬币同时正面朝上的概率P(A and B)就是0.5 * 0.5 = 0.25。
这意味着两枚硬币同时正面朝上的概率是25%。
贝努利概率公式是概率计算的基础公式之一,在许多方面都有广泛的应用。
例如,它可以用来计算赌博、保险、医学等领域的概率。
此外,贝努利概率公式也是机器学习和数据分析中经常使用的公式之一。