红 外 光 谱 法 (1)
- 格式:ppt
- 大小:12.72 MB
- 文档页数:107
红外分光光光度法1.CO 的红外光谱在2 170cm -1处有一振动吸收峰.问(1)CO 键的力常数是多少?(2)14CO 的对应峰应在多少波数处发生吸收? 解:碳原子的质量2323100.210022.612--⨯=⨯=C m g 氧原子的质量2323106.210022.616--⨯=⨯=O m g (1) σ =2071cm -1O C O C m m m m k c ⋅+=)(21πσ 2346210210)6.22(106.22)217010314.32()2(--⨯+⨯⨯⨯⨯⨯⨯⨯=+=O C O C m m m m c k σπ=18.6×105 dyn·cm -1=18.6N·cm -1(厘米克秒制)(2)14CO 2323103.210022.614-⨯=⨯=C m g2071106.23.210)6.23.2(106.1810314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -1或O C O C O C O C m m m m m m m m +⋅⨯⋅+=1212141412σσ σ =2080cm -12.已知C―H 键的力常数为5N/cm ,试计算C―H 键伸展振动的吸收峰在何波数?若将氘(D )置换H ,C―D 键的振动吸收峰为多少波数.解:C-H 键:k =5N·cm -1=5.0×105dyn·cm -1碳原子的质量:m C =2.0×10-23g, 氢原子的质量:23231017.010022.61--⨯=⨯=H m g氘原子的质量: 23231034.010022.62--⨯=⨯=D m g 依2121)(21m m m m k c ⋅+=πσ得29961017.00.210)17.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -121991034.00.210)34.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -13.指出以下振动在红外光谱中是活性的还是非活性的分 子 振 动(1)CH 3一CH 3 C―C 伸缩振动(2)CH 3一CC13 C―C 伸缩振动(3)SO 2 对称伸缩振动(4)CH 2=CH 2 C―H 伸缩振动C CH H(5)CH 2=CH 2 C―H 伸缩振动C CH H(6)CH 2=CH 2 CH 2摆动 C C HHH H (7)CH 2=CH 2 CH 2扭曲振动 C CH H H H解:非红外活性:(1), (5), (7)红外活性:(2), (4), (6), (8)4.下面三个图形(图4-20)分别为二甲苯的三种异构体的红外光谱图。
红外光谱法基本原理红外光谱是反映分子的振动情况。
当用一定频率的红外光照射某物质分子时,若该物质的分子中某基团的振动频率与它相同,则此物质就能吸收这种红外光,使分子由振动基态跃迁到激发态。
因此,若用不同频率的红外光依次通过测定分子时,就会出现不同强弱的吸收现象。
用T%-λ作图就得到其红外光吸收光谱。
红外光谱具有很高的特征性,每种化合物都具有特征的红外光谱。
用它可进行物质的结构分析和定量测定。
气相色谱法基本原理气相色谱法是以气体(此气体称为载气)为流动相的柱色谱分离技术。
在填充柱气相色谱法中,柱内的固定相有两类:一类是涂布在惰性载体上的有机化合物,它们和沸点较高,在柱温下可呈液态,或本身就是液体,采用这类固定相的方法称为气液色谱法;另一类是活性吸附剂,如硅胶、分子筛等,采用这类固定相的方法称为气固色谱法。
它的应用远没有气液色普法广泛。
气固色谱法只适用于气体及低沸点烃类的分析。
在毛细管气相色谱法中,色谱柱内径小于lmm,分为填充型和开管型两大类。
填充型毛细管与一般填充柱相同,只是径细、柱长,使用的固定相颗粒在几十到几百微米之间。
开管型固定相则通过化学键组合或物理的方法直接固定在管壁上,因此这种色谱柱又称开管理柱,它的应用日益普遍。
原则上,在填充柱中能够使用的固定液,在毛细管柱中也能使用,但毛细管柱比普通填充柱柱效更高,分离能力更强。
气相色谱法的应用面十分广泛,原则上讲,不具腐蚀性气体或只要在仪器所能承受的气化温度下能够气化,且自身又不分解的化合物都可用气相色谱法分析。
当样品加到固定相上之后,流动相就要携带样品在柱内移动。
流动相在固定相上的溶解或吸附能力要比样品中的组分弱得多。
组分进柱后,就要在固定相和流动相之间进行分配。
组分性质不同,在固定相上的溶解或吸附能力不同,即它们的分配系数大小不同。
分配系数大的组分在固定相上的溶解或吸附能力强,停留时间也长,移动速度慢,因而后流出柱。
反之,分配系数小的组分先流出柱子。
实验一红外光谱法测定聚合物的结构一、实验目的:1. 了解红外线分析聚合物的原理及其应用范围;2. 掌握操作红外线分析仪器的操作方法;3. 测定某位置样品的红外谱图。
二、实验原理:在分子中存在着许多不同类型的振动,其振动自由度与原子数有关。
含N 个原子的分子有3N个自由度,除去分子的平动和转动自由度以外,振动动自由度应为3N-6(线性分子是3N-5)这些振动可分两大类:一类是沿键轴方向伸缩使键长发生变化的振动,称为为伸缩振动,用V表示。
这种振动又分为对称伸缩振动用V表示和非对称伸缩震动用Vas表示;另一类原子垂直于价键方向振动;此类振动会引起分子内键角发生变化称为弯曲(或变形)振动,用δ表示,这类振动又可分为面内弯曲振动(包括平面及剪式两种振动),面外弯曲振动(包括非平面摇摆及弯曲摇摆两种振动)。
分子振动能与振动频率成反比。
为计算分子振动频率,首先研究各个孤立的振动,即双原子分子的伸缩振动。
可用弹簧模型来描述最简单的双原子分子的简谐振动。
把两个原子看成质量分别为m1和m2的钢性小球,化学键好似一根无质量的弹簧在原子分子中有多种振动形式,每一种简正振动都对应一定的振动频率,但并不是每一种振动都会和红外辐射发生相互作用而产生红外吸收光谱,只有能引起分子偶极矩变化的振动(称为红外活性振动),才能产生红外吸收光谱。
也就是说,当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频率相同,可以和相同频率的红外辐射发生相互作用,使分子吸收红外辐射的能量跃迁到高能态,从而产生红外吸收光谱。
在正常情况下,这些具有红外活性的分子振动大多数处于基态,被红外辐射激发后,跃迁到第一激发态。
这种跃迁所产生的红外吸收称为基频吸收。
在红外吸收光谱中大部分吸收部属于这一类型。
除基频吸收外还有倍频和合频吸收,但这两种吸收都较弱。
红外吸收谱带的强度与分子数有关,但也与分子振动时偶极矩变化率有关。
变化率越大,吸收强度也越大,因此极性基团如碳基、胺基等均有很强的红外吸收带。