离散数学---谓词公式与解释
- 格式:ppt
- 大小:226.00 KB
- 文档页数:19
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀(2))()(y x yQ y x xP ,,∃→∀ (3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →;x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是y ∃的约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀ (2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀(2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。
2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。
3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。
二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。
2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。
3. 简单蕴涵:P→Q,Q即P的蕴涵结果。
三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。
2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。
3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。
四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。
2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。
3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。
离散数学是一门研究离散对象及其性质的数学分支,它在计算机科学、信息技术以及工程领域具有重要的应用价值。
在离散数学中,谓词公式和命题公式是两个重要的概念,它们在逻辑推理和证明中起着至关重要的作用。
本文将对谓词公式和命题公式进行详细的比较与分析。
1. 谓词公式谓词公式是一种含有变量的复合命题,它通常用来描述对象之间的关系或者属性。
谓词公式由谓词符号和变量组成,例如P(x)、Q(x, y)等。
在谓词公式中,变量可以取代具体的对象,从而得到一个具体的命题。
谓词公式一般可以表示为∀x(∃yP(x, y)),其中∀表示全称量词,∃表示存在量词,P(x, y)表示谓词公式。
谓词公式的真假取决于变量的取值范围和具体的谓词定义。
谓词公式的真假可以通过逻辑运算和推理来确定,通常需要使用证明方法或者真值表等工具来进行验证。
2. 命题公式命题公式是一个不含变量的简单命题,它通常用来表示一个完整的陈述或者断言。
命题公式可以是一个简单的原子命题,也可以是多个原子命题通过逻辑连接词组合而成的复合命题。
“今天下雨”、“2加2等于4”等都可以看作是命题公式。
命题公式的真假只取决于公式本身的内容,它只有两种取值:真和假。
命题公式可以通过真值表的方法来验证其真假,并且可以使用逻辑等价和逻辑推理来进行推导和证明。
3. 谓词公式和命题公式的区别从上面的比较可以看出,谓词公式和命题公式在以下几个方面有着明显的区别:3.1 变量的使用谓词公式使用变量来表示对象之间的关系,而命题公式不含有变量,它是一个固定的陈述或者断言。
谓词公式可以根据变量的取值范围得到不同的命题,而命题公式的真假只取决于公式本身的内容。
3.2 真假的判断谓词公式的真假取决于变量的取值范围和具体的谓词定义,需要使用证明方法或者真值表来进行验证;而命题公式的真假只取决于公式本身的内容,可以通过真值表的方法来验证其真假,并且可以使用逻辑等价和逻辑推理来进行推导和证明。
3.3 表达的含义谓词公式通常用来描述对象之间的关系或者属性,它具有一定的泛化和普适性;而命题公式通常用来表示一个完整的陈述或者断言,它具有明确的含义和指向性。
离散数学判断公式类型离散数学是一门研究离散对象及其性质、关系和运算的数学学科。
在离散数学中,有许多重要的公式和定理,可以帮助我们判断公式的类型。
本文将介绍几种常见的公式类型,并对其进行简要解释。
一、命题逻辑公式命题逻辑是离散数学的一个重要分支,它研究命题之间的逻辑关系。
在命题逻辑中,我们常常会遇到命题的合取、析取和否定等运算。
命题逻辑公式指的是由命题变量、逻辑运算符和括号组成的表达式。
例如,p∧q表示命题p和命题q的合取,p∨q表示命题p和命题q的析取,¬p表示命题p的否定。
命题逻辑公式可以通过真值表或推理规则来进行验证。
二、谓词逻辑公式谓词逻辑是命题逻辑的扩展,它引入了谓词和量词的概念。
谓词逻辑公式是由谓词变量、量词、逻辑运算符和括号组成的表达式。
谓词逻辑公式可以表示关于个体和关系的命题。
例如,∀x (P(x)→Q(x))表示对于所有的个体x,如果P(x)成立,则Q(x)也成立。
谓词逻辑公式可以通过真值表或归纳法来进行验证。
三、集合论公式集合论是离散数学的另一个重要分支,它研究集合及其性质、关系和运算。
在集合论中,我们常常会遇到集合的交、并、补和差等运算。
集合论公式是由集合变量、集合运算符和括号组成的表达式。
例如,A∩B表示集合A和集合B的交集,A∪B表示集合A和集合B的并集,A\B表示集合A和集合B的差集。
集合论公式可以通过集合图或Venn图来进行验证。
四、图论公式图论是离散数学的重要分支之一,它研究图及其性质、关系和运算。
在图论中,我们常常会遇到图的顶点数、边数和度数等概念。
图论公式是由图变量、图运算符和括号组成的表达式。
例如,V表示图的顶点数,E表示图的边数,deg(v)表示图中顶点v的度数。
图论公式可以通过图的表示和计算来进行验证。
五、组合数学公式组合数学是离散数学的另一个重要分支,它研究组合结构及其性质、关系和计数。
在组合数学中,我们常常会遇到排列、组合和二项式系数等概念。
离散数学精选笔记一、集合论基础。
1. 集合的定义与表示。
- 集合是由一些确定的、彼此不同的对象组成的整体。
通常用大写字母表示集合,如A、B、C等。
- 集合的表示方法有列举法和描述法。
- 列举法:把集合中的元素一一列举出来,例如A = {1,2,3}。
- 描述法:用谓词来描述集合中元素的性质,例如B={xx是偶数且x < 10}。
2. 集合间的关系。
- 包含关系:如果集合A的所有元素都是集合B的元素,则称A包含于B,记作A⊆ B。
当A⊆ B且A≠ B时,称A是B的真子集,记作A⊂ B。
- 相等关系:如果A⊆ B且B⊆ A,则A = B。
3. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设全集为U,A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
- 集合运算的性质:- 交换律:A∩ B = B∩ A,A∪ B=B∪ A。
- 结合律:(A∩ B)∩ C = A∩(B∩ C),(A∪ B)∪ C=A∪(B∪ C)。
- 分配律:A∩(B∪ C)=(A∩ B)∪(A∩ C),A∪(B∩ C)=(A∪ B)∩(A∪ C)。
二、命题逻辑。
1. 命题与命题联结词。
- 命题是能够判断真假的陈述句。
例如“今天是晴天”是一个命题。
- 命题联结词:- 否定¬:若P为命题,则¬ P表示“P不成立”。
- 合取wedge:Pwedge Q表示“P并且Q”,当P和Q都为真时,Pwedge Q为真。
- 析取vee:Pvee Q表示“P或者Q”,当P和Q至少有一个为真时,Pvee Q为真。
- 蕴涵to:Pto Q表示“如果P,那么Q”,当P为真Q为假时,Pto Q为假,其余情况为真。
- 等价↔:P↔ Q表示“P当且仅当Q”,当P和Q同真同假时,P↔ Q为真。
2. 命题公式及其分类。
- 命题公式是由命题变元(通常用P、Q、R等表示)和命题联结词按照一定规则组成的符号串。