隐函数的求导方法总结
- 格式:doc
- 大小:409.00 KB
- 文档页数:8
隐函数求导方法
隐函数求导方法是一种用于求解非显式函数的导数的技巧。
与显式函数不同,隐函数没有直接的形式来表示其自变量和因变量之间的关系。
因此,为了求解其导数,我们需要使用一种特殊的方法。
隐函数求导的基本思路是通过对该隐函数进行微分,然后利用链式法则来进行推导。
下面是具体的步骤:
1. 首先,将隐函数表示为一个等式,例如:
F(x, y) = 0
2. 对上述等式两边关于x进行求导,得到:
∂F/∂x + ∂F/∂y * dy/dx = 0
3. 根据求导法则,我们知道∂F/∂x 表示 F 关于x的偏导数,而∂F/∂y 表示 F 关于y的偏导数。
4. 我们希望求得 dy/dx,可以通过移项得到:
dy/dx = - (∂F/∂x) / (∂F/∂y)
通过上述步骤,我们可以得到隐函数的导数。
需要注意的是,这种方法只适用于能够将隐函数表示为一个等式的情况,并且可以通过求导来解出 dy/dx。
在一些复杂的情况下,可能需要更多的推导和技巧来求解。
隐函数求导法则隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
在实际问题中,很多函数并不是显式地以y=f(x)的形式给出,而是以隐式方程的形式存在。
这时就需要用到隐函数求导法则来求解导数。
本文将介绍隐函数求导法则的原理和具体应用。
1. 隐函数的概念在代数中,如果一个方程中存在两个变量,并且其中一个变量无法用另一个变量表示,那么这个方程就是一个隐函数。
例如,方程x^2+y^2=1就是一个隐函数,因为无法用y=f(x)的形式来表示。
在实际问题中,很多函数都是以隐函数的形式存在的,因此需要用到隐函数求导法则来求解导数。
2. 隐函数求导法则的原理隐函数求导法则是通过对含有隐函数的方程两边求导来求解导数的方法。
假设有一个隐函数方程F(x, y)=0,其中y是x的函数,即y=g(x)。
为了求解y关于x的导数,可以对方程两边关于x求导,然后通过链式法则来求解。
具体来说,如果F(x, y)=0两边关于x求导,得到∂F/∂x+∂F/∂y*dy/dx=0,然后可以解出dy/dx的表达式。
3. 隐函数求导法则的具体应用隐函数求导法则的具体应用包括求解曲线的切线斜率、求解参数方程的导数、求解隐函数的高阶导数等。
在求解曲线的切线斜率时,可以将方程两边关于x求导,然后代入切点的坐标来求解斜率。
在求解参数方程的导数时,可以将参数方程化为隐函数方程,然后利用隐函数求导法则来求解导数。
在求解隐函数的高阶导数时,可以多次对方程两边求导,然后通过链式法则来求解高阶导数。
4. 隐函数求导法则的应用举例下面通过一个具体的例子来说明隐函数求导法则的应用。
假设有一个隐函数方程x^2+y^2=1,要求解y关于x的导数。
首先对方程两边关于x求导,得到2x+2y*dy/dx=0,然后可以解出dy/dx=-x/y。
这样就求得了y关于x的导数。
5. 隐函数求导法则的总结隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
通过对隐函数方程两边关于自变量求导,然后利用链式法则来求解导数。
第二章 导数与微分
第四节 隐函数及由参
数方程确定的函数的导数
一、隐函数的导数
显函数:
隐函数:
一般的
例1 求由方程确定的隐函数的导数.
例2 设由所确定,求
例3 设求.
例4 设求
.
二、由参数方程所确定的函数的导数
定理 设在上可导,,则
若二阶可导,则
例5 设 求
例6 已知摆线(旋轮线)的参数方程为
求摆线在处的切线方程与法线方程。
三、相关变化率
例7 设有一个倒置的圆锥形容器,其底面圆直径为10cm,高为5cm,
秒时水面上升的速率.现以每秒
给容器中加水.试求
内容小结
1. 隐函数求导法则直接对方程两边求导
2. 对数求导法 :适用于幂指函数及某些用连乘,
连除表示的函数
转化
3. 参数方程求导法极坐标方程求导
4. 相关变化率问题
1)列出依赖于 t 的相关变量关系式
2)等式两端对 t 求导
作业P108:2;3(3)(4);4(1)(3);8(3)(4);11.。
河北地质大学课程设计(论文)题目:隐函数求偏导的方法学院:信息工程学院专业名称:电子信息类小组成员:史秀丽角子威季小琪2016年05月27日摘要 (3)一.隐函数的概念 (3)二.隐函数求偏导 (3)1.隐函数存在定理1 (3)2.隐函数存在定理2 (4)3.隐函数存在定理3 (4)三. 隐函数求偏导的方法 (6)1.公式法 (6)2.直接法 (6)3.全微分法 (6)参考文献 (8)摘要本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导关键字:隐函数 偏导数 方法一.隐函数的概念一般地,如果变量满足方程,在一定条件下,当取某区间的任y x 和()0,=y x F x 一值时,相应地总有满足这方程的唯一的值存在,那么就说方程在该区间内y ()0,=y x F 确定了一个隐函数。
例如,方程表示一个函数,因为当变量在013=-+y x x 内取值时,变量有确定的值与其对应。
如。
()∞+∞-,y 等时时321,10=-===y x y x 二.隐函数求偏导1.隐函数存在定理1 设函数在P (x 。
,y 。
)在某一领域内具有连续偏导数,0),(=y x F 且,,则方程在点(x 。
,y 。
)的某一领域内恒能0),(= y x F 0),(≠ y x F y 0),(=y x F 唯一确定一个连续且具有连续导数的函数,它满足条件,并有)(x f y =)( x f y =。
yxy F F d d x -=例1:验证方程-=0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=12x 2y 时y=1的隐函数y=,并求该函数的导数在x=1处的值。
)(x fdxdy解令=-,则),(y x F 2x 2y=2x ,=-2y ,=0,=-2≠0x F y F )1,1(F )1,1(y F由定理1可知,方程-=0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函2x 2y 数,当x=1时,y=1的隐函数为y=x ,且有===dx dy y x F F-y x 22yx 故==11=x dxdy)1,(!yx2.隐函数存在定理2设函数在点的某一邻域内具有连续()z y x F,,)( z y x P ,,偏导数,且=0,,则方程在点的某一邻)( z y x F ,,0,,≠)( z y x F z ()0,,=z y x F () z y x ,,域内恒能唯一确定一个连续且具有连续偏导数的函数,它满足条件()y x f z ,=并有。
隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。
具有x和y两个自变量的方程通常也称为隐函数。
在这种情况下,求导的方法与单变量函数的情况有所不同。
假设我们有一个方程f(x,y)=0代表一个隐函数。
如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。
我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。
现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。
现在我们来看几个例子。
例子1:考虑方程x^2+y^2 = 1,代表一个圆形。
假设我们需要求通过点(0.5,0.866)的圆的斜率。
我们可以通过对方程隐式地求导来解决这个问题。
从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。
假设要求通过点(0.5, 0.866, 0)的球的切平面。
我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。
我们可以通过隐函数求导的方法来找到它的方向。
从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。
我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。
河北地质大学
课程设计(论文)题目:隐函数求偏导的方法
学院:信息工程学院
专业名称:电子信息类
小组成员:史秀丽
角子威
季小琪
2016年05月27日
摘要 (3)
一.隐函数的概念 (3)
二.隐函数求偏导 (3)
1.隐函数存在定理1 (3)
2.隐函数存在定理2 (4)
3.隐函数存在定理3 (4)
三. 隐函数求偏导的方法 (5)
1.公式法 (5)
2.直接法 (6)
3.全微分法 (6)
参考文献 (8)
摘要
本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法
一.隐函数的概念
一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一
值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确
定了一个隐函数。
例如,方程013
=-+y x 表示一个函数,因为当变量x 在()∞+∞-,
内取值时,变量y 有确定的值与其对应。
如等时时321,10=-===y x y x 。
二.隐函数求偏导
1.隐函数存在定理1 设函数0),(=y x F 在P (x 。
,y 。
)在某一领域内具有连续偏导数,
且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。
,y 。
)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有
y
x
y F F d d x -
=。
例1:验证方程2x -2
y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx
dy
在x=1处的值。
解 令),(y x F =2x -2
y ,则
x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0
由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有
dx dy =y x F F -=y x 22=y
x
故
1=x dx
dy =
)
1,(!y
x
=1 2.隐函数存在定理 2 设函数()z y x F ,,在点)(οοοz y x P ,,的某一邻域内具有连续
偏导数,且)(οοοz y x F ,,=0,0,,≠)(οοοz y x F z ,则方程()0,,=z y x F 在点()οοοz y x ,,的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数()y x f z ,=,它满足条件()οοοy x f z ,=并有
z
y z x F F y z
F F x z -=∂∂-=∂∂,。
例2:设函数()y x z z ,=由方程z y x z xy ++=2
所确定,求y
z
∂∂ 解:设()z y x z xy z y x F ---=2
,,
则012
≠-=xy F z (将x ,y 当常数,对z 求偏导)
12-=xyz F z (将x ,y 当做常数,对y 求偏导)
根据定理2:2
211
2112xy xyz xy xyz F F y z z y --=
---=-=∂∂ 3.隐函数存在定理3 设()v u y x F ,,,、()v u y x G ,,,在点()0000,,,v u y x P 的某一邻域内具有对各个变量的连续偏导数,又()()0,,,,0,,,00000000==v u y x G v u y x F ,且偏导数所组成的函数行列式(或称雅可比
(Jacobi))
()()
v F v
G u F u G v u G F J ∂∂∂∂∂∂∂∂=∂∂=,,
在点()0000,,,v u y x P 不等于零,则方程组()()0,,,,0,,,00000000==v u y x G v u y x F 在点
()0000,,,v u y x 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数
),(),,(y x v v y x u u ==,它们满足条件),(000y x u u =,),(000y x v v =,并有
Gv
Gu Fv Fu Gv Gx Fv
Fx v x G F J u -=∂∂-=∂∂)
,()
,(1x
Gv
Gu Fv Fu Gx Gu Fx
Fu
x u G F J v -=∂∂-=∂∂)
,()
,(1x
Gv Gu Fv Fu Gv Gy Fv
Fy
v y G F J u -=∂∂-=∂∂),(),(1y
Gv
Gu Fv Fu Gy Gu Fy
Fu
y u G F J v -=∂∂-=∂∂),()
,(1y
例3:设1,0=+=-xv yu yv xu ,求
.,,,y
v
x v y u x u ∂∂∂∂∂∂∂∂ 解:⎩⎨⎧→⎪⎩
⎪⎨⎧⎩⎨⎧−−−−−→−-=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=⋅∂∂-∂∂⋅+=∂∂⋅++∂∂⋅=-=+u x
v
y x u x v x v x x u y y x v x u x u x v x v x u y x yv xu xv yu 0001求导方程两边对
由定理3可求 022≠+==
=
-∂∂∂∂∂∂∂∂J y x J y x
x y v F v
G u F u
G 且
则2
2y
x yv
xu x
u y x
x y y x u v +=-
==∂∂----
2
2y x xv
yu x
v y x
x y u v x y +-=
=∂∂---
{
⎪⎩⎪⎨⎧→⎪⎩⎪⎨⎧−−−−−→−=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=∂∂⋅--∂∂⋅=∂∂⋅+∂∂⋅+=-=+v y v y y u x u y
v x y u y y
v y v y u x y v
x y u y u yv xu xv yu 00y 01
求导方程两边对
同上可求得
22y x yu xv y u +-=∂∂ 22y
x yu
xv y v +--=∂∂
三. 隐函数求偏导的方法
1.公式法:即将方程中所有非零项移到等式一边,并将其设为函数F,注意应将x,y,z 看
作独立变量,对F(x,y,z)=0分别求导,利用公式
=x z -Z X F F ,=y z
-z
y F F 。
2.直接法:分别将F(x,y,z)=0两边同时对x,y 看作独立变量,z 是x,y 的函数,得到含y
z
x z ,的两个方程,解方程可求出y
z x z ,.
3.全微分法:利用微分形式的不变性,对所给方程两边求微分,整理成
,),,(),,(dy z y x v dx z y x u dz +=则dy dx ,的系数便是y
z x z ,,在求全微分时,z 应看做自变量.
例1.已知x y y x arctan ln 22=+,求2
2
dx
y d . 解. 方法一:
令22ln ),(y x y x F +=-)ln(21arctan 22y x x y +=x
y arctan -
则2
222),(,),(y x x
y y x F y x y x y x F y
x +-=++=
所以
=dx dy =-y x F F x
y y x -+-
上式再对x 求导得
3
222'22)
()
(2)(22y x y x y x y xy dx y d -+=--= 方法二: 方程,0arctan
ln
22=-+x
y
y x 两端分别对x 求导得 22'y x yy x ++02
2'=+--y x y
xy
y
x y x dx dy -+= 3
222'22)()
(2)(22y x y x y x y xy dx y d -+=
--= 方法三:
方程x
y
y x arctan ln
22=+,两端分别求微分得
)(arctan )(ln 22x
y
d y x d =+
利用全微分不定性,上式化为
x y
d x
y y x dy dx 2
22
22
21121+=
++ 由全微分运算法则计算并化简得
3
222'22)()
(2)(22)()(y x y x y x y xy dx y d x
y y x dx dy dx
y x dy y x -+=--=-+=
+=-
参考文献
【1】同济大学数学系.高等数学第七版下册【M】北京:高等教育出版社,
【2】段生贵,曹南斌.高等数学学习指导【M】成都:电子科技大学出版社,
【3】邵燕南.高等数学【M】
北京:高等教育出版社,
【4】王顺风,吴亚娟.高等数学【M】
南京:东南大学出版社,
【5】陈纪修,於崇华,金路.数学分析【M】北京:高等教育出版社,。