土石坝讲义稳定计算
- 格式:ppt
- 大小:943.00 KB
- 文档页数:85
土石坝边坡稳定分析与计算方法土石坝作为常见的水利工程构筑物,在防洪、供水、发电等方面发挥着重要的作用。
土石坝边坡稳定性是影响其安全运行的关键因素之一,因此边坡稳定性分析与计算方法十分重要。
本文将介绍土石坝边坡稳定性分析与计算方法的基本理论和应用技术。
一、土石坝边坡稳定性基本理论土石坝边坡稳定性分析的基本理论包括弹性地基理论、破坏力学理论、岩土力学和数值计算方法等。
1.弹性地基理论弹性地基理论是建立在弹性力学基础上的一种土体稳定性分析方法。
其核心思想是将土体与石坝看成一体,在一定的约束条件下,求解土坝体系和地基的弹性应力和应变分布,评估土石坝边坡的稳定性。
这种方法适用于土石坝边坡倾角较小、地基水平变形和竖向应力分布较均匀的情况。
2.破坏力学理论破坏力学理论是通过破裂力学和变形理论相结合的方法,对土石坝边坡的稳定性进行分析。
其核心思想是土体在受力作用下,随着剪切应力和水平应力的增加,会发生变形和破裂,并使边坡处于不稳定状态。
通过破坏力学理论,可以预测土石坝边坡的破坏形式,如滑坡、倾斜、涌浅等。
3.岩土力学岩土力学是土石坝边坡稳定性分析的重要理论基础,它研究土、岩体在地下工程中受力、应力、变形、破坏和稳定性等问题。
其核心思想是通过分析土石坝边坡的岩土力学性质,如强度、压缩模量、剪切模量、抗裂性、渗透性等,预测边坡在不同条件下的稳定性。
4.数值计算方法数值计算方法是通过数学和计算机技术,对复杂的土石坝边坡稳定性问题进行求解的方法。
其核心思想是将边坡分割成若干个小单元,通过模拟不同荷载条件下的应力和变形情况,预测边坡在不同条件下的稳定性。
常用的数值计算方法包括有限元法、有限差分法和边界元法等。
二、土石坝边坡稳定性计算方法1.经验法经验法是一种基于工程经验、检验和修改的方法。
这种方法一般适用于经验较丰富、边坡较小且地质条件比较安全的情况。
其中常用的经验法有刘安钦法、耐均匀法等。
2.解析方法解析方法是通过对已知物理或参考问题进行分析,求解所需要的未知物理的方法。
坝体渗流与稳定计算依据:碾压土石坝设计规范SL274-2001 8.3节 丰镇例:4.1加高3m (Ⅰ格东坝、南坝,Ⅱ格南坝)坝坡稳定安全计算分析 4.1.1 计算工况根据《火力发电厂设计技术规程》(DL5000-94)、《碾压式土石坝设计规范》(SL274-2001),结合灰坝的具体情况,灰坝的稳定分析中应核算以下工况的坝坡稳定性:灰水位1209.00m ,下游水位1200.00m ,计算下游坝坡稳定。
4.1.2 计算方法与计算参数指标的选取 (1)计算方法按照《碾压式土石坝设计规范》(SL274-2001),土坝采用依据刚体极限平衡原理的圆弧滑动法进行稳定分析。
计算同时采用了不计条块间作用力的瑞典圆弧法和计及条块间作用力的简化毕肖普法。
稳定渗流期的下游坝坡稳定采用有效应力法计算,水库水位降落期的上游坝坡稳定采用总应力法计算。
土体抗剪强度可用有效应力法按下式确定:C tg '+''=φστ式中: σ'——土的有效应力;φ'、C '——土的有效内摩擦角和粘聚力。
在库水位降落期,土体的抗剪强度用总应力法按下式确定:u u c C tg +'=φστ式中: u φ、u C ——用不排水剪的内摩擦角和粘聚力。
(2)计算参数上游灰水位1209.00m ,对应下游水位1200.00m ;计算采用的相关材料物理力学指标见表4-1表4-1 计算采用的物理力学指标项 目 干容重d γ(kN/m 3) 湿容重湿γ(kN/m 3) 饱和容重sat γ(kN/m 3)粘结力 c (kN/m 2)内摩擦角φ(°)坝体土 17.3 17.5 21.0 20 21 库区灰24.0 0 30 固结灰15.720.050354.1.3 浸润线计算采用均质坝浸润线计算原理进行计算。
经计算得浸润线方程为:92.422.22+=x y 4.1.4 计算方案和计算结果根据坝体各部分填土性质,进行各土层划分(见图4-1),计算中对可能的弧顶、弧脚位置进行了组合,各种组合方案见表4-2,计算工况下各方案的计算结果见表4-2,通过计算得到最危险的划弧(见图4-2)。
土石坝稳定计算1. 引言土石坝是一种常见的水利工程构筑物,用于堵塞河流或水体以便形成水库或水坝。
然而,由于自然力和水力的作用,土石坝可能会面临不稳定的问题,因此进行稳定计算是非常重要和必要的。
本文将介绍土石坝稳定计算的基本原理和步骤,以及常见的计算方法和注意事项。
2. 稳定计算基本原理土石坝的稳定计算是通过对坝体的各个部分进行力学分析,确定各个部分的抗力和应力状态,并判断整个坝体的稳定性。
稳定计算的基本原理主要包括以下几点:2.1. 平衡条件土石坝的稳定要求坝体处于平衡状态,即受力平衡和力矩平衡。
力矩平衡可以通过计算抗力和应力矩的和来判断。
2.2. 强度条件土石坝的稳定还要满足强度条件,即各个部分的抗力要大于或等于对应的应力。
这是保证坝体不发生破坏的基本要求。
2.3. 位移条件土石坝的稳定还需要考虑位移条件,即各个部分的位移要在允许范围内。
位移通常通过计算应力和应变的关系来进行判断。
3. 稳定计算步骤稳定计算的步骤可以分为以下几个部分:3.1. 坝体参数确定在进行稳定计算之前,需要确定土石坝的几何参数和材料参数,包括坝体高度、坝顶宽度、坝底宽度、坝坡比、土石材料的内摩擦角、抗剪强度等。
3.2. 坝体受力分析通过对坝体各个部分进行受力分析,确定各个部分的抗力和应力状态。
可以采用经典力学理论和有限元分析等方法进行分析。
3.3. 抗力计算对各个部分的抗力进行计算,包括重力抗力、剪力抗力和摩擦抗力等。
可以使用公式计算或者进行数值模拟。
3.4. 应力计算确定各个部分的应力状态,包括正应力、剪应力和法向应力等。
可以使用力学理论和数值分析方法进行计算。
3.5. 稳定性判断综合考虑平衡条件、强度条件和位移条件,判断土石坝的稳定性。
如果满足这些条件,坝体即可认为是稳定的。
4. 常见的计算方法土石坝稳定计算可以采用多种方法,常见的计算方法包括:4.1. 切片法切片法是一种简化的计算方法,将坝体分为多个切片,分别计算各个切片的受力和位移,然后综合考虑整个坝体的稳定性。
土石坝边坡稳定分析与计算方法1 稳定性理论分析土坝的稳定性破坏有滑动、液化及塑性流动三种状态。
〔1〕坝坡的滑动是由于坝体的边坡太陡,坝体填土的抗剪强度太小,致使坍滑面以外的土体滑动力矩超过抗滑力矩,因此发生坍滑或由于坝基土的抗剪强度缺乏,因此坝体坝基一同发生滑动。
〔2〕坝体的液化是发生在用细砂或均匀的不够严密的砂料作成的坝体中,或由这种砂料形成的坝基中。
液化的原因是由于饱和的松砂受振动或剪切而发生体积收缩,这时砂土孔隙中的水分不能立即排出,局部或全部有效应力即转变为孔隙压力,砂土的抗剪强度减少或变为零,砂粒业就随着水的流动向四周流散了。
〔3〕土坝的塑性流动是由于坝体或坝基内的剪应力超过了土料实际具有的抗剪强度,变形超过了弹性限值,不能承受荷重,使坝坡或者坝脚地基土被压出或隆起,因此使坝体的坝基发生裂缝、沉陷等情况。
软粘性土的坝或坝基,假设设计不良,就容易产生这种破坏。
进展坝坡稳定计算时,应该杜绝以上三种破坏稳定的现象,尤其前两种,必须加以计算以及研究。
2 PC1500程序编制根据及计算方法2.1 编制根据及使用情况综述PC1500程序在计算方法方面采用了瑞典条分法和考虑土条程度侧向力的简化毕肖甫法。
从对土料物理力学指标的不同选用又可分为总应力法,有效应力法和简化有效应力法。
程序规定,计算公式中无孔隙水压力为总应力法;计入孔隙水压力为有效应力法;令孔隙水压力一项为零而将孔隙水压力包含在土体重量的计算之中,称为简化有效力法[1]。
分别考虑了稳定渗流期,施工期,水位降落期三种情况。
程序按照“水工建筑物抗震设计标准〞,“碾压土石坝设计标准〞编制。
2.2 计算方法所谓网格法,要计算假设干滑弧深度,对每一滑弧度计算过程如下:以给定滑弧圆心为中心,以大步长向四周由49个点,逐一计算,找出平安系数最小的点,以该点为中心,以小步长向四周布49个点,计算后就找出相应该滑弧深度的最小平安系数。
混合法是先用网格法。
将大步长布下的49个点算完后,找出平安系数最小的点,转入优选法计算。
论土石坝的地震液化验算和坝坡抗震稳定计算土石坝作为重要的水工建筑物之一,其地震液化验算和坝坡抗震稳定计算是保障其安全稳定运行的重要方面。
本文将从土石坝地震液化验算和坝坡抗震稳定计算两个方面进行探讨。
土石坝地震液化验算是地震工程中的一个重要环节,主要是为了评估土石坝在地震作用下可能发生液化现象的潜在危险。
液化是指当土体受到地震力作用时,土体内部排水受阻,导致孔隙水压力上升,使土体丧失抗剪强度,变得类似液态的现象。
液化的发生会导致土石坝的稳定性丧失,从而引发灾害。
地震液化验算通常包括以下几个步骤。
首先,需要确定土石坝所在地区的地震烈度和地震动参数,包括峰值加速度、地震频谱等。
然后,通过地震动监测和野外勘探等手段,获取土体的物理力学参数和水文地质特征,包括饱和度、孔隙比、液限等。
接下来,可以采用数学模型,如有限元模型或数值模型等,模拟土体在地震下的动力响应过程,评估土体的临界孔隙水压力和抗剪强度。
最后,结合土石坝的结构特点和地质条件等,综合分析地震液化的潜在风险,并提出相应的防治措施。
坝坡抗震稳定计算则是针对土石坝在地震作用下的抗震能力进行评估。
土石坝的抗震稳定性包括静态稳定和动态稳定两个方面。
静态稳定主要通过计算土石坝在地震荷载下的抗滑稳定系数和抗倾覆稳定系数来进行评估。
动态稳定则涉及到土石坝在地震动力荷载下的抗震位移和抗震加速度等。
坝坡抗震稳定计算的主要步骤为:首先,确定土石坝所在地区的设计地震烈度和地震动参数。
然后,根据土石坝的几何形态和结构特点,建立合适的有限元分析模型,考虑材料的非线性和土石坝的非均匀性等因素。
接下来,进行受力分析,包括重力荷载、地震荷载和渗流荷载等。
最后,通过计算土石坝的位移和应力分布,评估其抗震稳定性,并根据需要提出相应的抗震措施。
在土石坝的地震液化验算和坝坡抗震稳定计算中,需要充分考虑土石坝的地质条件、水文地质特征和结构特点等因素,以确保计算结果的准确性和可靠性。
此外,还需结合相关规范和标准,采用适当的计算方法和技术手段,不断完善和提高土石坝的抗震能力,确保其在地震作用下安全稳定地运行。
初期坝的稳定计算考虑到初期坝的筑坝材料为堆石,为无粘性土材料,按照《碾压式土石坝设计规范》的规定,采用折线法计算初期坝坝坡的稳定安全系数。
由于初期坝的透水性强、浸润线的位置较低,且下游坝坡对坝体的稳定性起关键作用,故不计算坝体上游坡的稳定情况。
1) 计算工况按照相关设计《规范》的规定,计算工况应包括正常工况、洪水工况和特殊工况三种。
小河金矿尾矿库工程所在区域的地震设防烈度为6度,根据《抗震设计规范》的规定,可以不计算地震工况。
因初期坝的透水性很强,稳定计算中可以不考虑浸润线对下游坝坡的影响,因此设计只计算正常工况下的坝坡稳定性。
2) 计算参数参考其他工程的经验和业主提供的数据,初期坝的计算参数选取工程中最常用的总应力法计算参数,如表5-1所示。
表5-1 坝体稳定计算参数表3) 稳定计算:初期堆石坝材料的粘聚力为零,按照《碾压式土石坝设计规范》的规定,采用折线法进行初期坝坝坡的稳定计算,计算公式如下:ii i i2i i a n cos sin cos tg K θθθϕ∑∑==G G E E式中:En —抗滑力在水平方向投影的总合; Ea —滑动力在水平方向投影的总和;ϕ--各滑块的摩擦角;iGi—各滑块的重量;θ--各滑块滑动面的倾角。
i------------------------------------------------------------------------ 计算项目:小河初期堆石坝稳定------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 碾压式土石坝设计规范(SL274-2001)计算工期: 稳定渗流期计算目标: 安全系数计算滑裂面形状: 折线形滑面不考虑地震[坡面信息]坡面线段数 5坡面线号水平投影(m) 竖直投影(m) 超载数1 34.000 17.000 02 2.000 0.000 03 30.000 15.000 04 4.000 0.000 05 52.000 -26.000 0[土层信息]坡面节点数 6编号 X(m) Y(m)0 0.000 0.000-1 34.000 17.000-2 36.000 17.000-3 66.000 32.000-4 70.000 32.000-5 122.000 6.000附加节点数 6编号 X(m) Y(m)1 -10.000 0.0002 -10.000 -3.0003 130.000 8.0004 130.000 -6.0005 64.000 -1.2506 64.000 -0.750不同土性区域数 2区号重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板? 强度增十字板羲? 强度增长系全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa)长系数下值(kPa) 数水下值系数1 21.000 22.000 0.000 38.000 0.000 34.000 --- --- --- --- --- (0,-5,-4,-3,-2,-1,)2 22.000 23.000 0.000 38.000 0.000 38.000 --- --- --- --- --- (0,1,2,4,3,-5,)[计算条件]稳定计算目标: 自动搜索最危险滑面稳定分析方法: 简化Janbu法土条宽度(m): 1.000非线性方程求解容许误差: 0.00001方程求解允许的最大迭代次数: 50搜索有效滑面数: 100起始段夹角上限(度): 5起始段夹角下限(度): 45段长最小值(m): 10.667段长最大值(m): 21.333出口点起始x坐标(m): -32.000出口点结束x坐标(m): 66.000入口点起始x坐标(m): 0.000入口点结束x坐标(m): 122.000------------------------------------------------------------------------计算结果:------------------------------------------------------------------------滑动安全系数 = 1.563最危险滑裂面线段标号起始坐标(m,m) 终止坐标(m,m)1 (36.036,17.018) (53.827,25.751)2 (53.827,25.751) (66.001,32.000)经过试算,正常工况下初期坝坝坡的最小抗滑稳定安全系数为 1.563,大于《规范》规定的最小安全系数值[1.15].尾矿库坝体渗流稳定性分析各土层参数确定依据工勘提供的各土层参数,并结合选厂尾砂性能参数,本次新建尾矿库渗流稳定性分析选取参数如下:尾矿坝渗流分析(1)正常运行浸润线计算结果采用AutoBANK综合以上工况进行二维有限元模拟,坝体终高(+712m)正常水位按709m考虑。