高等数学第三章知识要点
- 格式:ppt
- 大小:6.20 MB
- 文档页数:142
高考数学第三章知识点总结第一节直线和方程1. 直线的方程直线的方程有两种常见的表示方法:一般式和斜截式。
一般式是Ax+By+C=0,斜截式是y=kx+b。
2. 直线的性质直线有斜率和倾斜角的概念,斜率是直线的倾斜程度,倾斜角是与x轴的夹角。
3. 直线与坐标轴的交点直线与x轴的交点是y=0处的x坐标,与y轴的交点是x=0处的y坐标。
第二节函数及其性质1. 函数的概念函数是自变量和因变量之间的对应关系,表示为y=f(x)。
2. 函数的性质函数有定义域、值域、单调性、奇偶性等性质。
3. 基本初等函数的性质基本初等函数包括常函数、一次函数、二次函数、指数函数、对数函数、幂函数和三角函数等。
4. 函数的图像和性质函数的图像可以通过函数的定义域、值域、单调性、极值、奇偶性等来描述。
第三节数列和级数1. 数列的概念数列是按照一定规律排列的数字序列,可以是等差数列、等比数列、斐波那契数列等。
2. 数列的通项公式数列的通项公式可以用来表示数列的任意一项的通用表达式。
3. 级数的概念级数是数列的和的概念,可以是等差级数、等比级数等。
4. 级数的性质级数有收敛和发散的性质,可以通过极限的概念来分析级数的和是否存在。
第四节不等式与不等式组1. 不等式的性质不等式有加法、减法、乘法、除法以及取对数、指数等运算的性质。
2. 一元一次不等式一元一次不等式可以用图像法或者代数法来解决。
3. 一元二次不等式一元二次不等式可以通过解二次方程的方法来求解。
4. 不等式组不等式组是由多个不等式组成的方程组,可以用图像法、代数法来解决。
结尾总结高考数学第三章主要涉及直线和方程、函数及其性质、数列和级数、不等式与不等式组等知识点。
这些知识点在解决各种数学问题时起着至关重要的作用,掌握这些知识对于高考数学的学习至关重要。
希望同学们能够通过系统的学习和练习,掌握这些知识,为高考取得优异成绩打下坚实的基础。
数三知识点及解题思路总结一、函数、极限、连续(3题)1. 求极限:lim_x to 0(sin x - x)/(x^3)知识点:等价无穷小替换、洛必达法则。
解题思路:- 当x to 0时,sin x与x是等价无穷小,但是直接替换后分子为0,不能得到结果。
- 所以,我们使用洛必达法则。
对分子分母分别求导,分子求导为cos x - 1,分母求导为3x^2,此时得到lim_x to 0(cos x - 1)/(3x^2)。
- 又因为当x to 0时,cos x - 1sim-(1)/(2)x^2,将其替换可得:lim_x to 0(-frac{1)/(2)x^2}{3x^2}=-(1)/(6)。
2. 设函数f(x)=<=ft{begin{array}{ll} (sin ax)/(x), x ≠ 0 1, x = 0end{array}right.在x = 0处连续,求a的值。
知识点:函数连续的定义。
解题思路:- 根据函数在某点连续的定义,lim_x to 0f(x)=f(0)。
- 计算lim_x to 0f(x)=lim_x to 0(sin ax)/(x),当x to 0时,令t = ax,则x=(t)/(a),当x to 0时,t to 0。
- 所以lim_x to 0(sin ax)/(x)=lim_t to 0(sin t)/(frac{t){a}} = alim_t to 0(sin t)/(t)=a。
- 因为f(0) = 1,由函数连续可知a = 1。
3. 求函数y=frac{x^2-1}{x^2-3x + 2}的间断点并判断类型。
知识点:间断点的定义与类型判断。
解题思路:- 函数的分母不能为0,令x^2-3x + 2=0,即(x - 1)(x - 2)=0,解得x = 1或x = 2,所以函数的间断点为x = 1和x = 2。
- 对于x = 1,lim_x to 1frac{x^2-1}{x^2-3x + 2}=lim_x to 1((x + 1)(x - 1))/((x - 1)(x - 2))=lim_x to 1(x + 1)/(x - 2)=-2,极限存在,所以x = 1是可去间断点。
高数三的知识点总结1. 多元函数的导数与偏导数多元函数的导数是指一个多元函数在某一点处对某个自变量的变化率。
对于一个n元函数,其导数是一个n维的行矢量。
偏导数是指多元函数在某一点处对某个自变量的变化率,但是其他自变量保持不变。
偏导数的计算方法和一元函数的导数一样。
2. 多元函数的微分多元函数的微分是用矩阵表示的,多元函数的微分与导数的关系是微分是导数在自变量的增量上的线性逼近。
微分是对于函数的局部线性化近似。
3. 隐函数与参数方程隐函数是指多元函数中存在的关系式,一般是用两个变量表示的函数。
参数方程是指用参数表示的函数关系,参数方程可以将曲线或曲面参数化。
4. 向量的导数与微分向量的导数是指向量值函数的导数,微分是对于向量值函数的局部线性化近似。
5. 多元函数的极值多元函数的极值是指在某一点附近的一阶、二阶导数条件下函数取得的最值点。
求多元函数的极值需要利用偏导数与二阶导数的判定方法。
6. 凹凸性与拐点凹凸性是函数在某一点附近二阶导数的正负决定的,凹凸性是判断函数的局部极值的一个重要条件。
拐点是函数在某一点处凹凸性的改变点,是函数的凹凸性改变的标志。
7. Lagrange 乘子法Lagrange 乘子法是求多元函数在给定条件下的极值的方法,通过引入拉格朗日乘子,将带条件的极值问题转换为不带条件的极值问题。
8. 重积分及其应用重积分是对多元函数在给定区域上的积分,重积分在物理、工程、经济等领域有着广泛的应用。
9. 曲线积分与曲面积分曲线积分是对向量场沿曲线的积分,曲面积分是对向量场或标量场在曲面上的积分。
曲线积分与曲面积分是研究力场、电场、磁场等科学问题中的重要工具。
以上是高等数学三的知识点总结,希望对您有所帮助。
高一数学第3章知识点总结第3章:二次函数与一元二次方程一、二次函数的基本概念二次函数是指形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
其中,a为二次项的系数,b为一次项的系数,c为常数项。
二、二次函数的图像特征1. 抛物线方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 对称轴方程:二次函数的对称轴方程为x = -b/2a。
3. 零点:二次函数的零点即为方程f(x) = 0的解,即求解ax² + bx + c = 0的根。
4. 最值点:当a>0时,二次函数的最小值点为顶点;当a<0时,二次函数的最大值点为顶点。
5. 顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
三、二次函数的图像探究1. 整体平移:将f(x) = ax² + bx + c的图像平移h个单位水平方向和k个单位垂直方向,得到新函数g(x) = a(x-h)² + k。
2. 纵向压缩和纵向拉伸:将f(x) = ax² + bx + c的图像在x轴方向压缩或拉伸,得到新函数g(x) = a(x-h)² + k。
3. 翻折变换:将f(x) = ax² + bx + c的图像关于x轴翻折,得到新函数g(x) = -ax² + bx + c;关于y轴翻折,得到新函数g(x) = ax²- bx + c。
四、一元二次方程一元二次方程是指形如ax² + bx + c = 0的方程,其中a、b、c 为已知实数,且a≠0。
1. 二次方程的求解方法(1)因式分解法:当二次方程可以因式分解为(x - p)(x - q) = 0时,方程的解为x = p或x = q。
(2)配方法:对于一般形式的二次方程ax² + bx + c = 0,可以通过配方法将其化简为(a1x + b1)² + d1 = 0的形式,然后求解。
高中数学必修一第三章知识点总结第三章:函数的应用一、方程的根与函数的零点1、函数零点的定义:对于函数y=f(x) (x∈D),使得f(x)=0成立的实数x被称为函数y=f(x) (x∈D)的零点。
2、函数零点的意义:函数y=f(x)的零点是方程f(x)=0的实数根,即函数y=f(x)的图像与x轴相交的横坐标。
即:方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有交点⇔函数y=f(x)有零点。
3、函数零点的求法:1)代数法:求解方程f(x)=0的实数根;2)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。
4、基本初等函数的零点:①正比例函数y=kx (k≠0)只有一个零点;②反比例函数y=k/x (k≠0)没有零点;③一次函数y=kx+b (k≠0)只有一个零点;④二次函数y=ax²+bx+c (a≠0)。
1)△>0,方程ax²+bx+c=0有两个不等实根,二次函数的图像与x轴有两个交点,二次函数有两个零点。
2)△=0,方程ax²+bx+c=0有两个相等实根,二次函数的图像与x轴有一个交点,二次函数有一个二重零点或二阶零点。
3)△<0,方程ax²+bx+c=0无实根,二次函数的图像与x轴无交点,二次函数无零点。
⑤指数函数y=a^x (a>0,且a≠1)没有零点。
⑥对数函数y=logₐx (a>0,且a≠1)仅有一个零点1.⑦幂函数y=x^n,当n>0时,仅有一个零点,当n≤0时,没有零点。
5、非基本初等函数的零点:对于较为复杂的函数f(x),可以先将其转化为αx²+y₁y₂,再将其拆分成两个我们常见的函数y₁,y₂(基本初等函数),这两个函数图像的交点个数就是函数f(x)的零点个数。
6、判断区间是否含有零点:只需满足f(a)f(b)<0.7、确定零点在某区间的个数的唯一条件是:①函数f(x)在区间上连续,且f(a)f(b)<0;②函数f(x)在区间(a,b)上单调。