举例说明矩阵位移法
- 格式:ppt
- 大小:420.00 KB
- 文档页数:13
《结构力学》第十章矩阵位移法矩阵位移法是结构力学中的一种重要分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
本文将分为四个部分来介绍矩阵位移法的基本原理和应用。
第一部分将介绍矩阵位移法的基本原理。
矩阵位移法基于结构的受力平衡方程和变形条件,建立了适用于不同类型结构的一般形式的位移函数。
通过对这些位移函数进行适当组合,可以得到一个较为简化的位移矩阵方程。
这个方程可以通过矩阵运算求解,从而得到结构的位移和应力分布。
第二部分将介绍矩阵位移法的应用。
矩阵位移法可以用于求解各种类型的结构,包括梁、柱、框架等。
具体应用时,首先需要确定结构的边界条件和受力情况,然后根据结构的几何形状和材料性质,建立相应的位移函数。
之后,将位移函数按照一定的规则组合起来,建立一个位移矩阵方程。
通过解这个方程,可以得到结构的位移和应力分布。
第三部分将介绍矩阵位移法的优点。
相比于传统的力方法,矩阵位移法具有计算简单、准确性高、适用范围广等优点。
这是因为矩阵位移法可以通过矩阵运算将结构的受力分析转化为代数运算,减少了繁琐的计算过程,并且可以应用于各种不规则结构。
第四部分将介绍矩阵位移法的局限性。
矩阵位移法虽然具有很多优点,但也有一些限制。
首先,矩阵位移法对结构的刚度矩阵的求取较为复杂,需要通过精确和谐振数法等途径进行求解。
其次,矩阵位移法不能用于解决非线性和动力问题。
总结起来,矩阵位移法是一种重要的结构力学分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
它具有计算简单、准确性高、适用范围广等优点,但也有一些局限性。
因此,在实际应用中需要根据具体情况选择合适的方法。
同时,矩阵位移法的进一步研究和发展也是一个非常重要的方向。
第十二章 矩阵位移法【例12-1】 图 a 所示 连 续 梁 ,EI=常数,只 考 虑 杆 件 的 弯 曲 变 形 。
分别用位移法和矩阵位移法计算。
图12-1解:(1)位移法解∙基本未知量和基本结构的确定用位移法解的基本结构如图c 所示。
这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。
∙位移法基本方程的建立⎪⎭⎪⎬⎫=+θ+θ+θ=+θ+θ+θ=+θ+θ+θ000333323213123232221211313212111P P P R K K K R K K K R K K K 将上式写成矩阵形式⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000321321333231232221131211P P P R R R K K K K K K K K K∙系数项和自由项 计算(须绘出单位弯矩图和荷载弯矩图)由图d ,结点力矩平衡条件∑=0M ,得 l EI K 411=,l EI K 221=,031=K由图e ,结点力矩平衡条件∑=0M ,得l EI K 212=,l EI l EI EI K 84422=+=,l EI K 232=由图f ,结点力矩平衡条件∑=0M ,得 013=K ,l EI K 223=,l EI l EI l EI K 84433=+=由图g ,结点力矩平衡条件∑=0M ,得1Pl R p -=,2Pl R P -=,03=P R将系数项和自由项代入位移法基本方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000118820282024321Pl l EI ∙解方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ14114162321EI Pl ∙由叠加法绘弯矩图,如图h 所示。
(2)矩阵位移法解∙对单元和结点编号(图a ) 本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。
矩阵位移法过程嘿,朋友们!今天咱就来好好唠唠矩阵位移法这个神奇的玩意儿。
你想想啊,矩阵位移法就像是搭积木,一块一块地把整个结构给拼凑起来。
只不过这积木有点特别,是用数字和公式搭成的。
咱先说说这第一步,得确定结构的节点和单元吧。
这就好比是给要盖的房子先确定好柱子和梁的位置。
每个节点就像是一个关键点,单元呢就是连接这些关键点的部件。
然后呢,咱要给这些节点和单元编上号,就跟给小朋友分学号似的,可不能乱了套。
接下来,就得建立这些节点和单元的关系啦。
这就像是给每个积木块找到它该放的位置,它们之间的连接呀、力的传递呀,都得搞清楚。
这可不是个简单事儿,但咱得耐着性子慢慢来。
然后呢,咱要根据这些关系列出矩阵。
哎呀呀,这矩阵可就像个大表格,里面装满了各种数字和符号。
别被它吓着,其实它就是把那些复杂的关系用一种整齐的方式表现出来。
再说说这计算过程,就跟解谜题似的。
你得一步步地去推导、去计算,找到那个正确的答案。
有时候可能会遇到一些难题,就像走在路上碰到了一块大石头,但咱可不能退缩,得想法子把它挪开或者绕过去。
还有啊,这矩阵位移法还得考虑各种边界条件呢。
就好像盖房子得考虑地基稳不稳呀,周围环境怎么样呀。
这些边界条件可不能马虎,要不然整个结构可就不牢固啦。
咱在实际运用的时候,可得细心再细心。
一个小数字算错了,可能整个结果就全错啦。
这就跟下棋一样,一步错步步错。
总之呢,矩阵位移法虽然有点复杂,但它可是结构分析的得力助手呢!只要咱认真学,多练习,就一定能掌握它。
别害怕困难,别嫌麻烦,等你真正搞懂了它,你就会发现它的神奇之处啦!就像打开了一扇通往新世界的大门,让你看到结构背后的奥秘。
所以呀,加油吧朋友们,和矩阵位移法这个小伙伴好好相处,让它为我们的工程建设出一份力!原创不易,请尊重原创,谢谢!。