高三一轮复习_排列组合共32页
- 格式:ppt
- 大小:2.74 MB
- 文档页数:32
排列与组合一、学习目标理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式.二、知识梳理1.排列与组合的概念(1)排列:从n 个不同元素中取出m (m ≤n ) 个元素,按照 排成一列.(2)组合:从n 个不同元素中取出m (m ≤n ) 个元素作为一组.2.排列数、组合数的定义、公式、性质(1)排列数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)A n m =n (n −1)(n −2)…(n −m +1)= .(iii)A n n =n ! ,0!=1 .(2)组合数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)C n m =A nm A m m =n (n−1)(n−2)…(n−m+1)m != .(iii)C n m =C n n−m ,C n m +C n m−1=C n+1m ,C n n =1 ,C n 0=1 .三、典例探究例1 已知7位同学站成一排.(1) 甲站在中间的位置,共有多少种不同的排法?(2) 甲、乙只能站在两端的排法共有多少种?(3)甲、乙两同学必须相邻的排法共有多少种?(4)甲、乙两同学不能相邻的排法共有多少种?变式:3男3女共6位同学站成一排,则3位女生中有且只有2位女生相邻的不同排法种数是( )A. 576B. 432C. 388D. 216例2小明在学校里学习了二十四节气歌后,打算在网上搜集一些与二十四节气有关的古诗,他准备在冬季的6个节气:立冬、小雪、大雪、冬至、小寒、大寒与春季的6个节气:立春、雨水、惊蛰、春分、清明、谷雨中一共选出4个节气,搜集与之相关的古诗,如果冬季节气和春季节气各至少被选出1个,那么小明选取节气的不同情况的种数是( ) A. 345 B. 465 C. 1 620 D. 1 860变式:共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完全部台阶的方法种数是( )A. 30B. 90C. 75D. 60方法感悟1.解排列、组合问题要遵循的两个原则(1)按元素(位置)的性质进行分类.(2)按事情发生的过程进行分步.2.两类含有附加条件的组合问题的解题方法(1)“含”或“不含”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的组合题型:“至少”与“至多”问题用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.四、课堂练习1.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.812.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.2403.现有3名学生报名参加校园文化活动的3个项目,每人须报1项且只报1项,则恰有2名学生报同一项目的报名方法有( )A. 36种B. 18种C. 9种D. 6种4.某市从6名优秀教师中选派3名同时去3个灾区支教(每地1人),其中甲和乙不同去,则不同的选派方案的种数为()A.48B.60C.96D.1685. 从4本不同的课外读物中,选3本送给3位同学,每人1本,则不同的送法种数是( )A. 12B. 24C. 64D. 816. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A. 120种B. 90种C. 60种D. 30种。
高三数学第一轮复习:排列、组合【本讲主要内容】排列、组合分类计数原理、分步计数原理、排列、排列数公式、组合、组合数公式【知识掌握】 【知识点精析】1. 两个原理 (1)分类计数原理 做一件事,完成它可以有n 类办法,在第1类办法中有m 1种不同方法,在第2类办法中有m 2种方法,……,在第n 类办法中有m n 种方法,那么完成这件事共有N=m m m n 12+++…种不同方法。
(2)分步计数原理做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同方法,做第2步有m 2种不同方法……做第n 步有m n 种不同方法,那么完成这件事共有N m m =⋅12……m n 种不同方法。
说明:两个原理的运用、理解须注意的几点:(1)必须搞清楚两个原理的条件和结论,分清它们的异同,分类完成用分类计数原理,即独立事件相加;分步完成用分步计数原理,即相连事件相乘。
(2)处理具体的应用题时,首先必须弄清是“分类”还是“分步”,其次要搞清楚“分类”或“分步”的具体标准是什么。
因此,在解题时必须认真审题,搞清楚题目的条件、结论。
(3)对于一些比较复杂的既要运用分类计数原理,又要运用分步计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题的分析更直观、清楚,积累解决实际问题的经验。
框图和树形图是解决这类问题的有效的直观形象工具。
(4)分类计数原理与分步计数原理是排列组合问题的最基本的原理,是推导排列数公式、组合数公式的理论依据,也是求解排列、组合问题的基本思想方法。
2. 排列(1)排列、排列数公式①排列:从n 个不同元素中,任取m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
其中,“一定的顺序”指每一次取出的元素与它所排的“位置”有关,两个排列相同,不但所有元素相同,而且排列顺序也要相同。
②排列数公式:从n 个不同元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示,其中A n n是全排列。
排列与组合一、知识与方法:1、分类加法计数原理与分步乘法计数原理:分类相加指每一类中的每种方法就能完成这件事;分步相乘指一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的。
2、排列与组合:(1)排列、组合、排列数、组合数的概念;(2)排列与组合的区别:__________________________;(3)排列数与组合数联系:m mm n n n A C A ⨯=;要知道排列数计算公式的推导过程; (4)排列数公式m n A )!(!)1()1(m n n m n n n -=+--= ; 组合数公式!)!(!321)1()2)(1(m m n n m m n n n n C m n -=⨯⨯⨯⨯+---= 。
其中n m N m N n ≤∈∈+,,。
(5)规定=0n A ____ ;=0n C ____ ;n nA =______。
(6)排列数与组合数的性质:① m n n m n C C -=; ② !(1)!!n n n n ⋅=+-; ③ 11(1)!!(1)!n n n n =-++。
3、解排列、组合题的依据是:分类相加、分步相乘、有序排列、无序组合;基本规律有:(1)分类计数原理与分步计数原理使用方法有单独使用与联合使用两种。
(2)对于带限制条件的排列问题,通常从以下三种途径考虑:① 元素分析法:先考虑特殊元素要求,再考虑其他元素;② 位置分析法:先考虑特殊位置的要求,再考虑其他位置;③ 间接法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。
(3)解组合问题应注意:① 对结果恰当地分类,设计“分组方案”是解组合题的关键所在;② 是用“直接法”还是“间接法”求解,其原则是“正难则反”;4、解决排列、组合问题的常规方法或类型:(1)元素分析法、先考虑有限制条件的元素的要求,再考虑其他元素;(2)位置分析法:先考虑有限制条件的位置的要求,再考虑其他位置;(3)捆绑法:解决相邻问题的方法,把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”排列,要注意是否需要“松绑”,即特殊元素是否要全排列。