人教版五年级奥数教案:追及问题
- 格式:docx
- 大小:15.87 KB
- 文档页数:1
追及问题教学内容:追及问题(自编教材)施教学生:四年级学生执教教师:教学目标:1.知道追及问题的基本特点是:两个物体同向运动,慢的走在前,快的走在后面,它们之间的距离不断缩短,直到快者追上慢者。
并会与其他行程问题区分。
2.知道“追及时间=路程差÷速度差;速度差=路程差÷追及时间;路程差=速度差×追及时间”。
3.能利用数量关系式与画图法、假设法、比较法等思考方法解决追及问题。
4.让学生在交流合作中体验学习数学的乐趣。
教学重、难点:能利用数量关系式与画图法、假设法、比较法等思考方法解决追及问题。
教学过程:一、复习引入师:同学们,你们好!欢迎来到《思维之“数”》微课堂。
还记得上节课我们学习了什么吗?是的,相遇问题。
相遇问题中,两个物体往往是相向而行,那如果“两个物体同向运动,慢的走在前,快的走在后”又会是怎样的结果呢?根据生活经验,我们知道:它们之间的距离会不断缩短,某个时间点快者就会追上慢者。
这类问题就是我们今天要研究的“追及问题”。
(PPT)二、探究新知(一)基本数量关系青蛙在兔子前面10米,一步跳2米,兔子更快,一步跳4米,兔子追上青蛙需要跳多少步?师:先看例1,请仔细审题(5秒)。
借助数轴,每一格代表1米,(PPT)由此表示出青蛙在兔子前面10米的位置关系。
通过动画,我们发现(PPT)每跳一步,青蛙前进2米,兔子前进6米,跳一步后距离是8米(PPT),比原来缩短了2米。
再跳一步,距离是6米(PPT),又缩短了2米。
依次类推,就能得到答案。
我们发现,这其实就是一个典型的追及问题(PPT):两者的追及距离是10米,我们把它叫做“路程差”,一步距离就缩短2米,叫做“速度差”,利用“路程差÷速度差=追及时间”的关系(PPT),列式计算(PPT)求出兔子追上青蛙需要5步。
师:同学们,现在是不是对(PPT)路程差、速度差和追及时间三个数量之间的关系有了一定的了解?三者有以下数量关系(PPT):路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差。
《追及问题》教学设计知识与技能1、借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤、2、能充分利用行程中的速度、路程、时间之间的关系列方程解应用题、过程与方法1.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识、2.培养学生文字语言、图形语言、符号语言这三种语言转换的能力、情感、态度与价值观1、通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识、团队精神与克服困难的勇气、3.体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣、教学重点会借助“线段图”分析复杂问题中的数量关系、教学难点1.怎样寻找等量关系、2、三种语言的转换、教学关键1.使学生初步学会画“线段图”、2.通过对具体问题情境的分析,准确的确定等量关系、教学方法自主探究、启发引导、教学手段多媒体教学、教学过程一、创设情景引入教学:1、情景设置:五年级学生组织一次社会考察活动,小巧早上从家走了一段路后,就是她的爸爸发现她把考察表忘在家里,并马上追她给她送考察表、同学们,您们想一想最后会怎样?2、引出课题:追及问题3、回忆行程问题涉及的量及列方程解应用题的步骤二、解决问题深化认识:1、出示例题:小巧今天早上要在7:50之前赶到距家1000米的学校坐车去参加社会考察活动、小巧以80米/分的速度出发,5分后,她的爸爸发现她忘了带考察表、于就是,爸爸立即以160米/分的速度去追小巧,并且在途中追上了她、爸爸追上小明用了多长时间? ⑴学生尝试解答,并说出自己的思考过程。
*速度差×追及时间=相距路程 *爸爸的走的总路程=小巧走的总路程⑵画线段图,验证您的思考就是否正确? ⑶如果我们把小巧与小巧爸爸相距的距离用s表示,小巧走的慢,我们把她的速度用V慢表示,小巧爸爸的速度用V快表示,追及时间为t,那么小巧走的路程用?表示;爸爸走的路程用?表示;(在线段图上表示出来)这几个量之间有什么关系呢? V快t-V慢t=s、 V快t=s V慢t、 V快t-s=V慢t 其实这就是同一个等量关系的不同变式、如何用语言叙述呢?(追及的路程就就是两人的路程差) 2、小结:黑板上的内容就是追及问题的三种不同表示方法即文字表示;符号表示;图形表示、希望同学灵活掌握,会进行三种语言的转换、 3、变式,巩固三种语言的转换: 变式1:小巧今天早上要在7:50之前赶到距家1000米的学校坐车去参加社会考察活动、小巧以80米/分的速度出发,5分后,她的爸爸发现她忘了带考察表、于就是,爸爸立即追小巧,5分钟后在途中追上了她、爸爸追小巧的速度就是多少? *学生审题,在小组内分工合作,找到的等量关系式,字母表达式,并用线段图验证 *交流变式2:小巧今天早上要在7:50之前赶到距家1000米的学校坐车去参加社会考察活动、小巧以80米/分的速度出发,过后,她的爸爸发现她忘了带考察表、于就是,爸爸立即以160米/分的速度去追小明,5分钟后在途中追上了她、(学生提问) 小巧走多远后,爸爸才开始追的? 小巧走多久后,爸爸才开始追的? *学生独立解答,并交流三、巩固认知提高能力: 1、基础练习:数学书p51,例2,及试一试 2、盐仓小学五年级学生步行到郊外旅行(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时、前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,她骑车的速度为12千米/时、 *有问题不?以小组为单位进行讨论,总结您们小组所提出的问题,并解答、 *将问题问题罗列,有选择的进行解答。
小学数学教案:《追及问题》微教案一、教学目标:1. 让学生理解追及问题的概念,能够识别和分析追及问题。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 追及问题的定义及类型。
2. 追及问题的解题步骤。
3. 追及问题的实际应用。
三、教学重点与难点:1. 重点:让学生掌握追及问题的解题方法和实际应用。
2. 难点:如何引导学生运用数学知识解决复杂的追及问题。
四、教学准备:1. 教学课件或黑板。
2. 练习题及答案。
3. 教学道具或图片。
五、教学过程:1. 导入:通过一个生活中的追及问题情境,引发学生兴趣,导入新课。
2. 基本概念:介绍追及问题的定义及类型,让学生理解追及问题的本质。
3. 解题方法:讲解追及问题的解题步骤,引导学生学会分析问题、列出方程、求解答案。
4. 课堂练习:提供几个典型的追及问题,让学生独立解决,巩固所学知识。
5. 实际应用:讨论追及问题在生活中的实际应用,让学生体会数学的实用性。
6. 总结提升:引导学生归纳总结追及问题的解题方法,培养学生的总结能力。
7. 课后作业:布置一些相关的追及问题练习题,巩固所学知识。
8. 教学反思:根据学生的课堂表现和作业完成情况,总结教学效果,调整教学策略。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究追及问题的解决方法。
2. 利用直观教具和动画演示,帮助学生形象地理解追及问题。
3. 组织小组讨论,鼓励学生合作交流,提高解决问题的能力。
4. 注重个体差异,给予不同学生个性化的指导和帮助。
七、教学评价:1. 课堂练习:观察学生在练习中的表现,评估其对追及问题的理解和掌握程度。
2. 课后作业:检查学生作业的完成情况,评估其运用追及问题解决实际问题的能力。
3. 小组讨论:评价学生在团队合作中的参与度和提出的解决方案的质量。
4. 学生自我评价:鼓励学生反思学习过程,评价自己在解决问题中的成长。
一、教学目标:1. 让学生理解追及问题的概念,掌握追及问题的解题方法。
2. 培养学生的逻辑思维能力和解决问题的能力。
3. 通过对追及问题的学习,激发学生学习数学的兴趣。
二、教学内容:1. 追及问题的定义及特点。
2. 追及问题的解题步骤。
3. 追及问题的实际应用。
三、教学重点与难点:1. 教学重点:追及问题的解题方法及实际应用。
2. 教学难点:理解追及问题的本质,灵活运用解题步骤。
四、教学方法:1. 采用问题驱动法,引导学生主动探究追及问题的解题方法。
2. 通过实例分析,让学生深入理解追及问题。
3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:通过一个生活中的追及问题,引发学生对追及问题的兴趣。
2. 新课导入:介绍追及问题的定义及特点。
3. 实例分析:分析具体追及问题,引导学生掌握解题步骤。
4. 练习巩固:布置一些简单的追及问题,让学生独立解决。
6. 课后作业:布置一些有关的追及问题,让学生进一步巩固所学知识。
六、教学评价:1. 通过课堂提问,检查学生对追及问题定义和解决方法的掌握程度。
2. 通过课后作业的完成情况,评估学生对追及问题的实际应用能力。
3. 通过小组讨论,观察学生的合作意识和解决问题的能力。
七、教学资源:1. PPT课件:展示追及问题的定义、解题步骤和实例分析。
2. 练习题:提供一些追及问题供学生练习。
3. 教学视频:讲解追及问题的解决方法。
八、教学进度安排:1. 第一课时:介绍追及问题的定义及特点。
2. 第二课时:分析具体追及问题,引导学生掌握解题步骤。
3. 第三课时:练习巩固,布置一些简单的追及问题。
5. 第五课时:布置课后作业,进一步巩固所学知识。
九、教学拓展:1. 引导学生思考:追及问题在现实生活中的应用。
2. 介绍一些与追及问题相关的数学竞赛或趣味问题。
3. 推荐一些数学网站或APP,供学生课后学习。
十、教学反思:1. 反思课堂教学过程,观察学生的学习兴趣和参与程度。
小学数学教案:《追及问题》微教案一、教学目标1. 知识与技能:(1)让学生理解追及问题的基本概念和意义;(2)培养学生解决追及问题的能力,掌握追及问题的解题方法。
2. 过程与方法:(1)通过生活实例引入追及问题,让学生感受数学与生活的联系;(2)利用图形、表格等直观教具,引导学生分析追及问题;(3)采用小组合作、讨论交流的方式,培养学生解决问题的合作精神。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生勇于探究、勇于创新的思维品质;(3)培养学生关爱生活、关爱他人的情感。
二、教学内容1. 追及问题的概念:追及问题是指两个物体从同一地点出发,以不同的速度运动,经过一段时间后,求其中一个物体追上另一个物体的条件及时间。
2. 追及问题的解题方法:(1)画图分析法:通过画图直观地展示两个物体的运动过程,找出它们之间的距离、速度、时间等关系;(2)方程解答法:根据追及问题的条件,列出相应的方程,求解未知数,得出答案。
三、教学重点与难点1. 教学重点:(1)追及问题的概念及解题方法;(2)培养学生解决追及问题的能力。
2. 教学难点:(1)追及问题中速度、时间、距离之间的关系;(2)如何列方程求解追及问题。
四、教学准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、尺子、圆规、量角器;3. 教学素材:追及问题实例、图形、表格等。
五、教学过程1. 导入新课:(1)利用生活实例引入追及问题,让学生感受数学与生活的联系;(2)引导学生思考追及问题中涉及的关键因素,如速度、时间、距离等。
2. 自主学习:(1)让学生自主探究追及问题的解题方法,鼓励学生发表自己的见解;(2)引导学生通过图形、表格等直观教具,分析追及问题。
3. 合作交流:(1)组织学生进行小组合作,共同解决追及问题;(2)鼓励学生互相交流、讨论,分享解题心得。
4. 课堂讲解:(1)讲解追及问题的概念及解题方法,引导学生理解并掌握;(2)通过例题讲解,让学生学会如何列方程求解追及问题。
小学数学教案:《追及问题》微教案一、教学目标:1. 知识与技能:(1)让学生理解追及问题的基本概念和意义。
(2)培养学生解决追及问题的能力,掌握追及问题的解题方法。
2. 过程与方法:(1)通过生活中的实际例子,引导学生感知追及问题。
(2)利用图形、表格等直观工具,帮助学生分析追及问题的数量关系。
(3)运用公式、方程等数学方法,解决追及问题。
3. 情感态度与价值观:(1)培养学生积极参与数学学习的兴趣,提高学生对数学的热爱。
(2)培养学生勇于探索、善于思考的良好学习习惯。
二、教学内容:1. 追及问题的概念及其意义。
2. 追及问题的基本数量关系。
3. 追及问题的解题方法。
三、教学重点与难点:1. 教学重点:(1)追及问题的基本概念和意义。
(2)追及问题的解题方法。
2. 教学难点:(1)追及问题中速度、时间和路程之间的数量关系。
(2)如何运用公式、方程解决追及问题。
四、教学过程:1. 导入新课:(1)利用生活中的实际例子,如赛车、跑步等,引导学生感知追及问题。
(2)提问:什么是追及问题?为什么会产生追及问题?2. 自主学习:(1)让学生阅读教材,了解追及问题的基本概念和意义。
(2)引导学生通过实例分析,掌握追及问题的基本数量关系。
3. 合作交流:(1)分组讨论:如何解决追及问题?(2)分享心得:每组汇报解决追及问题的方法。
4. 课堂讲解:(1)讲解追及问题的解题方法。
(2)示范性解题:运用公式、方程解决追及问题。
5. 练习巩固:(1)布置课堂练习题,让学生独立完成。
(2)讲解练习题,纠正错误,巩固知识点。
五、课后作业:1. 请学生总结本节课所学内容,整理成笔记。
2. 完成课后练习题,巩固追及问题的解题方法。
3. 思考:在生活中还有哪些追及问题?如何运用所学知识解决?六、教学评估:1. 课堂提问:通过提问了解学生对追及问题概念的理解程度和解决问题的能力。
2. 练习反馈:收集学生的练习作业,分析其解题思路和方法,评估学生的掌握情况。
追及问题教案追及问题教案教育是社会发展的基石,而教案则是教学活动的重要组成部分。
一份好的教案能够有效地引导学生学习,帮助他们掌握知识和技能。
在教学中,追及问题教案是一种常用的教学方法,它能够激发学生的思维,培养他们的问题解决能力。
本文将探讨追及问题教案的设计和实施。
首先,追及问题教案的设计需要明确教学目标。
教师应该清楚地知道自己想要教授给学生的知识和技能是什么,以及学生应该达到的学习目标是什么。
只有明确的教学目标才能够指导教案的设计和实施。
其次,追及问题教案的设计需要合理安排教学内容。
教师应该根据教学目标,选择合适的教学内容,并将其有机地组织起来。
在设计教学内容时,可以采用问题导向的方式,通过提出问题引发学生的思考和讨论,激发他们的学习兴趣和主动性。
再次,追及问题教案的设计需要灵活运用教学方法。
教师可以根据教学内容和学生的实际情况,选择合适的教学方法。
例如,可以采用讲授、讨论、实验、案例分析等多种教学方法相结合的方式,以激发学生的思维和解决问题的能力。
此外,追及问题教案的实施需要注重教学过程的引导。
教师应该及时给予学生适当的指导,帮助他们解决问题,引导他们进行思考和讨论。
在教学过程中,教师还应该鼓励学生提出问题,激发他们的创造力和探索欲望。
最后,追及问题教案的评价应该注重学生的实际表现。
教师可以通过观察学生的学习情况、听取学生的意见和建议,以及进行课堂测验等方式,对学生的学习效果进行评价。
评价的结果可以为教师提供改进教学的依据,同时也可以激励学生继续努力学习。
总之,追及问题教案是一种有效的教学方法,它能够激发学生的思维,培养他们的问题解决能力。
在设计和实施追及问题教案时,教师应该明确教学目标,合理安排教学内容,灵活运用教学方法,注重教学过程的引导,以及注重学生的实际表现。
通过追及问题教案的教学,我们可以帮助学生更好地掌握知识和技能,培养他们的创造力和探索欲望,为他们的未来发展打下坚实的基础。
追及问题教案一、教学目标1. 知识目标:了解什么是追及问题,掌握相关的概念和解题方法。
2. 能力目标:能够独立完成追及问题的解题过程,并能应用所学知识解决实际问题。
3. 情感目标:培养学生的逻辑思维和问题解决能力,激发学生对数学的兴趣。
二、教学内容追及问题教学三、教学过程1. 问题导入:教师通过一个小游戏,引出追及问题的概念。
例如,教师提问:如果两个人同时从同一起点出发,一个人的速度是5米/秒,另一个人的速度是3米/秒,他们之间的距离是多少?2. 概念讲解:教师带领学生一起总结追及问题的定义和相关概念。
例如,追及问题就是指两个物体从同一地点出发,以不同的速度朝着不同的方向运动,问何时相遇或者相隔多远。
3. 解题方法:教师向学生介绍追及问题的常用解题方法。
例如,利用公式解题,其中距离=速度×时间。
4. 解题步骤:教师带领学生一起分析追及问题的解题步骤。
例如,1)判断追及问题的类型:是相遇问题还是相隔问题;2)写出两个物体的运动方程;3)根据题目信息建立方程组;4)解方程组,求解出相遇或者相隔的时间。
5. 实例讲解:教师通过一个具体的实例,向学生展示解题过程和思路。
例如,提供一个追及问题的题目,一起讨论如何解答。
6. 合作探究:教师指导学生分组合作解题。
每组学生各自解答一个追及问题,并相互检查答案。
7. 总结归纳:教师引导学生总结追及问题的解题思路和方法,并记录在课堂笔记中。
8. 拓展应用:教师提供不同类型的追及问题,要求学生独立解答,并掌握灵活运用追及问题的解题思路。
9. 综合应用:教师引导学生将所学知识应用到实际问题中,例如,火车追及问题、船追及问题等。
10. 总结提升:教师向学生提出一道拓展题,并要求学生进行独立解答。
然后,学生交流解题思路和答案。
四、板书设计追及问题1. 概念:两个物体从同一地点出发,以不同的速度朝着不同的方向运动,问何时相遇或者相隔多远。
2. 解题方法:利用公式解题,其中距离=速度×时间。
追及问题教学设计一、教学目标1. 学生能够理解“追及问题”的概念和本质;2. 学生能够掌握解决“追及问题”的方法;3. 学生能够应用所学知识解决实际问题。
二、教学内容1. “追及问题”概念和本质;2. 解决“追及问题”的方法;3. 实际应用。
三、教学步骤1. 引入(5分钟)通过提问的方式引入,例如:“如果两个人同时从A点出发,一个人向东走,另一个人向南走,他们最终会在哪里相遇?”或者“如果一只兔子和一只乌龟同时从A点出发,兔子的速度是每小时20公里,乌龟的速度是每小时5公里,那么兔子需要多长时间才能追上乌龟?”2. 讲解(25分钟)首先讲解“追及问题”的概念和本质:即两个或多个物体同时开始运动,在某一时刻开始相互靠近,并在某一时刻相遇的问题。
其次讲解解决“追及问题”的方法:(1)列方程法以两辆车相向而行为例:设第一辆车的速度为v1,第二辆车的速度为v2,两车相向而行,他们相遇的时间为t,则有:v1t + v2t = d其中d为两车之间的距离。
(2)图像法以两个人相向而行为例:在平面直角坐标系上,设第一个人从原点出发,向右移动x1个单位,第二个人从y轴正方向出发,向下移动y2个单位。
则两人相遇的坐标为(x1,y2),如下图所示:(3)倍速追及法以一只兔子和一只乌龟同时从A点出发为例:设乌龟的速度为v1,兔子的速度为v2,则兔子比乌龟快v2 - v1。
因此,在兔子追上乌龟之前,兔子每小时比乌龟多走v2 - v1公里。
假设需要t小时兔子才能追上乌龟,则有:t × (v2 - v1) = d其中d为A点到追上点之间的距离。
3. 练习(20分钟)让学生自己尝试解决一些“追及问题”,并在教师的指导下互相交流解题思路和方法。
4. 拓展(5分钟)让学生思考如何应用“追及问题”的方法解决更复杂的实际问题,例如:如果两个人分别从A点和B点出发,一个人向东走,另一个人向南走,他们最终会在哪里相遇?如果两个人分别从A点和B点出发,一个人向东走,另一个人向北走,他们最终会在哪里相遇?五、教学反思本节课通过引入问题、讲解方法、练习和拓展等环节,使学生掌握了“追及问题”的概念和本质,并能够熟练应用所学知识解决实际问题。
奥数追及问题教案教案标题:奥数追及问题教案教案目标:帮助学生解决在奥数学习中遇到的追及问题,提高他们的解题能力和思维能力。
教学目标:1. 学生能够理解什么是追及问题,并能够应用相关的数学知识解决问题。
2. 学生能够运用合适的数学模型和方法解决不同类型的追及问题。
3. 学生能够培养逻辑思维和分析问题的能力。
教学重点:1. 理解追及问题的概念和特点。
2. 学习运用数学知识解决追及问题。
3. 培养学生的逻辑思维和问题分析能力。
教学准备:1. 教师准备相关的追及问题的例题和练习题。
2. 准备黑板、白板或投影仪等教学工具。
教学过程:Step 1: 引入追及问题的概念和背景 (5分钟)教师通过实例引入追及问题的概念,解释追及问题的特点和应用领域。
让学生了解追及问题的重要性和解决方法。
Step 2: 解决简单的追及问题 (15分钟)教师给出一些简单的追及问题,并引导学生思考并解答。
通过这些问题,学生可以熟悉追及问题的解题思路和方法。
Step 3: 学习运用数学知识解决复杂的追及问题 (20分钟)教师给出一些较复杂的追及问题,引导学生运用相关的数学知识和技巧解决。
教师可以通过讲解和讨论,帮助学生理解解题过程和方法。
Step 4: 练习与巩固 (15分钟)教师布置一些追及问题的练习题,让学生独立或小组完成。
教师可以提供一些提示和指导,帮助学生解决问题。
Step 5: 总结与反思 (5分钟)教师与学生一起总结本节课所学的内容,回顾解题方法和思路。
鼓励学生思考如何将所学的知识应用到实际生活中。
教学延伸:1. 学生可以自主寻找更多的追及问题,并尝试解决。
2. 学生可以尝试将追及问题与其他数学知识结合,拓展解题思路。
教学评估:教师可以通过学生的课堂表现、课后作业和小组讨论等方式进行评估。
评估的重点是学生是否能够独立解决追及问题,并能够合理运用数学知识和方法。
教学反思:在教学过程中,教师应注重培养学生的问题解决能力和思维能力。
五年级备课教员:第六讲追及问题一、教学目标: 1.能充分利用行程中的速度、路程、时间之间的关系解应用题。
2.借助公式“追及路程=追及时间×速度差”来解决问题。
3.培养分析问题、解决问题的能力,提高应用数学的意识。
4.体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学数学、用数学的兴趣。
二、教学重点: 1.利用速度、路程、时间之间的关系解应用题。
2.通过对具体问题情境的分析,列出算式,解决问题。
三、教学难点: 1.借助公式“追及路程=追及时间×速度差”解决问题。
2.借助“线段图”分析复杂问题中的数量关系,解决问题。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,大家应该都有听过龟兔赛跑的故事吧?生:听过。
师:最后是不是因为兔子睡觉偷懒,被乌龟赶上赢得了比赛呀?生:是的......师:那如果兔子没有偷懒,你们觉得兔子和乌龟谁会赢呢?生:兔子,因为兔子比乌龟跑得快。
师:没错,那老师为了比赛公平,让乌龟先跑出一段距离,再让兔子出发,你们认为现在谁会赢呢?生:不能确定。
师:怎么才能确定乌龟和兔子谁赢呢?我们今天就来研究这一类型的数学问题,好吗?生:好的!【板书课题:追及问题】二、探索发现授课(40分)(一)例题1:(13分)一名警察以每分钟400米的速度向一名小偷追去,小偷的速度是每分钟350米,现在警察和小偷的距离是500米,那么警察最快要几分钟能追上小偷?(PPT出示)师:同学们,看完题目,警察和小偷现在是相距多少米?生: 500米。
师:你们知道这个500米是什么吗?生:警察要追小偷的距离。
师:没错,那么这个500米就是追及路程。
生:是的,我明白了。
师:警察的速度是每分钟400米,小偷的速度是每分钟350米,所以我们可以发现警察速度比小偷速度快多少?生:每分钟50米。
师:是的。
追及路程是500米,速度差是每分钟50米。
小学数学应用题典型详解追及问题学习教案教案:小学数学应用题典型详解——追及问题教学内容:本节课我们学习的是小学数学应用题中的追及问题。
追及问题是指在运动过程中,两个或多个物体相互追赶的问题。
本节课我们以人教版小学数学五年级下册第87页的例题和练习题为例进行学习。
教学目标:1. 学生能理解追及问题的概念,并能正确列出追及问题的数量关系式。
2. 学生能运用基本的数学运算方法解决追及问题。
3. 学生在解决追及问题的过程中,培养逻辑思维能力和解决问题的能力。
教学难点与重点:难点:学生对追及问题数量关系式的理解和运用。
重点:学生能正确列出追及问题的数量关系式,并能运用基本的数学运算方法解决问题。
教具与学具准备:教具:黑板、粉笔、多媒体教学设备学具:练习本、笔教学过程:一、实践情景引入(5分钟)教师通过讲解一个实际生活中的追及问题,引导学生思考和理解追及问题的实质。
二、例题讲解(10分钟)教师在黑板上写出例题,引导学生一起分析问题,讲解解题思路和方法。
三、随堂练习(10分钟)教师给出几道类似的追及问题练习题,学生独立完成,教师挑选几份作业进行讲解和分析。
五、板书设计(5分钟)教师根据本节课的内容,设计板书,突出追及问题的数量关系式和解题步骤。
六、作业设计(5分钟)小明和小华同时从同一地点出发,小明每分钟走50米,小华每分钟走60米,5分钟后小华追上了小明,问小华一共走了多少米?答案:小华一共走了300米。
2. 请结合生活实际,自己设计一个追及问题,并列出数量关系式和解答过程。
课后反思及拓展延伸:教师在课后反思本节课的教学效果,针对学生的掌握情况,进行针对性的辅导和讲解。
同时,教师可以给学生推荐一些相关的学习资源,拓展学生的知识面。
重点和难点解析:一、实践情景引入(5分钟)补充和说明:在实践情景引入环节,教师可以通过讲述一个发生在校园里的追及故事,例如:两名同学在学校的操场上进行跑步比赛,其中一名同学起步晚,但速度快,另一名同学起步早,但速度慢。
追及问题和环形跑道问题辅导教案第6讲追及问题和环形跑道问题☆☆☆重点讲解知识点一、追及问题公式:路程差=速度差×追及时间.【例1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【例2】甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?【巩固提升】1、某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68米,则这列火车的速度是多少?2、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?知识点二、环形跑道经典公式:路程=速度×时间同一地点出发:反向每相遇一次,合走一圈路程和=速度和×相遇时间同向每追上一次,多走一圈路程差=速度差×追及时间1、基础环形跑道【例1】5、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?【例2】佳佳和海海在周长为400米的环形跑道上进行万米长跑。
佳佳的速度是40米/分,海海的速度是60米/分。
⑴佳和海海同时从同一地点出发反向跑步,两人几分钟后第一次相遇?再过几分钟后两人第二次相遇?⑵佳佳和海海同时从同一地点出发,同一方向跑步,海海跑几分钟能第一次追上佳佳?再过几分钟能第二次追上佳佳?【例2】在300米的环形跑道上,佳佳和海海同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【变式练习】1、佳佳、海海两人骑自行车从环形公路上同一地点同时出发,背向而行。
追及问题教案教案标题:追及问题教案教学目标:1. 学生能够理解“追及问题”的概念,并且能够运用合适的数学方法解决问题。
2. 学生能够分析和解决与“追及问题”相关的实际生活情境。
3. 学生能够合作探究,提出问题以及使用合适的数学工具和策略寻求解决方法。
教学内容:1. 什么是“追及问题”:通过两个物体的速度和相对运动方向,计算它们相遇的时间、距离或者速度。
2. 不同类型的“追及问题”:包括静止物体追及问题、相对匀速运动物体追及问题等。
3. 解决“追及问题”的数学方法:包括列方程、绘制图表、使用追及问题的公式等。
教学步骤:1. 引入“追及问题”:通过一个生活情境或者示例,引导学生思考并讨论什么是“追及问题”以及它在实际生活中的应用。
2. 介绍不同类型的“追及问题”:通过示例和图示,说明不同类型的“追及问题”以及解决这些问题的思路和方法。
3. 分组探究“追及问题”:将学生分成小组,提供一些实际情境,要求他们合作提出问题并使用数学方法进行解决。
4. 汇报和讨论:每个小组向全班汇报他们的问题和解决方法,全班共同讨论和评价,发现不同方法的优缺点。
5. 归纳总结:总结探究过程中学生发现的规律和策略,归纳出解决“追及问题”的一般步骤和方法。
6. 提供练习和拓展:布置一些练习题,既巩固所学的知识,又有一定难度,能够更深入地应用和拓展所学内容。
7. 综合评价:通过课堂参与、小组合作、作业完成情况等方式,对学生的学习情况进行评价和反馈。
教学资源:1. 教学投影仪或者白板,用于呈现示例和解题思路。
2. 实际生活情境或者示例,用于引入和讨论“追及问题”的应用。
3. 小组合作的材料,如纸笔、计算器等,用于分组探究和解决问题。
4. 练习题和拓展材料,用于巩固和拓展学生的学习内容。
教学特点:1. 引入实际情境:通过实际生活中的问题引入“追及问题”,增加学生的兴趣和参与度。
2. 合作学习:通过小组合作探究和讨论,培养学生的团队合作能力和解决问题的能力。
追及问题教案教案:追及问题目标:能够使用追及问题的方法解决相关问题。
教学步骤:1. 解释追及问题的概念和应用场景。
- 追及问题是指两个物体(通常是人或车辆)同时开始移动,一个追赶另一个,求出它们相遇的时间和位置。
- 应用场景:追及问题常常出现在日常生活和数学题目中,如两辆车从不同地点同时出发,其中一辆车想要追上另一辆车,我们需要计算它们相遇的时间和位置。
2. 介绍追及问题的解决方法。
- 首先,我们需要确定未知量。
通常情况下,未知量有三个:两个物体的初始位置和速度。
- 其次,我们需要建立方程。
根据问题的描述,可以建立两个方程来描述两个物体的位置和时间的关系。
一般情况下,我们使用物体到达目的地所需的时间作为变量。
- 最后,解方程求解未知量。
将建立的方程带入进行求解,得到未知量的值。
3. 进行案例分析。
- 通过解析具体的案例问题,让学生理解如何应用追及问题的解决方法。
- 示范解题过程,帮助学生掌握解决追及问题的步骤和技巧。
4. 练习和巩固。
- 提供一些追及问题练习题,让学生独立解答。
- 对学生的解答进行讨论和分析,强化学生对追及问题的理解和掌握。
5. 总结和拓展。
- 总结追及问题的解决方法和注意事项,强调解决问题的思维过程和方法。
- 鼓励学生尝试更复杂的追及问题,拓展其应用能力。
课堂实施建议:- 可以借助实物模型、图表或动画等辅助教具,帮助学生更好地理解和抽象问题。
- 鼓励学生互相分享和讨论解题思路,促进合作学习和相互学习。
- 引导学生在解决问题的过程中培养逻辑思维和问题分析能力。
教学过程一、课堂导入追及问题是行程问题中的一种类型,它符合行程问题的数量关系式,也有它独特的分析思路和解题方法,这节课我们就来学习追及问题。
二、复习预习1、行程问题:包括相遇问题、追击问题、流水行船问题和火车过桥几大问题.2、行程问题的数量关系式:路程=时间×速度时间=路程÷速度速度=路程÷时间三、知识讲解1、追及问题的特点:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时间出发,向同一方向运动)慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
2、基本关系式:追及路程=追及时间×速度差追及时间=追及路程÷速度差速度差=追及路程÷追及时间四、例题精析.【例题1】【题干】一天早上,小康的爸爸步行去上班,每分钟走90米,5分钟后,小康发现爸爸忘了带公文包,于是骑车去追爸爸,每分钟行180米,经过多少分钟后小康能追上爸爸?【答案】90×5=450(米) 450÷(180-90)=450÷90=5(分钟)答:小康经过5分钟能追上爸爸。
【解析】分析:小康去追爸爸的时候,爸爸已经走了5分钟,也就是走了90×5=450(米),小康在追爸爸的时间里,爸爸也仍在走,小康也在追,那么小康必须用比爸爸快的速度,在追的这段时间里,走完爸爸和他同时走的路,还要再多走450米;又知小康每分钟比爸爸多行180-90=90(米),所以,小康每行1分钟就与爸爸拉近90米,他要比爸爸多行450米,就是求450里面有多少个90,用除法就求出用了多少分钟。
【例题2】【题干】一辆汽车和一辆摩托车同时从甲、乙两城出发,向一个方向前进。
汽车在前,每小时行50千米;摩托车在后,每小时行85千米,经过4小时摩托车追上汽车。
甲乙两城相距多少千米?【解答】(85-50)×4=140(千米)答:甲乙两城相距140千米。
追及问题实质上就是在相同时间内,走得快的比走得慢的多走了两者之间的路程差。
①如果是同时出发,那么两者的路程差就是两者之间的相互距离;②如果是同一个地点出发,那么追及时间就是快者出发到追上慢者的时间,而他们的路程差是慢者先行的那段路程;③如果是环形跑道,他们同时、同地出发,那么他们的路程差就是跑道一圈的长度。
解答这类问题的方法主要是画好线段图,利用速度、时间、路程之间的相互关系灵活运用,注意各自单位。
1 .A 、B 两人分别从东西两地同时同向而行,A 每小时行7 千米,B 每小时行5 千米,3 小时后A 追上B ,问东西两地相距多少米?2 、光明小学200 米环形跑道,小明和小芳同时从起跑线起跑,小明每秒跑6 米,小芳每秒跑4 米,问小明第一次追上小芳时两人各跑了多少圈?3 . A 、 B 两人同时从东村出发到西村, A 的速度是每小时 6 千米, B 的速度是每小时4 千米, A 中途有事休息了 2 小时,结果比 B 迟到了 1 小时,求两村相隔多少千米?练习:1、在同一条路上,好马每天向前走120千米,劣马每天向前走75千米,劣马先走12天,好马经过几天可追上劣马。
2、甲、乙二人由A地到B地。
甲每分钟走50米,乙每分钟走45米,乙比甲早走4分钟,二人同时到达B地。
那么A地到B地的距离是几千米。
3、有两列火车,一列长102米,每秒钟行20米,一列长120米,每秒钟行17米。
两车同向而行,从第一列车追及第二列车到两车离开需要几秒钟。
4、小李骑自行车去县城,原计划每小时行15千米,后来由于需要提前半小时到达,所以每小时要比原计划多行5千米,则县城距小李家千米。
5、小明从家到公园,原打算每分钟走50米。
为了提早10分钟到,他把速度加快,每分钟走75米。
问:家到公园多远?6、有两列火车,一列长93米,每秒钟行21米,一列长126米,每秒钟行18米。
两车同向而行,从第一列火车追及第二列火车到离开需要几秒钟?。
《追及问题》教学设计
五年级数学教案
知识与技能
1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.
2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.
过程与方法
1.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.
2.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.
情感、态度与价值观
1.通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识、团队精神和克服困难的勇气.。
人教版五年级奥数教案:追及问题
专题知识点详解:
主要问题是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。
追及问题的基本数量关系是:
速度差×追及时间=追及路程
解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?
分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。
60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车。
第1 页共1 页。