江口淮阳中学2013届高三数学小题训练十二
- 格式:doc
- 大小:371.00 KB
- 文档页数:5
扬州中学2012-2013学年度第一学期质量检测高三数学试卷2012.12一、填空题(每小题5分,共70分)1.已知集合{2,3},{1,},{2},A B a A B A B ==== 若则 ▲ . 2.“1x >” 是 “11x<” 的 ▲ 条件. 3.双曲线221416x y -=的渐近线方程为 ▲ . 4.复数1ii-在复平面内对应的点位于第 ▲ .象限. 5.若抛物线px y 22=的焦点与双曲线1322=-y x 的右焦点重合,则p 的值为 ▲ . 6. 若圆229x y +=与圆224410x y x y +-+-=关于直线l 对称,则l 的方程为 ▲ . 7.公差不为零的等差数列{}n a 的第二、三及第六项构成等比数列,则642531a a a a a a ++++= ▲ .8.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题:①//,,//m n n m αα⊂若则 ②,,//////m n m n ααββαβ⊂⊂若,,则 ③//,,//m n m n αβαβ⊂⊂若,则 ④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; 其中正确命题的序号为 ▲ .9.若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 ▲ .10.已知函数()()sin f x x x x ωω=∈R ,()2f α=-,()0f β=,且αβ-的最小值为4π,则正数ω的值为 ▲ .11.设M 是ABC ∆内一点,30AB AC BAC =∠=·°,定义()(,,)f x m n p =,其中,,m n p 分别是,,MBC MAC MAB ∆∆∆的面积,若1()(,,)2f Q x y =,则14x y+的最小值是 ▲ .12. 已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,P 点在椭圆上,以P 点为圆心的圆与y 轴相切,且同时与x 轴相切于椭圆的右焦点F ,则椭圆22221y x a b+=的离心率为 ▲ .13.若关于x 的方程320x ax bx c +++=的三个根可分别作为一个椭圆、双曲线、抛物线的离心率,则ba的取值范围为 ▲ . 14. 已知直线l 经过椭圆2212y x +=的焦点并且与椭圆相交于P ,Q 两点,线段PQ 的垂直平分线与x 轴相交于点M ,则MPQ ∆面积的最大值为 ▲ .二、解答题 (本大题共6小题,共90分) 15.(本题满分14分)如图, 在直三棱柱111ABC A B C -中,3AC =,5AB =,4BC =,点D 是AB 的中点,⑴ 求证:11ACC BCC ⊥平面平面; ⑵ 求证:11//AC CDB 平面16.(本题满分14分)在△ABC 中,,,a b c 分别是角A ,B ,C 的对边,cos A =,tan 3B =. (1)求角C 的值;(2)若4a =,求△ABC 面积.17.(本题满分15分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为:21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?18.(本题满分15分)在平面内,已知椭圆22221(0)x y a b a b +=>>的两个焦点为12,F F , ,P 点是椭圆上任意一点, 且124PF PF +=, (1)求椭圆的标准方程;(2)以椭圆的上顶点B 为直角顶点作椭圆的内接等腰直角三角形ABC ,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.19.(本题满分16分)已知等差数列}{n a 的前n 项和为n S ,且22=a ,515=S ,数列{}n b 满足:112b =,112(1)n n nb b a +=+, (1)求数列}{n a 、{}n b 的通项公式;(2)设12n n T b b b =+++ ,24-=nn nT c S ,证明:1212+++< n c c c20.(本题满分16分)已知函数3225()xx x x tf x e +++=(1)当5t =时,求函数()f x 的单调区间;(2)若存在[0,1]t ∈,使得对任意[4,]x m ∈-,不等式()f x x ≤成立,求整数m 的最大值.扬州中学2012-2013学年度第一学期质量检测高三数学试卷(附加题部分)(总分40分,加试时间30分钟)1.(本题满分10分)设矩阵M 是把坐标平面上的点的横坐标伸长到3倍,纵坐标伸长到2倍的伸压变换矩阵. (1)求逆矩阵1M-;(2)求椭圆22194x y +=在矩阵1M -作用下变换得到的新曲线的方程.2.(本题满分10分)已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=(1)将直线l 的极坐标方程化为直角坐标方程;(2)设点P 在曲线C 上,求P 点到直线l 的距离的最小值。
淮阳中学2012~2013学年度上期高三第一次考试数学试题 (理科) 命题人:孙 博一.选择题(每小题5分,共60分) 1.设集合⎭⎬⎫⎩⎨⎧∈<-+=R x x x x M ,012|,{}Z x x x x N ∈≥-=,02|2,则M N =( )A .{}02|≤<-x xB .{}22|≤<-x xC .{}0,1|-xD .φ 2.“存在,R x ∈使042<-+a ax x 为假命题”是“016≤≤-a ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件3.命题“存在,Z x ∈使022≤++m x x ”的否定是 ( ) A .存在,Z x ∈使022>++m x x B .不存在,Z x ∈使022>++m x x C .对于任意,Z x ∈都有022≤++m x x D .对于任意,Z x ∈都有022>++m x x 4.将π2cos 36x y ⎛⎫=+⎪⎝⎭的图象按向量⎪⎭⎫ ⎝⎛--=2,4π平移,则平移后所得图象的解析式为 A .π2cos 234x y ⎛⎫=-+ ⎪⎝⎭B .π2cos 234x y ⎛⎫=+- ⎪⎝⎭ ( )C .π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D .π2cos 2312x y ⎛⎫=++ ⎪⎝⎭5.已知集合{}5312|-≤≤+=a x a x A ,{}223|≤≤=x x B ,则能使()B A A ⊆成立的a 的取值范围为 ( ) A.{}91|≤≤a a B. {}96|≤≤a a C. {}9|≤a a D. φ6、集合{}5,4,3,2,1,0=S ,A 是S 的一个子集。
当A x ∈时,如果A x ∉-1且A x ∉+1,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4元子集的个数为( ) A .4个 B .5个 C .6个 D .7个 7.设函数)(x f 是定义在R 上以3为周期的奇函数.若132)2(,1)1(+-=>a a f f ,则a 的取值范围为 ( ) A 、32<a B 、 32<a 且1-≠aC 、32>a 或1-<a D 、321<<-a 8.若函数mx xm x f +-=2)2()(的图象如右图所示, 则m 的取值范围为( ) A .)1,(--∞ B .)2,1(- C .)2,1( D .)2,0(9.设偶函数||log )(b x x f a -=在)0,(-∞上单调递增,则)1(+a f 与)2(+b f 的大小关系为 ( ) A 、)2()1(+≥+b f a f B 、)2()1(+>+b f a f C 、)2()1(+≤+b f a f D 、)2()1(+<+b f a f10.命题P :函数aax x x f -+=21)(的值域为),0(+∞,则40a -<<;命题q:函数y =的定义域为{}13x x x ≤-≥或,则 ( )A .“P 或q ”为假B .“P 且q ”为真C .P 真q 假D .P 假q 真11.设函数⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则不等式2)(>x f 的解集为( ) A .),10()2,1(+∞ B .),3()2,1(+∞ C .),10(+∞ D .)2,1(12.已知函数)(x f 是定义在R 上以3为周期的奇函数,且当)23,0(∈x 时,)1l n ()(2+-=x x x f ,则方程0)(=x f 在区间]6,0[上的解的个数是 ( )A 、9B 、7C 、6D 、4 二、填空题:(每小题5分,共20分)13.已知函数)56(log )(2--=x x x f a ,0)2(>f ,则函数)(x f 的减区间为 。
淮阴中学2013届高三下学期期初检测数学试题一、填空题1.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是 .2.已知关于x 的不等式:|2x -m|≤1的整数解有且仅有一个值为2.则整数m 的值为 ; 3.函数2()23xf x x -=+-的零点个数是________.4.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为___________,双曲线的渐近线方程为___________.5.432⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项等于 ;6.关于x 的不等式xe ax >在(]1,0∈x 上恒成立,则a 的取值范围是 。
7. 设函数)(*1N n xy n ∈=+在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令n n x a lg =,则的值为99321a a a a ++++ ______________8.函数)12(log )(5-=x x f 的单调增区间是__________ 9.设2log 3=a ,2ln =b ,215-=c ,则a 、b 、c 从小到大的排列顺序是 。
10.已知b 为二项式nx )9(+展开式中各项系数之和,且∞→n lim aa b a b n n 1101=+++,则实数a 取值范围是 。
11.按该图所示的程序框图运算,则输出S 的值是 .12.集合A={x|︱x +3|+|x -4|≤9},B{x|x=4t+t1-6,t∈(0,+∞) },则集合A∩B= .13的定义域为 .14.关于z 的方程20132012101i zii izi+=--+(其中i 是虚数单位),则方程的解=z . 二、解答题15.已知四棱锥P ABCD -中,PA ABCD ⊥平面,底面ABCD 是边长为a 的菱形,120BAD ∠=︒,PA b =.(I )求证:PBD PAC ⊥平面平面;(II )设AC 与BD 交于点O ,M 为OC 中点,若二面角O PM D --的正切值为,求:a b 的值.MO DACBP16.已知函数1ln ()xf x x+=。
2012-2013学年江苏省淮阴中学高三(下)期初数学试卷参考答案与试题解析一、填空题1.(2007•北京)已知向量=(2,4),=(1,1),若向量⊥(+λ),则实数λ的值是﹣3 .考点:数量积判断两个平面向量的垂直关系;向量数乘的运算及其几何意义.专题:计算题.分析:由向量=(2,4),=(1,1),我们易求出向量若向量+λ的坐标,再根据⊥(+λ),则•(+λ)=0,结合向量数量积的坐标运算公式,可以得到一个关于λ的方程,解方程即可得到答案.解答:解:+λ=(2,4)+λ(1,1)=(2+λ,4+λ).∵⊥(+λ),∴•(+λ)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=﹣3.故答案:﹣3点评:本题考查的知识点是数量积判断两个平面向量的垂直关系,及向量数乘的运算,解答的关键是求出各向量的坐标,再根据两个向量垂直,对应相乘和为零,构造方程.2.已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.则整数m的值为 4 .考点:绝对值不等式.专题:计算题;压轴题.分析:解绝对值不等式得≤x≤,由于整数解有且仅有一个值为2,,由此求得整数m的值.解答:解:由关于x的不等式:|2x﹣m|≤1 可得﹣1≤2x﹣m≤1,解得≤x≤.由于整数解有且仅有一个值为2,∴,即,故 m=4,故答案为 4.点评:本题主要考查绝对值不等式的解法,得到,是解题的关键,属于中档题.3.函数f(x)=2﹣x+x2﹣3的零点的个数为 2 .考点:函数零点的判定定理.专题:作图题.分析:要判断函数f(x)=2﹣x+x2﹣3的零点的个数,我们可以利用图象法,将函数f(x)=2﹣x+x2﹣3分解为f(x)=2﹣x﹣(﹣x2+3),然后在同一坐标系中做出函数y=2﹣x,与函数y=﹣x2+3的图象,分析其交点个数,即可得到答案.解答:解:画出函数y=2﹣x,与函数y=﹣x2+3的图象如图,由图可知,函数y=2﹣x,与函数y=﹣x2+3的图象有两个交点,则函数f(x)=2﹣x+x2﹣3的零点有两个,故答案为:2.点评:本题考查的知识点是函数零点的判定定理,我们常用的方法有:①零点存在定理②解方程③图象法.当函数的解析式比较复杂,我们无法解对应的方程时(如本题),我们多采用图象法.4.双曲线8kx2﹣ky2=8的一个焦点为(0,3),则K的值为﹣1 ,双曲线的渐近线方程为y=±2x .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据题意,易得双曲线的焦点在y轴上,则可将双曲线的方程化为标准形式,又由焦点坐标为(0,3),则有(﹣)+(﹣)=9,解可得答案.把双曲线8kx2﹣ky2=8的方程化为标准形式,把双曲线的标准方程中的1换成0,即得双曲线的渐近线方程.解答:解:根据题意,易得双曲线的焦点在y轴上,则双曲线的方程可变形为,且k<0;焦点坐标为(0,3),则有(﹣)+(﹣)=9,解可得,k=﹣1;双曲线8kx2﹣ky2=8即,故双曲线8kx2﹣ky2=8的渐近线方程为,即y=±2x,故答案为:﹣1;y=±2x.点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,把双曲线的标准方程中的1换成0,即得双曲线的渐近线方程.5.(2010•衡阳模拟)的展开式中的常数项等于﹣32 .考点:二项式定理的应用.专题:计算题.分析:首先由二项式定理,可得其通项公式,令x的指数为0,可得r=3,即r=3时,是常数项,计算可得答案.解答:解:由题意,T r+1=C4r(x3)4﹣r(﹣)r=(﹣2)r C4r x12﹣4r,令12﹣4r=0⇒r=3则常数项为T3+1=(﹣2)3×C43=﹣32故答案为:﹣32.点评:本题考查二项式定理及通项公式,牢记通项公式的形式为T r+1=C n r a n﹣r b r是解题的关键.6.关于x的不等式ax<e x在x∈(0,1)上恒成立,则a的取值范围是(﹣∞,e] .考点:函数恒成立问题.专题:函数的性质及应用;导数的概念及应用.分析:分离出参数a后,构造函数,转化为求函数的最值问题,利用导数易求函数的最值.解答:解:当x∈(0,1)时,ax<e x⇔a<,令f(x)=,则问题等价于a<f(x)min,则f′(x)=,所以f′(x)<0,即f(x)在(0,1)上单调递减,所以当x∈(0,1)时,f(x)>e,所以a≤e,故答案为:(﹣∞,e].点评:本题考查函数恒成立问题,考查转化思想、函数思想,解决本题的关键是对问题进行等价转化,变为函数的最值解决.7.(2013•甘肃三模)设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为﹣2 .考点:利用导数研究曲线上某点切线方程;数列的求和.专题:计算题.分析:由曲线y=x n+1(n∈N*),知y′=(n+1)x n,故f′(1)=n+1,所以曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,故a n=lgn﹣lg(n+1),由此能求出a1+a2+…+a99.解答:解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.点评:本题考查利用导数求曲线的切线方程的应用,是基础题.解题时要认真审题,仔细解答.8.(2011•江苏)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解答:解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)点评:本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R的错解.9.设a=log32,b=ln2,c=,则a,b,c的大小关系为c<a<b .考点:对数值大小的比较.专题:计算题.分析:利用换底公式把=log32变形为,就可比较a,b的大小,再借助数,分别与In2和比较大小,就可得到三个数的大小比较.解答:解:∵a=log32=<ln2b=In2<lne=1且b=In2>ln=c==<∴c<a<b故答案为c<a<b点评:本题主要考查指数式与对数式大小的比较,要善于借助中间量与之比较.10.已知b为二项式(9+x)n展开式中各项系数之和,且,则实数a取值范围是(﹣∞,﹣10)∪[10,+∞).考点:二项式系数的性质.专题:计算题.分析:依题意,b=10n,再由=⇒|a|≥10且a≠﹣10,解此不等式即可得答案.解答:解:∵b为二项式(9+x)n展开式中各项系数之和,∴b=(9+1)n=10n,∴==,∴|a|≥10且a≠﹣10,∴a<﹣10或a≥10.∴实数a取值范围是a<﹣10或a≥10.故答案为:(﹣∞,﹣10)∪[10,+∞).点评:本题考查求极限,考查二项式系数的性质,求得b=10n,继而求得|a|≥10且a≠﹣10是关键,也是难点,忽略a≠﹣10是易错点,考查缜密思维,细心思维,属于难题.11.按右图所示的程序框图运算,则输出S的值是.考点:程序框图.专题:规律型.分析:由已知中程序的流程图,我们可以得到程序的功能是利用循环计算S=++…+的值,根据条件框中的条件,我们计算出进行循环的k值,即可得到答案.解答:解:由题意得程序的功能是:利用循环计算S=++…+的值,∵最后一次执行累加语句时k值为6则算S=++…+=(1﹣)+(﹣)+…+(﹣)=1﹣=故答案为:.点评:本题考查的知识点是程序框图,其中根据已知中的程序流程图,分析出程序的功能是解答本题的关键.12.(2011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.考点:交集及其运算.专题:计算题;压轴题.分析:求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.解答:解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,所以B={x|x≥﹣2}所以A∩B={x|﹣5﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5}故答案为:{x|﹣2≤x≤5}点评:本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.13.(2012•江苏)函数f(x)=的定义域为(0,] .考点:对数函数的定义域.专题:计算题.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0 ∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.14.(2013•虹口区一模)关于z的方程(其中i是虚数单位),则方程的解z= 1﹣2i .考点:三阶矩阵.专题:计算题.分析:利用矩阵的意义,将方程化简,再利用复数的除法运算,即可得到结论.解答:解:由题意得,(1+i)z﹣z(1﹣i)=2+i,∴iz=2+i,∴z==1﹣2i.故答案为:1﹣2i.点评:本题考查三阶矩阵的意义,考查复数的除法运算,属于中档题.二、解答题15.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b.(I)求证:平面PBD⊥平面PAC;(II)设AC与BD交于点O,M为OC中点,若二面角O﹣PM﹣D的正切值为,求a:b 的值.考点:平面与平面垂直的判定;与二面角有关的立体几何综合题.专题:综合题;空间向量及应用.分析:(I)根据线面垂直的判定,证明BD⊥平面PAC,利用面面垂直的判定,证明平面PBD⊥平面PAC.(II)过O作OH⊥PM交PM于H,连HD,则∠OHD为A﹣PM﹣D的平面角,利用二面角O﹣PM﹣D的正切值为,即可求a:b的值.解答:(I)证明:因为PA⊥平面ABCD,所以PA⊥BD 又ABCD为菱形,所以AC⊥BD,因为PA∩AC=A,所以BD⊥平面PAC因为BD⊂平面PBD,所以平面PBD⊥平面PAC.(II)解:过O作OH⊥PM交PM于H,连HD因为DO⊥平面PAC,由三垂线定理可得DH⊥PM,所以∠OHD为A﹣PM﹣D的平面角又,且从而∴所以9a2=16b2,即.点评:本题考查线面垂直、面面垂直的判定,考查面面角,解题的关键是掌握线面垂直、面面垂直的判定,作出面面角.16.已知函数.(1)如果a>0,函数在区间上存在极值,求实数a的取值范围;(2)当x≥1时,不等式恒成立,求实数k的取值范围.考点:实际问题中导数的意义;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:(1)因为,x>0,x>0,则,利用函数的单调性和函数f(x)在区间(a,a+)(其中a>0)上存在极值,能求出实数a的取值范围.(2)不等式,即为,构造函数,利用导数知识能求出实数k的取值范围.解答:解:(1)因为,x>0,则,(1分)当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减,所以函数f(x)在x=1处取得极大值.因为函数f(x)在区间(a,a+)(其中a>0)上存在极值,所以解得.(2)不等式,即为,记,所以=令h(x)=x﹣lnx,则,∵x≥1,∴h'(x)≥0,∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0,从而g'(x)>0,故g(x)在[1,+∞)上也单调递增,所以[g(x)]min=g(1)=2,所以k≤2.点评:本题考查极值的应用,应用满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答,注意构造法和分类讨论法的合理运用.17.(2010•上海)若实数x、y、m满足|x﹣m|<|y﹣m|,则称x比y接近m.(1)若x2﹣1比3接近0,求x的取值范围;(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近;(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx 和1﹣sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).考点:绝对值不等式的解法;其他不等式的解法.专题:计算题;压轴题;新定义;转化思想.分析:(1)根据新定义得到不等式|x2﹣1|<3,然后求出x的范围即可.(2)对任意两个不相等的正数a、b,依据新定义写出不等式,利用作差法证明:a2b+ab2比a3+b3接近;(3)依据新定义写出函数f(x)的解析式,直接写出它的奇偶性、最小正周期、最小值和单调性,即可.解答:解:(1)|x2﹣1|<3,0≤x2<4,﹣2<x<2 x∈(﹣2,2);(2)对任意两个不相等的正数a、b,有,,因为,所以,即a2b+ab2比a3+b3接近;(3),k∈Z,f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小值为0,函数f(x)在区间单调递增,在区间单调递减,k∈Z.点评:本题是新定义题目,直线审题是能够解题的根据,新定义问题,往往是结合相关的知识,利用已有的方法求出所求结果.注意转化思想的应用.18.(2009•襄阳模拟)已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),.(1)若,求角α的值;(2)若,求的值.考点:三角函数的化简求值;三角函数中的恒等变换应用.专题:计算题.分析:(1)根据两向量的模相等,利用两点间的距离公式建立等式求得tanα的值,根据α的范围求得α.(2)根据向量的基本运算根据求得sinα和cosα的关系式,然后同角和与差的关系可得到,再由可确定答案.解答:解:(1)∵,∴化简得tanα=1∵.∴.(2)∵,∴(cosα﹣3,sinα)•(cosα,sinα﹣3)=﹣1,∴∴,∴.点评:本题主要考查两角和与差的基本关系和三角与向量的综合题.三角函数与向量的综合题是高考的重点,每年必考的,一定多复习.19.选修4﹣5:不等式选讲设a,b 是非负实数,求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:作差,分类讨论,确定差的符号,即可得到结论.解答:证明:由a,b 是非负实数,作差得=.当a≥b 时,,从而,得;当a<b 时,,从而,得.所以.本题考查不等式的证明,考查分类讨论的数学思想,属于中档题.点评:20.已知椭圆中心在原点,焦点在x 轴上,离心率,点F1,F2分别为椭圆的左、右焦点,过右焦点F2且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)过椭圆的左焦点F1作直线l,交椭圆于P,Q 两点,若,求直线l的倾斜角.直线与圆锥曲线的综合问题;椭圆的标准方程.考点:专圆锥曲线中的最值与范围问题.题:分析:(1)设椭圆的标准方程为.右焦点F2(c,0),把x=c代入椭圆方程得,解得.可得.利用离心率计算公式及a,b,c 的关系可得,解出即可.(2)设直线l与椭圆的交点P(x1,y1),Q(x2,y2).分当直线l的斜率为0和不为时讨论,斜率不为0时设直线l的方程为my=x+1,与椭圆的方程联立,得到根与系数的关系,再利用数量积,即可得出.直线l的斜率为0时比较简单.解答:解:(1)由题意可设椭圆的标准方程为.右焦点F2(c,0),把x=c 代入椭圆方程得,解得.∴.联立,解得.∴椭圆的标准方程为.(2)设直线l与椭圆的交点P(x1,y1),Q(x2,y2).①当直线l的斜率不为0时,设直线l的方程为my=x+1.联立,得(2+m2)y2﹣2my﹣1=0.∴,.∵2==(x1﹣1,y1)•(x2﹣1,y2)=(my1﹣2,y1)•(my2﹣2,y2)=(m2+1)y1y2﹣2m(y1+y2)+4,∴2=,化为m2=1,解得m=±1,∴直线l的斜率k==±1.设直线的倾斜角为α,则tanα=±1.∴或.②当直线l的斜率为0时,P,Q.==﹣1≠2,不符合题意,应舍去.综上可知:直线l的倾斜角α为或.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、向量的数量积等基础知识与基本技能,考查了分类讨论的思想方法、推理能力和计算能力.。
江苏省淮安市淮阴中学2013届高三下学期3月综合测试数学试卷一.填空题(每小题5分,共70分)1.(5分)设集合A={a,2},B={1,2},A∪B={1,2,3},则a=3.2.(5分)如果=1+mi(m∈R,i表示虚数单位),那么m=1.,=1+mi3.(5分)若函数是奇函数,则a=.是奇函数,解:∵函数)x+))±4.(5分)某学校为了解该校600名男生的百米成绩(单位:s),随机选择了50名学生进行调查,如图是这50名学生百米成绩胡频率分布直方图.根据样本的频率分布,估计这600名学生中成绩在[13,15](单位:s)内的人数大约是120.5.(5分)设α,β为两个不重合的平面,m,n为两条不重合的直线,现给出下列四个命题:①若m∥n,n⊂α,则m∥n;②若m⊥n,m⊥α,则n∥α;③若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;④若m∥n,n⊥α,α∥β,则m⊥β.其中,所有真命题的序号是③④.6.(5分)阅读程序:输出的结果是2,5,107.(5分)设变量x、y满足约束条件,则z=2x+3y的最大值为18.8.(5分)甲盒子里装有分别标有数字1.2,4,7的4张卡片,乙盒子里装有分别标有数字1,4的2张卡片,若从两个盒子中各随机地取出1张卡片,则2张卡片上的数字之和为奇数的概率是.P=,故答案为:.9.(5分)函数f(x)=sin2x cosx(x∈[0,π])的值域是[﹣,].x﹣+,;﹣;x﹣,,x10.(5分)已知O,A,B是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若,,则的值为12.表示成,从而,转化为求数量积,再用代得,,,=11.(5分)设f(x)=,若f(x1)=f(x2)=a(x1≠x2),则实数a的取值范围是[1,2e).12.(5分)已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是.的范围,即为离心率=e==2d,,所以得到得:+2,得:,解得≥≤≥≥[[13.(5分)(2011•浦东新区三模)已知数列{a n}是以3为公差的等差数列,S n是其前n项和,若S10是数列{S n}中的唯一最小项,则数列{a n}的首项a1的取值范围是(﹣30,﹣27).=n=n==<1014.(5分)函数f(x)=ax2﹣2(a﹣3)x+a﹣2中,a为负整数,则使函数至少有一个整数零点的所有的a值的和为﹣14.=1+==1+,和时,二.解答题(解答要给出必要的文字说明和演算步骤,共90分)15.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,且tanA=,cosB=.(1)求tanC的值;(2)若△ABC最长的边为1,求b边及△ABC的面积.tanB=,利用同角三角函数间的基本关系与两角和的正切即可tanA=,cosB=,又﹣﹣C=,,cosB=tanA=,,=,=1×=,bcsinA=××.16.(14分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,∠BAD=60°,P为AB的中点,Q为CD1的中点.(1)求证:DP⊥平面A1ABB1;(2)求证:PQ∥平面ADD1A1.17.(14分)今年的国庆假期是实施免收小型客车高速通行费后的第一个重大节假日,有一个群名为“天狼星”的自驾游车队.该车队是由31辆车身长都约为5m(以5m计算)的同一车型组成的,行程中经过一个长为2725m的隧道(通过该隧道的车速不能超过25m/s),匀速通过该隧道,设车队的速度为xm/s,根据安全和车流的需要,当0<x≤2时,相邻两车之间保持20m的距离;当12<x≤25时,相邻两车之间保持()m的距离.自第1辆车车头进入隧道至第31辆车车尾离开隧道所用的时间为y(s).(1)将y表示为x的函数;(2)求该车队通过隧道时间y的最小值及此时车队的速度.之间保持(时,相邻两车之间保持(=y==5x+,∴y=5x++10,即18.(16分)已知椭圆的离心率为,且过点P(4,),A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x 轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.(1)求椭圆方程;(2)若圆N与x轴相切,求圆N的方程;(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.e=﹣,不妨设,)在椭圆上,∴++=1﹣((,=t则由t=,,的方程为==(的距离为=+时,d=,此时<d=(,此时[,)19.(16分)设函数f(x)=x3+ax2+bx+c(a<0)在x=0处取得极值﹣1.(1)设点A(﹣a,f(﹣a)),求证:过点A的切线有且只有一条;并求出该切线方程.(2)若过点(0,0)可作曲线y=f(x)的三条切线,求a的取值范围;(3)设曲线y=f(x)在点(x1,f(x1)),(x2,f(x2))(x1≠x2)处的切线都过点(0,0),证明:f′(x1)≠f′(x2).x,说明该方程应有三个不同的实数根,利用导函数求出该)可得代入可得,,从而得到矛盾,说明假设错误,得到要证的结x)代入方程可得;)解:因为切线方程为因为有三条切线,故方程得极小值为因为方程有三个根,故极小值小于零,,所以)证明:假设,)可得代入上式可得,,.,这与20.(16分)已知数列{a n}是由正数组成的等比数列,S n是其前n项和.(1)当首项a1=2,公比q=时,对任意的正整数k都有(0<c<2)成立,求c的取值范围;(2)判断S n S n+2﹣的符号,并加以证明;(3)是否存在正常数m及自然数n,使得lg(S n﹣m)+lg(S n+2﹣m)=2lg(S n+1﹣m)成立?若存在,请求出相应的m,n;若不存在,说明理由.,=都有,)上单调递增,∴函数y=<﹣=﹣。
2013届高三数学综合测试2013.3.2一.填空题(每小题5分,共70分)1. 设集合{}{}{},2,1,2,1,2,3A a B A B === ,则a = . 2.如果mi i+=-112(R m ∈,i 表示虚数单位),那么=m . 3.若函数)2(log )(22a x x x f a ++=为奇函数,则a =4.某学校为了解该校600名男生的百米成绩(单位:s ),随机选择了50名学生进行调查, 下图是这50名学生百米成绩的频率分布直方图。
根据样本的频率分布,估计这600名学 生中成绩在[13,15](单位:s )内的人数大约是 .5.设,αβ为两个不重合的平面,,m n 为两条不重合的直线,给出下列的四个命题: (1)若,m n m α⊥⊥,则//n α;(2)若,,n m αβ⊂⊂α与β相交且不垂直,则n 与m 不垂直 (3)若,,,,m n n m αβαβα⊥⋂=⊂⊥则n β⊥ (4)若//,,//,m n n ααβ⊥则m β⊥其中,所有真命题的序号是 . 6.阅读下列程序:输出的结果是 .7.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则23z x y =+的最大值是 .8.甲盒子里装有分别标有数字1、2、4、7的4张卡片,乙盒子里装有分别标有数字1、4的2张卡片,若从两个盒子中各随机地取出1张卡片,则2张卡片上的数字之和为奇数的概率是 . 9.函数x x x f cos 3sin )(2-=([0,])x π∈的值域是_______10.已知,,O A B 是平面上不共线三点,设P 为线段AB 垂直平分线上任意一点,若||7OA = ,||5OB = ,则()OP OA OB -的值为 .11.设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,若()1212()()f x f x a x x ==≠,则实数a 的取值范 围是 . 12.已知椭圆22221(0)x y a b a b+=>>,12,F F 是左右焦点,l 是右准线,若椭圆上存在点P ,使1||PF 是P 到直线l 的距离的2倍,则椭圆离心率的取值范围是_______. 13.已知数列{}n a 是以3为公差的等差数列,n S 是其前n 项和,若10S 是数列{}n S 中的唯一最小项,则数列{}n a 的首项1a 的取值范围是 .14.函数2()2(3)2f x ax a x a =--+-中,a 为负整数,则使函数至少有一个整数零点的所有的a 值的和为______________.Read 1S ←For I From 1 to 5 Step 2 S S I ←+ Print S End forEnd二.解答题(解答要给出必要的文字说明和演算步骤,共90分) 15.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c , 且10103cos ,21tan ==B A . (1)求tanC 的值;(2)若ABC ∆最长的边为1,求b 边及ABC ∆的面积.16.在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为菱形,∠BAD =60°,P 为AB 的中点,Q 为CD 1的中点. (1)求证:DP ⊥平面A 1ABB 1;(2)求证:PQ ∥平面ADD 1A 1.17. 今年的国庆假期是实施免收小型客车高速通行费后的第一个重大节假日,有一个群名为 “天狼星”的自驾游车队。
淮阴中学2013届高三下学期期初检测数学试题一、填空题1.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是 .2.已知关于x 的不等式:|2x -m|≤1的整数解有且仅有一个值为2.则整数m 的值为 ; 3.函数2()23xf x x -=+-的零点个数是________.4.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为___________,双曲线的渐近线方程为___________.5的展开式中的常数项等于 ;6.关于x 的不等式xe ax >在(]1,0∈x 上恒成立,则a 的取值范围是 。
7. 设函数)(*1N n xy n ∈=+在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令n n x a lg =,则的值为99321a a a a ++++ ______________ 8.函数)12(log )(5-=x x f 的单调增区间是__________ 9.设2log 3=a ,2ln =b ,,则a 、b 、c 从小到大的排列顺序是 。
10.已知b 为二项式nx )9(+展开式中各项系数之和,且,则实数a 取值范围是 。
11.按该图所示的程序框图运算,则输出S 的值是 .12.集合A={x|︱x +3|+|x -4|≤9},6,t∈(0,+∞) },则集合13的定义域为 .14.关于z 的方程(其中i 是虚数单位)二、解答题15.已知四棱锥P ABCD -中,PA ABCD ⊥平面,底面ABCD 是边长为a 的菱形,120BAD ∠=︒,PA b =.(I )求证:PBD PAC ⊥平面平面;(II )设AC 与BD 交于点O ,M 为OC 中点,若二面角O PM D --的正切值为:a b 的值.MO DACBP16()1如果a 的取值范围; ()2当k 的取值范围。
17.若实数x 、y 、m 满足,则称x 比y 接近m . (1)若21x -比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:22a b ab +比33a b +接近(3)已知函数()f x 的定义域任取x D ∈,()f x 0的那个值.写出函数()f x 的解析式,并指出它的奇偶性、最值和单调性(结论不要求证明).18. 已知点A(3,0),B(0,3),C(cos α,sin α),α∈(1ACBC,求角α的值;(2)若AC BC ⋅=-119.设a 、b20.已知椭圆中心在原点,焦点在x ,点21,F F 分别为椭圆的左、右焦点,过右焦点2F 且垂直于长轴的弦长为⑴ 求椭圆的标准方程;⑵ 过椭圆的左焦点1F 作直线l ,交椭圆于Q P ,两点,若222=∙Q F P F ,求直线l 的倾斜角。
绝密★启用前 试卷类型:A理科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-第Ⅰ卷 (选择题 满分40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -12.设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( ) A .{x|-2≤x <1} B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}3.下列函数中,最小值为2的是( ) A .21222+++=x x yB .xx y 12+=C .)220)(22(<<-=x x x yD .1222++=x x y 4.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(xx a -的展开式中含2x项的系数是( )XYOA .192B .182C .-192D .-182 5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.57.已知方程20ax bx c ++= ,其中a 、b 、c 是非零向量,且a 、b不共线,则该方程( )A .至多有一个解B .至少有一个解C .至多有两个解D .可能有无数个解8.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函 数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51( B .),5()31,(+∞⋃-∞ C .)5,31(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共6小题,每小题5分,满分30分)9.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ONE”,“WORLD”,“ONE”,“DREAM”的四张卡片随机排成一排,若卡片按从左到右的顺序排成“ONE WORLD ONE DREAM”,则孩子会得到父母的奖励,那么孩子受奖励的概率为 .12.已知三棱锥P ABC -的四个顶点均在半径为3的球面上,且PA 、PB 、PC 两两互相垂直,则三棱锥P ABC -的侧面积的最大值为 .13.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C = .14.设直角三角形的两条直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有 ①2222h c b a +>+, ②3333h c b a +<+,③4444h c b a +>+,④5555h c b a +<+.其中正确结论的序号是 ;进一步类比得到的一般结论是 .三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.16.(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ; (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.17.(本小题满分14分)已知几何体BCDE A -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)探究在DE 上是否存在点Q ,使得BQ AQ ⊥,并说明理由.开始输入n11=a ,12=a ,1=ii i i a a a 6512-=++n i ≥1+=i i否是输出2+i a结束18.(本小题满分14分)某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=,在销售淡季近似地符合函数关系:2)(b kx x r +=,其中21210,0b b k b b k 、、且、><为常数; ②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (Ⅰ)填出表格中空格的内容:数量关系销售关系标价(元/件)销售量)(x r (件)(含k 、1b 或2b )销售总利润y (元)与标价x (元/件)的函数关系式旺季 x 1)(b kx x r +=淡季x(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件? 19.(本小题满分14分)已知数列}{n a 满足如图所示的程序框图. (Ⅰ)写出数列}{n a 的一个递推关系式; (Ⅱ)证明:}3{1n n a a -+是等比数列, 并求}{n a 的通项公式;(Ⅲ)求数列)}3({1-+n n a n 的前n 项和n T .20.(本小题满分14分)已知函数2()2ln .f x x x a x =++ (Ⅰ)若函数()(0,1)f x 在区间上是单调函数, 求实数a 的取值范围;(Ⅱ)当t ≥1时,不等式(21)2()3f t f t -≥- 恒成立,求实数a 的取值范围.正视图 侧视图俯视图55 3 4 34 绝密★启用前 试卷类型:A汕头市2010~2011学年度普通高中毕业班教学质量监测试题文科数学本试卷分选择题和非选择题两部分,共 4 页,20题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷 (选择题 满分50分)一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -1 2.设{}{}(,),()()cos 2sin 2M a b N f x f x a x b x ==|=+平面内的点,给出M 到N 的映射:(,)()cos 2sin 2f a b f x a x b x →=+,则点(1,3)的象()f x 的最小正周期为( )A .2π B .4πC .πD .2π3.在等差数列{}n a 中,已知5710a a +=,n S 是数列{}n a 的前n 项和,则11S =( )A .45B .50C .55D .604.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .72B .66C .60D .305.在边长为1的等边ABC ∆中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则( )A .32-B .0C .32D .3XYO频率组距0.100.25 0.409 10 11 12 13 14时间6.已知函数1()x f x a =,2()a f x x =,3()log a f x x =(其中0a >且1a ≠),在同一坐标系中画出其中两个函数在x ≥0且y ≥0的范围内的大致图象,其中正确的是( )x y O1 Ax y O1 B 1xy O1 C 1xyO 1D17.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( ) A .6万元B .8万元C .10万元D .12万元8.若m 、n 为两条不重合的直线,α、β为两个 不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .49.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第 三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 10.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则22++a b 的取值范围是( )A .)21,31(B .),3()21,(+∞⋃-∞C .)3,21(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共4小题,每小题5分,满分20分)11.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .12.已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 .13.曲线3141,33y x x ⎛⎫=+ ⎪⎝⎭在点处的切线与两坐标轴所围成的三角形面积是 .14.观察以下等式:11=123+= 1236++=123410+++= 1234515++++=311=33129+= 33312336++= 33331234100+++= 3333312345225++++=可以推测3333123...n ++++= (用含有n 的式子表示,其中n 为自然数).三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知不等式()221,(0)x a a -≤>的解集为A ,函数22lg)(+-=x x x f 的定义域为B. (Ⅰ)若φ=⋂B A ,求a 的取值范围;(Ⅱ)证明函数22lg)(+-=x x x f 的图象关于原点对称.16.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.17.(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀FG BDE AC后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设(,)i j 表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.18.(本题满分14分)如图,三角形ABC 中,AC=BC=AB 22,ABED 是边长为1 的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点.(Ⅰ)求证:GF//底面ABC ; (Ⅱ)求证:AC ⊥平面EBC ; (Ⅲ)求几何体ADEBC 的体积V .19.(本题满分14分)某品牌电视生产厂家有A 、B 两种型号的电视机参加了家电下乡活动,若厂家A 、B 对两种型号的电视机的投放金额分别为p 、q 万元,农民购买电视机获得的补贴分别为101p 、52ln q万元,已知A 、B 两种型号的电视机的投放总额为10万元,且A 、B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln 4 1.4≈).20.(本题满分14分)已知二次函数2()f x ax bx =+的图像过点(4,0)n -,且'(0)2f n =,n N *∈.(Ⅰ)求()f x 的解析式;(Ⅱ)若数列{}n a 满足'111()n n f a a +='(0)f n ='111()n nf a a +=,且14a =,求数列{}n a 的通项公式;(Ⅲ)记1n n n b a a +=,数列{}n b 的前n 项和n T ,求证:423n T ≤< .汕头市2010——2011学年高中毕业班教学质量监测理科数学参考答案及评分意见一、选择题:本小题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BCDCAAAC二、填空题(本大题共6小题,每小题5分,满分30分)9.20; 10.3; 11.121; 12.18; 13.1; 14.②④, *)(N n h c b a n n n n ∈+<+。
江苏省淮阴中学高三11月综合卷一.填空题1.已知集合}111|{≥-+=x x x M ,集合}032|{>+=x x N ,则=⋂N M C R )(________. 2.复数201121i i -(i 为虚数单位)的虚部是________.3.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=________.4.已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为________.5.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2cos sin 2θθ+的值等于________.6.已知点P 是直角坐标平面xOy 上的一个动点,2OP =(点O 为坐标原点),点()1,0M -,则cos OPM ∠的取值范围是________.7.对于R 上可导的函数f (x ),若(1)()0x f x '->,则f (0)+f (2)与2f (1)的大小关系为________.8.等差数列2008200520071,220052007,2008,,}{S S S a n S a n n 则项和是其前中=--=的值为___. 9.若关于x 的不等式)1(2+>+x b ax 的解集为}1|{<x x ,则b 的取值范围为 . 10.如图,边长为1的正方形ABCD 的顶点 A ,D 分别在x 轴、y 轴正半轴上移动, 则OC OB ⋅的最大值是________.11.已知椭圆22221(0)x y a b a b+=>>的离心率是63,过椭圆上一点M 作直线,MA MB 交椭圆于,A B 两点,且斜率分别为12,k k ,若点,A B 关于原点对称,则12k k ⋅的值为________.12.设定义域为R 的函数0x ,lg 0 x ,2x - 2{)(>≤-=x x x f , 若关于x 的函数1)(2)(22++=x bf x f y 有8个不同的零点,则实数b 的取值范围是___ .13.已知数列{})(*∈N n a n 满足⎩⎨⎧<-+≥-=+ta a t ta t a a n n n n n ,2,1,且,11+<<t a t 其中2>t ,若),(*+∈=N k a a n k n 则实数k 的最小值为_______.14.已知点()0,1F ,直线l :1y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP FQ =,动点P 的轨迹为C ,已知圆M 过定点()0,2D ,圆心M 在轨迹C 上运动,且圆M 与x 轴交于A 、B 两点,设1DA l =,2DB l =,则1221l l l l +的最大值为_______.二.解答题15.已知函数2()23sin cos 2sin 333x x x f x =-. (1)求函数()f x 的值域;(2)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,若()1f C =,且2b ac =,求sin A 的值.16.已知数列{}n a 是各项均为正数的等比数列,且)111(64,)11(25435432121a a a a a a a a a a ++=+++=+ (1)求数列{}n a 的通项公式; (2)设,)1(2nn n a a b += 求数列{}n b 的前n 项和.n T17.已知xx b a x f 53)(⋅+⋅=,其中R b a ∈,且.0≠ab(1)若,0,0<>b a 求使)()1(x f x f >+成立的x 的取值范围; (2)若1=a ,讨论)(x f 的单调性。
淮阳中学2012~2013学年上期高三富洲部第八次周考数学理试题 2012/10/20一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 已知直角ABC ∆中,(1,1),(2,)AB AC k ==,则实数k 的值为( )A.2-B. 2 C 。
0 D. 2-或02.(理科学生做)若角B A ,分别是锐角ABC ∆的两个内角,则复数i B A B A )cos (sin )sin (cos -+-表示的点P 在第( )象限。
A .Ⅰ B.Ⅱ C.Ⅲ D 。
Ⅳ 3. 已知条件:p 关于x的不等式210x mx ++>(m R ∈)的解集为R ;条件:q 指数函数()f x (3)xm =+为增函数, 则p 是q 的( )A. 充分不必要条件B. 必要不充分条件 C 。
充要条件 D 。
既不充分也不必要条件4. 一个几何体的三视图如图所示,则该几何体的体积为( ) A 。
2 B.1 C 。
23D 。
135.函数11()ln 31x f x x+=-的图像可能是( )6、已知函数)2sin()(ϕ+=x x f (其中ϕ为常数)的图象关于直线6π=x 对称,()(),()2f f f x ππ>则的增区间为( )A 、,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B 、,()2k k k z πππ⎡⎤+∈⎢⎥⎣⎦C 、2,()63k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D 、,()2k k k z πππ⎡⎤-∈⎢⎥⎣⎦7.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E , F ,且22EF =,则下列结论中错误..的是 ( )A .AC BE ⊥B .//EF ABCD 平面C .直线AB 与平面BEF 所成的角为定值D .异面直线,AE BF 所成的角为定值8.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =错误!a ,则( )A .b a >B .b a <C .b a =D .a 与b 的大小关系不能确定9. (理科学生做)如图,圆O :222xy π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机向圆O 内投一个点P ,则点P 落在区域M内的概率是( ) A 。
江口淮阳中学2013届高三数学小题训练十(试卷总分80分、考试时间45分钟)班级___________ 姓名__________ 学号_________ 分数___________一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项。
1.已知α为第二象限角,3sin 5α=,则sin 2α=( ) A .2425- B .1225- C .1225D .24252.已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1) (1,+∞)3.已知各项均为正数的等比数列{n a }中,1237895,10,a a a a a a ==则456a a a =( ) A .5 2 B .7 C .6 D .4 2 4. 已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( )A .5B .4C .3D .15.已知某几何体的三视图如图,其中正(主)视图中半圆的 半径为1,则该几何体的体积为( ) A .3242π-B .243π-C .24π-D .242π- 6. 学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示, 其中支出在[50,60)的同学有30人,则n 的值为( ) A .1000 B .100 C .900 D .907.已知x y 、满足5030x y x x y -+≥⎧⎪≤⎨⎪+≥⎩,则24z x y =+的最小值为( )A . 5B .-5C . 6D .-68.若将函数)0)(4sin(>+=ωπωx y 的图像向右平移6π个单位长度后, 得到一个奇函数的图象,则ω的最小值为 ( )A .32B . 1C .12D .29. 阅读如图所示的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为( )A .0.5B .1C .2D .4 10.若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285C . 5D . 611.函数ln x xx xe e y e e ---=+的图象大致为( )A .B .C .D .12.设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件 C .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件D .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案二、填空题:本大题共4小题,每小题5分.13.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则 a n n的最小值为________.14.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为_______________.15.已知ABC ∆中4,2AC AB ==,若G 为ABC ∆的重心,则→AG ·→BC = . 16.已知函数()f x 的导函数为()'f x ,且满足()()2'1ln f x xf x =+,则()f x 在点()(1,1)M f 处的切线方程为江口淮阳中学2013届高三数学小题训练十参考答案21 2 14.x5-y4=1 15. 4 16.10x y++=13.。
江苏省淮阴中学2013年2月高三数学综合测试一、填空题:(每小题5分,共70分) 1、已知集合{2,3},{1,},{2},A B a A B A B ====若则2、“1x >” 是 “11x<” 的 条件 3、复数1ii-在复平面内对应的点位于第 象限 4、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 种 5、若圆229x y +=与圆224410x y x y +-+-=关于直线l 对称,则l 的方程为6、有下面算法: 运行相应的程序,则运动后输出的结果是7、设βα,为两个不重合的平面,n m ,是两条不重合的直线,给出下列四个命题:①若α⊥⊥m n m ,,则α//n ;②若,,βα⊂⊂m n βα与相交且不垂直,则m n 与不垂直; ③若n m m ⊥=⊥,,βαβα ,则β⊥m ;④若βαα//,,//⊥n n m ,则β⊥m .其中所有真命题的序号8、已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +≤⎧⎨-≥⎩的点(,)x y 所形成区域的面积为9、已知函数()()sin 3cos f x x x x ωω=+∈R ,()2f α=-,()0f β=,且αβ-的最小值为4π,则正数ω的值为 10、设M 是ABC ∆内一点,23,30AB AC BAC =∠=·°,定义()(,,)f x m n p =,其中,,m n p 分别是,,MBC MAC MAB ∆∆∆的面积,若1()(,,)2f Q x y =,aa a y x 2,412+=+则的取值范围是11、已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为___________12、已知椭圆22221(0,0)x y a b a b+=>>的左、右焦点分别为12(0)(0)F c F c -,,,,若椭圆上存在点P (异于长轴的端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆离心率的取值范围是 科网 13、已知11)(+=x x f ,点0A 表示坐标原点,点)))((,(+∈N n n f n A n ,若n n n A A A A A A a 12110-+++= ,n θ是n a 与i 的夹角,(其中)0,1(=i ),设n n S θθθtan tan tan 21+++= ,则n S =__________14、已知直线l 经过椭圆2212y x +=的焦点并且与椭圆相交于P ,Q 两点,线段PQ 的垂直平分线与x 轴相交于点M ,则MPQ ∆面积的最大值为 二、解答题 (本大题共6小题,共90分)15、在△ABC 中,,,a b c 分别是角A ,B ,C的对边,cos A =,tan 3B =. (1)求角C 的值;(2)若4a =,求△ABC 面积.16、如图,在四棱锥E ABCD -中,四边形ABCD 为平行四边形,BE BC =,AE BE ⊥, M 为CE 上一点,且BM ⊥平面ACE . ⑴求证:AE BC ⊥;⑵如果点N 为线段AB 的中点,求证:MN ∥平面ADE .17、某公园准备建一个摩天轮,摩天轮的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之NABCDEM间的钢管和其中一个座位的总费用为20)2100x k ⎡⎤+⎢⎥⎣⎦元。
【步步高】(全国版)2013届高三数学 名校强化模拟测试卷12 文第I 卷一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 【江西景德镇市2012届高三第三次质检试题】已知集合M 、N 、P 均为全集U 的子集,图中阴影部分用M 、N 、P 表示为A .(M ∪N )∩PB .(M ∪N )∩(PC U ) C .(M ∩P )∪(N ∩P )D .(M ∪P )∩(N ∪P )3. 【湖北省武汉市2013年考试答题适应性训练】若复数22i1ia ++(i 为虚数单位,a ∈R )是纯虚数,则复数2a +2i 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 【原创改编题】 在等差数列{}n a 中,若15934a a a π++=,则46tan()a a +的值为( ) A 3B .-1C .1D .不存在【答案】D【解析】本题利用等差数列的性质,若q p n m +=+,则q p n m a a a a +=+。
由5912a a a =+,结合已知15934a a a π++=,得4335π=a ,因此45π=a ,从而22564π==+a a a ,故选择D 。
4. 【北京怀化2012高三第三次模拟考试】点A 是抛物线:1C x y 42=与双曲线:2C 12222=-by a x )0,0(>>b a 的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为2,则双曲线2C 的离心率等于A .6B .5 C.3 D .25. 【安徽省皖南八校2013届高三第二次联考】已知变量x,y 满足条件120x y x y ≥⎧⎪≤⎨⎪-≤⎩,则2z x y =+的最小值是A. 6B. 4C. 3D.2 【答案】C【解析】数形结合可知,当1,1x y ==时,2z x y =+取最小值36. 【2012年洛阳市示范高中联考数学试题】下图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图甲中从左向右第一组的频数为4000.在样本中记月收入在[)1000,1500,[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000]的人数依次为1A 、2A 、……、6A .图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,图乙输出的S =A. 5000B. 5500C. 6000D. 65007. 【广东省肇庆市中小学教学质量评估2012—2013学年第一学期统一检测题】某三棱锥的三视图如图2所示,该三棱锥的体积是为( )A. 80B. 40C.803D.403【答案】D【解析】从图中可知,三棱锥的底为两直角边分别为4和5的直角三角形,高为4体积为11404(23)4 323V=⨯⨯⨯+⨯=8.【广州市2013届高三年级1月调研测试】设向量=a()21x,-,=b()14x,+,则“3x=”是“a//b”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9. 【河北省唐山市2012届高三摸底考试数学】若函数22()(sin cos)2cosf x x x x m=++-在0,2π⎡⎤⎢⎥⎣⎦上有零点,则m的取值范围为()A. 1,22⎡⎣ B.[]1,2- C. 1,22⎡-⎣ D.[]1,3【答案】A【解析】由函数22()(sin cos)2cos1sin2cos21f x x x x m x x m=++-=+++-2)24x mπ=++-得在0,2π⎡⎤⎢⎥⎣⎦22m-,最小值是1m-所以maxmin()220()10f x mf x m⎧=-≥⎪⎨=-≤⎪⎩,解得122m≤≤+.10. 【原创改编题】若一个空间几何体的三个视图都是直角边长为1的等腰直角三角形,则这个空间几何体的外接球的表面积和内切球的表面积之比是 ( )A.18932+ B. 1893+ C. 3 D. 911. 【原创改编题】已知函数5()ln ,()log ,()lg f x x g x x h x x ===,若直线222()y m m m =-+-∈R 与(),(),()y f x y g x y h x ===图像交点的横坐标分别为,,a b c ,则A.a b c <<B.c b a <<C.c a b <<D.b c a <<12. 【宁夏回族自治区石嘴山市2012届高三第二次联考】 设函数2()32xf x x x =++,点A 0表示坐标原点,点A n 的坐标为*(,())()n f n n N ∈,K n 表示直线A 0A n 的斜率,设12n n S k k k =+++,则S 10=A.25 B. 524 C.112 D. 512【答案】D二。
南京、淮安市2013届高三模拟考试(南京二模、淮安三模)数学 2013.3 参考公式:锥体的体积公式为13V Sh =,其中S 是锥体的底面面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.已知集合A={2a ,3},B={2,3}.若A B={1,2,3},则实数a 的值为____.2.函数()sin cos f x x x =的最小正周期是__________.3.若复数12mi z i-=+(i 是虚数单位)是纯虚数,则实数m 的值为____. 4.盒子中有大小相同的3只白球、2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是______.5.根据2012年初我国发布的《环境空气质量指数AQI 技术规定(试行)》,AQI 共分为六级:(0,50]为优,(50,100]为良,(100,150]为轻度污染,(150,200]为中度污染,(200,300]为重度污染,300以上为严重污染.2012年12月1日出版的《A 市早报》对A 市2012年11月份中30天的AQI 进行了统计,频率分布直方图如图所示,根据频率分布直方图,可以看出A 市该月环境空气质量优、良的总天数为____.6.右图是一个算法流程图,其输出的n 的值是_____.7.已知圆锥的侧面展开图是一个半径为3cm ,圆心角为23π的扇形,则此圆锥的高为___cm .8.在平面直角坐标系xOy 中,设过原点的直线l 与圆C :22(3)(1)4x y -+-=交于M 、N 两点,若MN ≥l 的斜率k 的取值范围是______.9.设数列{n a }是公差不为0的等差数列,S n 为其前n 项和,若22221234a a a a +=+,55S =,则7a 的值为_____.10.若函数()f x 为定义在R 上的奇函数,当0x >时,1()23x f x -=-,则不等式()1f x >的解集为______________.11.在ABC ∆中,已知AB=2,BC=3,60ABC ∠=︒,BD ⊥AC ,D 为垂足,则BD BC⋅ 的值为____.12.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____.13.在平面直角坐标系xOy 中,已知双曲线C :22143x y -=.设过点M(0,1)的直线l 与双曲线C 交于A 、B 两点,若2AM MB = ,则直线l 的斜率为_____.14.已知数列{n a }的通项公式为72n a n =+,数列{n b }的通项公式为2n b n =.若将数列{n a },{n b }中相同的项按从小到大的顺序排列后看作数列{n c },则9c 的值为_____.二、解答题:本大题共6小题,共90分.15.(本小题满分14分)在ABC ∆中,已知角A ,B ,C 所对的边分别为,,a b c ,且cos 2cos C a c B b-=, (1)求B ; (2)若tan()74A π+=,求cos C 的值.16,(本小题满分14分)如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,AD//BC ,PB ⊥平面ABCD ,CD ⊥BD ,PB=AB=AD=1,点E 在线段PA 上,且满足PE=2EA .(1)求三棱锥E-BAD 的体积;(2)求证:PC//平面BDE .17.(本小题满分16分)如图,某广场中间有一块扇形绿地OAB ,其中O 为扇形所在圆的圆心,60AOB ∠=︒,广场管理部门欲在绿地上修建观光小路:在 AB 上选一点C ,过C 修建与OB 平行的小路CD ,与OA 平行的小路CE ,问C 应选在何处,才能使得修建的道路CD 与CE 的总长最大,并说明理由.18.(本小题满分16分)已知数列{}n a 的各项都为正数,且对任意*n N ∈,都有212n n n a a a k ++=+(k 为常数).(1)若221()k a a =-,求证:123,,a a a 成等差数列;(2)若k=0,且245,,a a a 成等差数列,求21a a 的值; (3)已知12,a a ab ==(,a b 为常数),是否存在常数λ,使得21n n n a a a λ+++=对任意*n N ∈都成立?若存在.求出λ;若不存在,说明理由.19.(本小题满分16分)在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>过点(,),22a a A B . (1)求椭圆C 的方程;(2)已知点00(,)P x y 在椭圆C 上,F 为椭圆的左焦点,直线l 的方程为00360x x y y +-=. ①求证:直线l 与椭圆C 有唯一的公共点;②若点F 关于直线l 的对称点为Q ,求证:当点P 在椭圆C 上运动时,直线PQ 恒过定点,并求出此定点的坐标.20.(本小题满分16分)设函数2()(2)ln f x x a x a x =---.(1)求函数()f x 的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a 的值;(3)若方程()f x c =有两个不相等的实数根12,x x ,求证:12()02x x f +'>.。
江口淮阳中学2013届高三数学小题训练十二
(试卷总分80分、考试时间45分钟)
班级___________ 姓名__________ 学号_________ 分数___________ 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个
选项中,选择一个符合题目要求的选项。
1.已知集合{}4M y y i =>(i 为虚数单位),{}
2N y y x x R ==∈,,则M N ⋂=
A .(0)+∞,
B .[)0+∞,
C .(1)+∞,
D . [)1+∞,
2.设命题p : 7m >,命题q :函数2
()9()f x x mx m R =++∈有零点,则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件, 3.曲线lg y x =在1x =处的切线的斜率是 A .
1
ln10
B . ln10
C .lg e -
D .1lg e -
4.若1sin(
)63π
α-=,则cos()3
π
α+的值为 A .13- B .1
3
C
.2 D .
3-
5.若n S 是等差数列{}n a 的前n 项和,且8310S S -=,则11S = A .12 B .18 C .22 D .44 6
.如图,一个空间几何体的正视图、侧视图都是面积为
2
,且一个 内角为60 的菱形,俯视图为正方形,那么这个几何体的表面积为
A
. B
. C .8D .4
7.已知点()P x y ,的可行域是如图阴影部分(含边界),若目标 函数2z x ay =-取得最小值的最优解有无数个,则a 的取值为
正视图 侧视图
俯视图
(第
6
A .2-
B .0
C .6
D .8
8.如图所示,A 、B 、C 是圆O 上的三点,线段CO 的延长线与线 段BA 的延长线交于圆O 外的一点D ,若OC mOA nOB =+
, 则m n +的取值范围是
A .(01),
B .(1)+∞,
C .(1)-∞-,
D .(10)-,
9.已知双曲线1C :22
221(0,0)x y a b a b
-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦
点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( )
A .2x y =
B .216x y =
C .28x y =
D .2x y =
10.下面是一个算法的程序框图,当输入的x 值为3时,输出y
的结果恰好是
3
1
,则?处的关系式是( ). A .3
x y = B .x
y -=3 C .x
y 3= D .3
1x y =
11.设函数f (x )=x e x ,则 ( )
A .x =1为f (x )的极大值点
B .x =1为f (x )的极小值点
C .x =-1为f (x )的极大值点
D .x =-1为f (x )的极小值点 12.数列{}n a 的通项公式2
cos
π
n n a n =,其前n 项和为S n ,则S 2012= A .1006 B .2012 C .503 D .0
二.填空题:本大题共4小题,每小题5分。
13.在区间[]ππ-,内随机取两个数分别记为a ,b ,则使得函数
222()44f x x ax b π=+-+ 有零点的概率为 .
14.若四面体ABCD 的三组对棱分别相等,即AB CD =,AC BD =,AD BC =,则
_______________________________________(写出所有正确结论编号)。
①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等
③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90。
而小于180。
④连接四面体ABCD 每组对棱中点的线段互垂直平分
⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长
江口淮阳中学2013届高三数学小题训练十二
参考答案
1、解析:{}1M y y => ,{}0N y y =≥,{}
1M N y y ∴⋂=>,选C.
2、解析:函数2
()9()f x x mx m R =++∈有零点,则2360m ∆=-≥,即6m ≥或
6m ≤-,显然,P 可以推出q ,而q 不能推出P ,故选A.
3、解析:'1
ln10
y x = ,'
11ln10x y =∴=
,即切线的斜率为1ln10
,选A. 4、解析:1cos(
)cos ()sin()32663π
πππααα⎡⎤
+=--=-=⎢⎥⎣⎦
,选B. 5、解析:8310S S -= ,118732
8(3)1022
a d a d ⨯⨯∴+-+=,即152a d +=, 1111161()11
1111(5)222
a a S a a d +⨯∴=
==⨯+=,故选C.
7、解析:①当0a =时,2z x =的最小值在点B 处取得,故舍去; ②当0a ≠时,有2z y x a a =
-, ()i 当0a <时,21
00a a <->,, 2z x ay =-只在点A 处取得最小值,故舍去;
()ii 当0a >时,2100a a >-<,,若221
641
AC k a a -==⇒=-时,目标函数2z x ay
=-在线段AC 上的所有点处都取得最小值,6a ∴=,选C.
8、解析: 线段CO 的延长线与线段BA 的延长线的交点为D ,则OD tOC =
, D 在
圆外,1t ∴<-,又D 、A 、B 共线,故存在λμ、,使得OD OA
OB λμ=+
,且1λμ+=,又O C m O
A n O =+ ,tmOA tnO
B OA OB λμ∴+=+ .1
m n t
∴+=,(10)m n ∴+∈-,.选D.
9、【解析】抛物线的焦点 )2
,
0(p
,双曲线的渐近线为x a b y ±=,不妨取x a b y =,即
0=-ay bx ,焦点到渐近线的距离为
22
2
2=+⨯
b a p
a ,即c
b a ap 4422=+=,所以
4p a c =双曲线的离心率为2=a c ,所以24==p
a c ,所以8=p ,所以抛物线方程为y x 162=,选B.
13、解析:若使函数有零点,必须满足222
(4)16()0a b π∆=--+≥,即222a b π+≥,
于是函数有零点的概率为221144
πππ
π-=-
. 14、【答案】②④⑤
【解析】②四面体ABCD 每个面是全等三角形,面积相等; ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和等于180ο; ④连接四面体ABCD 每组对棱中点构成菱形,线段互垂直平分;
⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长。
16、解析:1
c o s 3
B =
,cos 2B ∴=,sin 2B =,在ABD ∆中,
2
222c o s 6
2B
A D A
B B D A B B D =
+-=
,AD ∴=,又
BD =,
A ABD ∴∠=∠,sin sin
2B A ∴==
.。