小学四年级上奥数练习题1 (1)
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
小学四年级奥数精选50题1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4•李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5 千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天, 乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9•学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小学四年级奥数100题(附答案)1、6辆大卡车5趟可以运走50吨沙;9辆小卡车4趟可以运走48吨沙。
现在有大小卡车一共60辆;这些卡车一起运送3趟可以运走沙261吨。
那么有多少辆大卡车?答案:21辆解析:3辆大卡车运一趟是50÷5÷2=5吨;3辆小卡车运一趟是48÷4÷3=4吨。
那么这些车一次可以运261÷3=87吨。
那么大卡车有:(87-20*4)÷(5-4)*3=21辆2、某处楼梯一共有10级台阶;若每步走1级或2级台阶;8步正好走完。
那么;走此楼梯有多少种不同的走法?解析:28解析:每步走1级或2级台阶;则每步必定要走1级;一共10级;所以还剩下10-8=2级;分给8步;有:8*7÷2=283、A和B两个同学同时从甲地出发到乙地;A每分钟行50米;B每分钟行60米;B到达乙地后立即返回;若两人从出发到相遇用了10分钟;则甲乙两地相距多少米?答案:550米解析:两个人合走了2个全程;所以(50+60)×10÷2=550米4、君君和大伟早晨8点整从甲地出发去乙地;君君开车;速度每小时60千米;大伟步行;速度为每小时4千米;如果君君到底乙地后停留1小时立即返回;恰好在10点整遇到正在前往乙地的大伟。
那么甲乙两地之间的距离是多少千米?答案:34千米解析:二者的路程之和就是甲乙两地的距离5、在1989后面写一串数字;从第5个数字开始;每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1;9;8;9;2;8;6;8;8;4;2……那么这串数字中;前2005个数字和是多少?答案:12031解析:先发现乘积个位数的规律;然后计算和6、A、B两地相距40千米;甲乙两人同时分别从A、B两地出发;相向而行;8小时后相遇。
如果两人同时从A地出发前往B地;5小时后甲在乙前方5千米处。
问:甲每小时行多少千米?答案:3千米解析:设甲的速度是a千米每小时;乙的速度是b千米每小时;所以(a+b)*8=40从而得出a+b=5。
小学四年级奥数题练习及答案解析-学而思入学必备work Information Technology Company.2020YEAR四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少这时共需耗油多少升【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
小学四年级奥数题及答案和题目一一、拓展提优试题1.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.2.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.3.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?4.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.5.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.6.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.7.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.8.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.9.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.10.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.11.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.12.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买支相同的钢笔.15.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.16.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.17.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.18.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.19.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.20.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.21.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.22.是三位数,若a是奇数,且是3的倍数,则最小是.23.三个连续自然数的乘积是120,它们的和是.24.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.25.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.26.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.27.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.28.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.29.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.30.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.31.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.32.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.33.如果今天是星期五,那么从今天算起,57天后的第一天是星期.34.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.35.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.36.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.37.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.38.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.39.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.40.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.【参考答案】一、拓展提优试题1.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.2.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.3.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.4.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.5.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.6.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.7.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.8.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.9.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.10.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.11.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2xx=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.12.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.【分析】根据题意,可用100减去61计算出购买3支钢笔花的钱数,然后再除以3计算出每支钢笔的钱数,最后再用100除以每支钢笔的钱数进行计算,得到的商就是最多购买钢笔的支数,得到的余数就是剩余的钱数,最后再用最多购买的钢笔数减去原来买的3支即可.解:(100﹣61)÷3=39÷3100÷13=7(支)…9(元)7﹣3=4(支)答:他最多还可以买4支同样的钢笔.故答案为:4.【点评】此题主要考查的有余数除法计算方法的应用,解答时关键求出每支钢笔的单价.15.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.16.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.17.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.18.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.19.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.20.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.21.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.22.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.23.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.24.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.25.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.26.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.27.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.28.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.29.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.30.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.31.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.32.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.33.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.34.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.35.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.36.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.37.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.38.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.39.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.40.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.。
(完整)四年级上册奥数题及答案姓名:班级:1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙天天分离能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开头同时结束,乙应在开头后第几天从A地转到B地?2. 有三块草地,面积分离是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,其次块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,挑选哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5. 甲、乙两位老板分离以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分离按获得80%和50%的利润定价出售.两人都所有售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲本来购进这种时装多少套?姓名:班级:1、有甲、乙两根水管,分离同时给A,B两个大小相同的水池注水,在相同的时光里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?2、小明早上从家步行去小学,走完一半路程时,爸爸发觉小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往小学,这样小明比独自步行提早5分钟到校.小明从家到小学所有步行需要多少时光?3、甲、乙两车都从A地动身经过B地驶往C地,A,B两地的距离等于B,C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早动身11分钟,但在B地停歇了7分钟,甲车则不停地驶往C 地.最后乙车比甲车迟4分钟到C地. 那么乙车动身后几分钟时,甲车就超过乙车.4、甲、乙两辆清洁车执行东、西城间的马路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?5、今有分量为3吨的集装箱4个,分量为2.5吨的集装箱5个,分量为1.5吨的集装箱14个,分量为1吨的集装箱7个.那么最少需要用多少辆载分量为4.5吨的汽车可以一次所有运走集装箱?姓名:班级:1、师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?2、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早动身17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车动身后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地动身的.那么小轿车是在上午什么时候追上大轿车的.3、. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.假如甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?4、. 黄气球2元3个,花气球3元2个,小学共买了32个气球,其中花气球比黄气球少4个,小学买哪种气球用的钱多?5、. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?姓名:班级:1、. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,假如把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;假如把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,2、甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?3、一辆车从甲地开往乙地.假如把车速削减10%,那么要比原定时光迟1小时到达,假如以原速行驶180千米,再把车速提高20%,那么可比原定时光早1小时到达.甲、乙两地之间的距离是多少千米?4、. 某校参与XXX训队列表演竞赛,组织一个方阵队伍.假如每班60人,这个方阵至少要有4个班的学生参与,假如每班70人,这个方阵至少要有3个班的学生参与.那么组成这个方阵的人数应为几人?5、. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?学校数学应用题综合训练(03)21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线假如再截取2根长度为B的金属线还差0.4米,假如再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22. 某公司要往工地运送甲、乙两种建造材料.甲种建造材料每件重700千克,共有120件,乙种建造材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23. 从王力家到小学的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时光走到家,稍稍歇息后,他又用了25分钟走到小学,其速度比从体育馆回来时每分钟慢15米,王力家到小学的距离是多少米?24. 师徒两人合作完成一项工程,因为协作得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成所有工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,假如这项工程由师傅一人做,几天完成?25. 六年级五个班的学生共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27. 有高度相等的A,B两个圆柱形容器,内口半径分离为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水所有倒入容器B中,测得容器B 中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次来回需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29. 师、徒二人第一天共加工零件225个,其次天采纳了新工艺,师傅加工的零件比第一天增强了24%,徒弟增强了45%,两人共加工零件300个,其次天师傅加工了多少个零件?徒弟加工了几个零件?30. 奋斗学校组织六年级学生到百花山举行野营拉练,行程天天增强2千米.去时用了4天,回来时用了3天,问小学距离百花山多少千米?学校数学应用题综合训练(04)31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;假如超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32. 王师傅方案用2小时加工一批零件,当还剩160个零件时,机器浮现故障,效率比本来降低1/5,结果比原方案推迟20分钟完成任务,这批零件有多少个?33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公正合理,35. 小明和小燕的画册都不足20本,假如小明给小燕A本,则小明的画册就是小燕的2倍;假如小燕给小明A本,则小明的画册就是小燕的3倍.本来小明和小燕各有多少本画册?36. 有红、黄、白三种球共160个.假如取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;假如取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.2238、张教师对小XXX说我9年前的岁数和你6年后的岁数相等,7年前我的年龄是你的年龄的6倍,小XXX和张教师今年的年龄是多少?6=15年15÷(6-1)=3 3×1=3岁3×6=18岁小XXX:3 7=10岁张教师:18 7=25岁231、大小两桶油,分量比是7:3,假如从大桶取出12千克倒入小桶,则两桶油中的油正巧相等。
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学四年级奥数题及答案5篇》相关资料,希望帮助到您。
1.⼩学四年级奥数题及答案 1、某筑路队承担了修⼀条公路的任务。
原计划每天修720⽶,实际每天⽐原计划多修80⽶,这样实际修的差1200⽶就能提前3天完成。
这条公路全长多少⽶? 想:根据计划每天修720⽶,这样实际提前的长度是(720×3-1200)⽶。
根据每天多修80⽶可求已修的天数,进⽽求公路的全长。
解:已修的天数: (720×3-1200)÷80 =960÷80 =12(天) 公路全长: (720+80)×12+1200 =800×12+1200 =9600+1200 =10800(⽶) 答:这条公路全长10800⽶。
2、某鞋⼚⽣产1800双鞋,把这些鞋分别装⼊12个纸箱和4个⽊箱。
如果3个纸箱加2个⽊箱装的鞋同样多。
每个纸箱和每个⽊箱各装鞋多少双? 想:根据已知条件,可求12个纸箱转化成⽊箱的个数,先求出每个⽊箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当⽊箱的个数: 2×(12÷3)=2×4=8(个) ⼀个⽊箱装鞋的双数: 1800÷(8+4)=18000÷12=150(双) ⼀个纸箱装鞋的双数: 150×2÷3=100(双) 答:每个纸箱可装鞋100双,每个⽊箱可装鞋150双. 3、某⼯地运进⼀批沙⼦和⽔泥,运进沙⼦袋数是⽔泥的2倍。
每天⽤去30袋⽔泥,40袋沙⼦,⼏天以后,⽔泥全部⽤完,⽽沙⼦还剩120袋,这批沙⼦和⽔泥各多少袋? 想:由已知条件可知道,每天⽤去30袋⽔泥,同时⽤去30×2袋沙⼦,才能同时⽤完。
小学四年级奥数题及答案50题1.学校买来5盒羽毛球,每盒12只。
用去20只,还剩下多少只?2、学校买来3个篮球,共花了96元;又买来一个足球,花了40元。
买一个篮球和一个足球需要多少元?两种球的单价相差多少元?3、王霞买来一本140页的故事书,已经看了86页。
剩下的计划6天看完,每天要看多少页?4、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。
买一把椅子和一张桌子共用多少元?5、班里图书角有58本故事书、34本科普读物。
要放在一个4层的书架上,平均每层要放多少本书?6、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤?7、同学们参加爬山比赛,女同学分成了4组,每组有15人。
参赛的男同学有76名,一共有多少名同学参加爬山比赛?8、王大伯进县城卖了9只兔子,每只22元。
还卖1只羊,得160元。
(1)王大伯的兔子和羊一共卖了多少钱?(2)王大伯用卖兔子和羊的钱买了4瓶农药,每瓶13元。
王大伯还剩多少钱?9、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油便宜?10、一件上衣65元,一条裤子28元。
(1)买4件上衣比4条裤子多花多少钱?(2)用150元钱买2套衣服,够吗?11、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。
第二根长多少米?12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米?13、有两个同样的长方形,长是8分米,宽是4分米。
如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗?15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人?16、用一段长4米的布料可以裁5件同样大小的背心。
做一件背心要用多少布?17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象?18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干?19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本?20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。
四年级思维数学讲义(64期)第三讲变化规律(一)学习目标思维目标:通过分析加减乘除法之间的关系,研究算式中各部分的变化规律。
数学知识:认识大数,会用四舍五入法对大数进行凑整。
知识梳理思维:1.加数+加数=和2.被减数—减数=差3.因数×因数=积4.被除数÷除数=商数学:“四舍五入”来凑整,要看尾数最高位。
最高位上的数小于或者等于4,就把尾数都舍去;最高位上的数大于或者等于5,去掉尾数还要向前一位进1。
精讲精练例1 两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?金钥匙:一个加数增加10,假如另一个加数不变,和就增加10。
现在要使和增加6,那么另一个加数应减少10-6=4。
点金术:分析加数、另一个加数、和之间的关系。
试金石:1,两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2,两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3,两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?例2 两数相减,如果被减数增加8,减数也增加8,差是否起变化?金钥匙:被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。
两个数的差先增加8,接着又减少8,所以不起什么变化。
点金术:分析被减数、减数、差之间的关系。
试金石:1,两数相减,被减数减少6,减数也减少6,差是否起变化?2,两数相减,被减数增加12,减数减少12,差起什么变化?3,两数相减,被减数减少10,减数增加10,差起什么变化?例3 两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?金钥匙:如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。
积先扩大8倍又缩小2倍,因此,积扩大了8÷2=4倍。
点金术:分析因数、另一个因数、积之间的关系。
试金石:1,两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2,两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3,两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?例4 两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?金钥匙:如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。
小学数学四年级奥数《年龄问题》练习题(含答案)【例1】爷爷今年的年龄为孙子的7倍,过一些年他们年龄的倍数关系将变为6倍,又过一些年他们年龄的倍数关系将变为5倍。
那么从现在起过多少年他们年龄的倍数关系是5倍?分析:抓住爷爷与孙子的年龄差不变这一隐含条件。
今年这个年龄差是孙子年龄的6倍,因此是6的倍数。
过一些年这个年龄差是5的倍数,又过一些年这个年龄差是4的倍数。
人的年龄有限,由此可得年龄差。
答案:由分析知年龄差是4、5、6的倍数,因此是60的倍数。
显然爷爷与孙子只能相差60岁,因此孙子今年年龄是60÷6=10岁,爷爷是70岁。
过一些年他们年龄的倍数关系是5倍,因此年龄差60岁是孙子年龄的4倍,即那时孙子60÷4=15岁。
所以从现在起过15-10=5年,他们的年龄倍数关系是5倍。
【例2】今年甲、乙、丙三人的年龄和为130。
某年甲的年龄为乙年龄的一半时,丙43岁;另一年乙的年龄为丙年龄的一半时,甲25岁。
求甲、乙、丙现在各多少岁?分析:记甲的年龄为乙的一半那年为A年,乙的年龄为丙的一半那年为B年。
因为在A年乙是甲的2倍,所以乙与甲的年龄差等于A年时甲的年龄。
而B年时甲25岁,所以B年时乙的年龄比A年时甲的年龄大25岁。
另外B年时丙的年龄等于 43+25-A年时甲的年龄,所以B 年时乙的年龄与丙的年龄之和为43+25+25=93岁。
转化为和倍问题。
答案:由分析知B年时乙的年龄为93÷(2+1)=31岁,丙31×2=62岁,甲25岁为已知。
三者年龄和为31+62+25=118岁。
每过一年三人年龄和增加3岁,所以B年再过(130-118)÷3=4年就到今年。
所以今年甲29岁,乙35岁,丙66岁。
【例3】学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经48岁。
”求老师和学生现在的年龄。
分析:关键在于利用年龄差不变这一条件。
依题意学生现在的年龄再减去这个年龄差之后为3岁。
智力趣题例1.有一杯牛奶,小强喝了半杯后,将它加满水,然后他又喝了半杯后,再加满水,最后全部喝完。
问:小强喝的牛奶多,还是喝的水多?分析:对于这类型题目,我们要记住不能硬性去计算,而是要多分析,题目问的是牛奶多还是水多,那么牛奶和水分别是多少呢,首先我们知道“有一杯牛奶”,然后知道加了两次半杯水,很显然牛奶和水是一样多的。
课堂练习题:1.两瓶同样多的白酒和红酒,先用一个小杯在白酒瓶里取一小杯白酒,放入红酒瓶内。
然后再在已经掺了点白酒的红酒瓶里取一小杯倒入白酒瓶。
问是白酒里含的红酒多,还是红酒里含的白酒多?2.用三条直线,最多可以将一个圆盘分成几块?例2.池塘里的睡莲的面积每天长大一倍,若经过24天就可长满整个池塘,问需要多少天,这些睡莲能长满半个池塘?分析:对于这道题,很多同学都会不假思索认为答案是12天,但正确的结果却是23天,为什么呢?同学们会有疑惑,那么借助于我们的还原法,我相信同学们会有很深的体会。
课堂练习题:毛毛虫每天长大一倍,用了20天长了20厘米,问多少天长到10厘米?多少天长到5厘米例3.用一根绳子去测一口井的深度,把绳子三折后去测量,井口外还余下3米。
把绳子四折后测量,井口还余1米。
问:这口井深多少米?这根绳子长多少米?分析:绳子三折,井口外余的绳子总长为3×3=9米。
四折,井口外绳子总长是1×4=4米。
4倍的井深刚好比3倍的井深多出1个井深,所以井深为9-4=5米。
绳长为(5+3)×3=24米课堂练习题:用一根绳子测井深。
绳子五折后,井口外余3米。
绳子七折后,井口外余1米。
问:井深多少米?绳长多少米?例4.一个大和尚带着两个小和尚去河对岸的寺院。
河上没有桥,他们又都不会游泳。
为了过河,他们找来一只空船,船最多载重50千克,而大和尚正好重50千克,两个小和尚各重25千克。
问:他们怎么才能全部过河?分析:第一次两个小和尚一起过河,让其中一个小和尚将小船划过来;第二次让大和尚独自一人过河,让另外的一个小和尚将船划回来;第三次两个小和尚一起过河。
小学四年级奥数题100道及答案(完整版)1. 一个数除以25,商是18,余数是7,这个数是()A. 457B. 467C. 477D. 487答案:A解析:被除数= 商×除数+ 余数,即18×25 + 7 = 4572. 小明在计算除法时,把除数65 写成了56,结果得到商是13,余数是52,正确的商应该是()A. 12B. 10C. 11D. 9答案:A解析:先求出被除数:56×13 + 52 = 780,780÷65 = 123. 用简便方法计算25×24,正确的是()A. 25×20×4B. 25×20 + 4C. 25×4×6D. 20×4 + 5×4答案:C解析:25×24 = 25×4×64. 两个数相乘,一个因数扩大10 倍,另一个因数缩小10 倍,积()A. 扩大10 倍B. 缩小10 倍C. 不变D. 无法确定答案:C解析:一个因数扩大10 倍,另一个因数缩小10 倍,积不变。
5. 25×(8 + 4)=()A. 25×8×25×4B. 25×8 + 25×4C. 25×8 + 4D. 25×4 + 8答案:B解析:根据乘法分配律,25×(8 + 4)= 25×8 + 25×46. 下列算式中,运用了乘法结合律的是()A. 48 + 62 + 38 = 48 + (62 + 38)B. 34×125×8 = 34×(125×8)C. 117×99 + 117 = 117×(99 + 1)D. 25×24 = 25×4×6答案:B解析:乘法结合律是(a×b)×c = a×(b×c),B 选项34×125×8 = 34×(125×8)运用了乘法结合律。
第一讲找规律1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,(),()。
(2)1,4,16,64,()。
(3)11,3,8,3,5,3,(),()。
(4)0,1,3,8,21,()。
23.下面括号里和两个数是按一定规律组合,根据规律在里填上适当的数。
(1)(8,7),(6,9),(10,5),(,13)。
(2)(1,3),(5,9),(7,13),(9,)。
4.根据前面两个圈里三个数的关系,在第三个圈里的()里填上适当的数。
(1) (2) (3)4、找规律,写得数。
(1)1×9 =91×99 =991×999 =9991×9999 =99991×99999 =999991×999999 =(2)11×11 =111×111 =1111×1111 =11111×11111 =111111×111111 =5、找出规律后,直接填写出括号内的数。
1999998÷9=222222()99999()÷9=333333()99999()÷9=444444()99999()÷9=555555()99999()÷9=666666( )99999( )÷9=777777( )99999( )÷9=888888( )99999( )÷9=9999996、找规律,写算式。
3=3+27×033=6+27×1333=9+27×123333=33333=333333=7、找出下列算式的规律,把算式填写完整。
19+9×9=100118+98×9=10001117+987×9=10000……( )+( )×9=10000001111114+( )×9=( )8、找规律,在 里填上适当的数12 43 6 94 8 12 165 □ □ □ □6 12 □ □ □ □第二讲 算式迷1.在□里填上适当的数,使等式成立。
1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。
【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答知识精讲教学目标6-1-7.盈亏问题(一)【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。
小学数学四年级上册奥数测试题姓名:___________ 得分:____________一、填空。
(第15题每个式子4分;其它每空3分共计80分)1.在下列数列的()中填上适当的数。
(1)1;3;7;13;21;();43 ;();……(2)1;4;9;();25;36,();……(3)1;1;2;3;5;8;();21;();……(4)7;2;7;4;7;6;7;();7;10;();……2.小红用平底锅烙饼;每次只能放2张饼。
烙一张饼需要2分钟(正、反面各需1分钟)。
为了节约时间;小红要烙7张饼最少需要()分钟。
3.麦克、尼克、杰克3名同学同时到图书馆借书;麦克借漫画书需要5分钟;尼克借故事书需要6分钟;杰克借科技书需要3分钟;图书馆只有一位钟老师。
请你帮助钟老师安排、、借书的先后次序;才能使三位同学留在图书馆的时间总和最短;最短需要()分钟。
4.有四个同学在假期里约定每两人互通一封信;他们总共写了()封信。
5.□-○=9□+□+○+○=22 □=()○=()6.甲有图书54张;乙有图书90张;乙给甲()张后;两个人的张数就相等。
6、一个书架有两层;第一层放着42本书;第二层放着30本书;现在分别给两层添上同样多的书;使两层一共有96本书;问这两层各要添()本书。
7.一个数减去8;乘以5;其结果是20;求这个数是()。
8.在算式A÷B=12……24中;要使除数最小;被除数是()。
9.除数是20;增加100以后;要使商不变;被除数应该要扩大()倍。
10.有一根圆木长12米;如果要锯成每段3米;共要锯()次。
11.甲班与乙班共植树300棵;甲班植的棵数是乙班的5倍;甲班植树()棵。
二、解答题。
(每题6分共计60分)1.王叔叔买了3千克荔枝和4千克桂圆;共付156元。
已知5千克荔枝的价钱等于2千克桂圆的价钱。
每千克荔枝和每千克桂圆各多少元?2.修一条公路;计划每天修60米;实际每天比计划多修15米;结果提前4天修完;一共修了多少米?3 有两袋糖;一袋是68粒;另一袋是20粒;每次从多的一袋拿出6粒放到少的一袋里;拿多少次才能两袋糖一样多?4.一座长400米的大桥两旁挂彩灯;每两个相隔4米;从桥头到桥尾一共挂了多少盏灯?5.在圆形的游泳池边每隔4米种一棵树;共种了55棵;这个游泳池的周长是多少米?6.水果店运来苹果的箱数比梨少60箱;梨的箱数是苹果的3倍;运来梨有多少箱?7.甲、乙、丙三个数的和是360;又知甲是乙的3倍;丙是乙的2倍;求甲、乙、丙各是多少?8.四个数的和是70;第一个数是第二个数的2倍;第二个数是第三个数的3倍;第四个数是第三个数的4倍;这四个数各是多少?9.小龙用同样的速度从第一根电线杆走到第8根用了56分钟。
【经典】小学四年级奥数题及答案(可直接打印) 一图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.是三位数,若a是奇数,且是3的倍数,则最小是.3.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.在□中填上适当的数,使竖式成立.8.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.9.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.10.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.11.两数相除,商是12,余数是3,被除数最小是.12.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.13.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.14.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.15.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.3.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:根据题干分析可得:8.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.9.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.10.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.11.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.12.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.13.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.14.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.15.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.。
小学四年级数学奥数题库100道及答案(完整版)1. 简便计算:25×125×32答案:25×125×32 = 25×125×4×8 = (25×4)×(125×8) = 100×1000 = 1000002. 找规律填数:1,4,9,16,(),36答案:25 (规律是平方数,1²= 1,2²= 4,3²= 9,4²= 16,5²= 25,6²= 36)3. 两数相除,商是8,余数是16,被除数、除数、商和余数的和是463,求被除数是多少?答案:设除数为x,则被除数为8x + 16。
8x + 16 + x + 8 + 16 = 463,9x + 40 = 463,9x = 423,x = 47,被除数= 8×47 + 16 = 3924. 小明在计算加法时,把一个加数个位上的9 看成了6,把十位上的3 看成了8,结果得到的和是100,正确的和是多少?答案:个位少加了:9 - 6 = 3,十位多加了:80 - 30 = 50,正确的和是:100 + 3 - 50 = 535. 一桶水,连桶重250 千克,用去一半水后,连桶还有145 千克,问桶里原来有多少千克水?桶重多少千克?答案:水的一半重:250 - 145 = 105(千克),水重:105×2 = 210(千克),桶重:250 - 210 = 40(千克)6. 鸡兔同笼,共有头30 个,脚86 只,求鸡兔各有多少只?答案:假设全是鸡,兔:(86 - 30×2)÷(4 - 2) = 13(只),鸡:30 - 13 = 17(只)7. 等差数列3、7、11、15、…,第20 项是多少?答案:公差为4,第20 项= 3 + (20 - 1)×4 = 798. 有一堆棋子,按照“二黑三白”的顺序排列,第28 颗棋子是什么颜色?答案:28÷(2 + 3) = 5(组)......3(颗),所以是白色。
四年级数学经典奥数题训练50道(含答案)1、工人叔叔3小时做24个零件, 照这样计算,他8小时做多少个零件?2、王大爷带了花1500元钱去买化肥,买了9袋化肥,找回15元。
每袋化肥多少钱?3、张大爷买15只小猪用7455元,他还想再买30只这样的小猪,他还要准备多少钱?4、一双皮鞋105元,一件衣服的价钱是鞋子的2倍。
妈妈买一双鞋子和一件衣服共要多少元?5、育才小学要把180名少先队员平均分成6个分队,每分队分成5组活动,平均每组有多少名少先队员?6、小荣家养了45只鸡,18只鸭。
如果每只鸡一年可以产蛋13千克,每只鸭产蛋12千克,这些鸡、鸭一年可以产多少千克蛋?7、一支铅笔比一块橡皮贵7分,一支园珠笔可买11支铅笔,已知一块橡皮8分,一支园珠笔多少钱?8、张君今年45岁,小刚今年5岁,再过3年,张君的岁数是小刚的多少倍?9、小明有40元钱,比小强多6元,两人共有多少元?小明给小强多少元两人钱数一样多?10、某厂有男工42名,女工人数比男工的3倍少11名,这个工厂共有多少名工人?11、王叔叔在化肥厂开车送化肥。
去时每小时行48千米,用了5小时,返回时因为空车只用了3小时,返回时平均每小时行多少千米?往返的平均速度是多少?12、学校发练习本,发给8个班,每班200本,还要留100本发奖用。
学校应买多少本练习本?13、学校食堂运来1吨煤,计划烧40天。
由于改进炉灶,每天节省5千克,这批煤可以烧多少天?14、一个装订小组要装订2640本书,3小时装订了240本。
照这样计算,剩下的书还需要多少小时能装订完?15、四年级要为图书馆修补244本图书,第一天修补了49本,第二天修补了51本,剩下的要3天修补完,平均每天要修补多少本?16、建筑工地需黄沙50吨。
用一辆载重4吨的汽车运了5次,余下的改用一辆载重5吨的汽车运,还要运几次?17、买一盆花要120元,买4盆送一盆,学校要用25盆花,最少要花多少钱?18、一头大象一天要吃350千克食物,饲养员准备了6吨食物,够大象吃上20天吗?19、买一束鲜花20元,买4束送1束。
1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。
两人同时出发同向而行,乙几小时能追上甲?
2、学校进行篮球比赛,上场时10名队员互相握了一次手,一共握了多少次手?
3、小林为家里做饭,他择菜要5分钟,淘米要2分钟,煮饭要15分钟,切菜花4分钟。
如果只有单火头煤气灶,做完这些事情至少需要多少分钟?
4、按规律填数.
1)64、48、40、36、34、( )
2)8、15、10、13、12、11、( )
3) 1、4、5、8、9、()、13、()、()
4) 2、4、5、10、11、()、()
5、、△、□、〇分别代表三个不同的数,并且:
△+△+△=〇+〇;
〇+〇+〇+〇=□+□+□;
△+〇+〇+□=60 求:△= 〇= □=
6、一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
7、甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
8、有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
9、母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
10、小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?。