2019_2020学年新教材高中数学第五章统计与概率5.1.3数据的直观表示课后篇巩固提升新人教B版
- 格式:docx
- 大小:442.76 KB
- 文档页数:7
2019-2020学年新教材高中数学第五章统计与概率5.4 统计与概率的应用学案新人教B版必修第二册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第五章统计与概率5.4 统计与概率的应用学案新人教B版必修第二册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第五章统计与概率5.4 统计与概率的应用学案新人教B 版必修第二册的全部内容。
5.4 统计与概率的应用考点学习目标核心素养统计与概率的意义通过实例进一步理解统计与概率的意义及应用数学抽象统计与概率的应用能用统计与概率的知识解决实际生活中的问题数学抽象、数学运算判断正误(正确的打“√”,错误的打“×”)(1)事件A发生的概率很小时,该事件为不可能事件.()(2)某医院治愈某种病的概率为0。
8,则10个人去治疗,一定有8人能治愈.( )(3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次比赛应选小明参加.()答案:(1)×(2)×(3)√已知某人在投篮时投中的概率为50%,则下列说法正确的是()A.若他投100次,一定有50次投中B.若他投一次,一定投中C.他投一次投中的可能性大小为50%D.以上说法均错解析:选C.概率是指一件事情发生的可能性大小.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,有()A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数差的绝对值逐渐减小D.f(n)在某个常数附近摆动并趋于稳定解析:选D.随着n的增加,频率f(n)会在概率附近摆动并趋于稳定,这也是频率与概率的关系.事件A发生的概率是错误!,则错误!表示的________.解析:根据概率的含义知错误!表示的是事件A发生的可能性大小.答案:事件A发生的可能性的大小统计在决策中的应用2019年4月20日,福建省人民政府公布了“3+1+2"新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2"中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高.小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%),绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数和中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.【解】(1)化学学科10大联考的成绩百分比排名的平均数为12+16+21+23+25+27+34+42+43+5910=30。
5.1.3 数据的直观表示必备知识基础练进阶训练第一层1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( )2.如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是( )A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大3.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )A.22 B.24C.25 D.274.甲、乙两名同学12次考试中数学成绩的茎叶图如图所示,则下列说法正确的是( )A.甲同学比乙同学发挥稳定,且平均成绩也比乙同学高B.甲同学比乙同学发挥稳定,但平均成绩比乙同学低C.乙同学比甲同学发挥稳定,且平均成绩也比甲同学高D.乙同学比甲同学发挥稳定,但平均成绩比甲同学低5.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150]0.050合计④根据上面的频率分布表,可知①处的数值为________,②处的数值为________.6.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x的值;(2)已知样本中身高小于100厘米的人数是36,求出样本总量N的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.关键能力综合练进阶训练第二层7.(多选)某班数学测试成绩及班级平均分关系的图如下所示.其中说法正确的是( )A.王伟同学的数学学习成绩高于班级平均水平,且较稳定B.张诚同学的数学学习成绩波动最小C.赵磊同学的数学学习成绩低于班级平均水平D.在6次测验中,每一次成绩都是王伟第1,张诚第2,赵磊第38.如图所示的是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图,根据统计图判断下面叙述不正确的是( )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的平均价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门9.(多选)某调查机构对某地互联网行业进行了调查统计,得到整个互联网行业从业者的年龄分布扇形图、90后从事互联网行业的岗位分布条形图如图,则下列结论中一定正确的是( )A.互联网行业从业者中90后占一半以上B.互联网行业从事技术岗位的人数超过总人数的20%C.互联网行业从事运营岗位的人数90后比80前多D.互联网行业从事运营岗位的人数90后比80后多10.已知甲、乙两组数可分别用图(1)、(2)表示,估计这两组数的平均数的相对大小是x甲______x乙,方差的相对大小是s________s(填“>”或“<”或“=”).11.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有________人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是________;(3)在条形统计图中,“非常了解”所对应的学生有________人;(4)若全校有1 200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有________人.12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数为________,分数在[90,100]内的人数为_ _______.13.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图:分组频数频率一组0≤t<500二组5≤t<10100.10三组10≤t<1510②四组15≤t<20①0.50五组20≤t≤25300.30合计100 1.00解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?核心素养升级练进阶训练第三层14.(多选)给出如图所示的三幅图:则下列说法中,正确的有( )A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢15.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A 和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图所示.(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数.(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,根据平均数你会选择哪款?说明理由.5.1.3 数据的直观表示1.答案:D解析:用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是柱形统计图.注意B选项中的图不能称为统计图.2.答案:B解析:由条形统计图可知,甲户居民全年总支出为1 200+2 000+1 200+1 600=6 000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.3.答案:B解析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为20,22,22,24,25,26,27,∴中位数是按从小到大排列后第4个数为24.4.答案:C解析:由茎叶图的性质可知乙同学比甲同学发挥稳定,且平均成绩比甲同学高.5.答案:3 0.025解析:由位于[110,120)的频数为36,频率为=0.300,得样本容量n=120,所以[130,140)的频率为=0.100,故②处应为1-0.050-0.200-0.300-0.275-0.100-0.050=0.025,①处应为0.025×120=3.6.解析:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,且频率之和等于1,∴0.050×2+0.100×2+0.125×2+0.150×2+x×2=1,∴x=0.075.(2)样本中身高小于100厘米的频率为(0.050+0.100)×2=0.3.∴样本容量N==120.(3)样本中身高大于或等于98厘米并且小于104厘米的频率为(0.100+0.150+0.125)×2=0.75.∴学生数为120×0.75=90(人).7.答案:AC解析:从图中看出王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张诚同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高,第6次考试张诚没有赵磊的成绩好.8.答案:D解析:由图可知,A、B、C均正确,对于D,涨幅从高到低居于前三位的是天津、西安和南京,所以D错误.9.答案:ABC解析:A中,根据扇形图可知互联网行业从业者中90后占了56%,故正确;B中,互联网行业中从事技术岗位的90后人数占总人数的0.396×0.56≈0.222,故正确;C 中,互联网行业中从事运营岗位的90后人数占总人数的0.17×0.56≈0.095,而80前从事互联网行业的人数才占总人数的0.03,故正确;D中,因为互联网行业中从事运营岗位的80后人数占总人数的比例不能确定,所以无法判断.10.答案:= <解析:x甲=(10×2+20×6+30×6+40×2)=25,x乙=(10×3+20×5+30×5+40×3)=25,s=[(10-25)2×2+(20-25)2×6+(30-25)2×6+(40-25)2×2]=75,s=[(10-25)2×3+(20-25)2×5+(30-25)2×5+(40-25)2×3]=100,故x甲=x乙,s<s.11.答案:(1)400 (2)135° (3)62 (4)790解析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求参与调查的学生及家长总人数是:(16+4)÷5%=400(人).(2)利用360°乘以对应的比例即可求解:基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360°×=135°.(3)利用总人数减去其它的情况的人数即可求解:400-83-77-73-54-31-16-4=62(人).(4)学生人数:62+73+54+16=205(人),“非常了解”和“基本了解”的人数:62+73=135(人).当全校有1 200名学生,“非常了解”和“基本了解”的学生共有:1 200×≈790(人).12.答案:25 2解析:由频率分布直方图知,分数在[90,100]内的频率和[50,60)内的频率相同,所以分数在[90,100]内的人数为2人,总人数为=25人.13.解析:(1)样本容量是100.(2)①50 ②0.10 所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t min,则有≤t<,即15≤t<20.所以旅客购票用时的平均数可能落在第四组.14.答案:AC解析:从折线图能看出世界人口的变化情况,故A正确;从柱形图中可得到:2050年非洲人口大约将达到17亿,故B错误;从扇形图中能够明显地得到结论:2050年亚洲人口比其他各洲人口的总和还要多,故C正确;由题中三幅图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故D错误.15.解析:(1)由已知,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.11。
5.1.3 数据的直观表示【课程标准】能根据实际问题的特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要性.新知初探·自主学习——突出基础性教材要点知识点一 柱形图(也称为条形图)作用形象地比较各种数据之间的________特征(1)一条轴上显示的是所关注的数据类型,另一条轴上对应的是数量、个数或者比例(2)每一矩形都是等宽的知识点二 折线图作用形象地表示数据的________特征一条轴上显示的通常是时间,另一条轴上是对应的数据知识点三 扇形图(也称为饼图、饼形图)作用形象地表示出各部分数据在全部数据中所占的________特征每一个扇形的圆心角以及弧长,都与这一部分表示的数据大小成正比知识点四 茎叶图茎叶图的画法步骤:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的两侧.作用(1)如果每一行的数都是按从大到小(或从小到大)顺序排列,则从中可以方便地看出这组数的最值、中位数等数字特征(2)可以看出一组数的分布情况,可能得到一些额外的信息(3)比较两组数据的________或________程度特征所有的茎都竖直排列,而叶沿水平方向排列知识点五 画频数分布直方图与频率分布直方图的步骤频数分布直方图纵坐标是频数,每一组数对应的矩形的________成正比频率分布直方图纵坐标是________,每一组数对应的矩形高度与频率成正比,每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为____知识点六 频数分布折线图和频率分布折线图把频数分布直方图和频率分布直方图中每个矩形上面一边的中点用线段连接起来,且画成与横轴相交.状元随笔 表示频率分布的几种方法的优点与不足优点不足频率分布表表示数量较确切分析数据分布的总体态势不方便频率分布直方图表示数据分布情况非常直观原有的具体数据信息被抹掉了频率分布折线图能反映数据的变化趋势不能显示原有数据信息基础自测1.(多选)关于频率分布直方图中的有关数据,下列说法错误的是( )A.直方图的高表示该组上的个体在样本中出现的频率与组距的比值B.直方图的高表示该组上的个体在样本中出现的频率C.直方图的高表示取某数的频率D.直方图的高表示该组上的个体数与组距的比值2.甲、乙两个班各随机选出15名同学进行测验,所得成绩的茎叶图如图.从图中看,________班的平均成绩较高.3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.167B.137C.123D.934.某市4月份日平均气温统计图如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A.13,13B.13,13.5C.13,14D.16,13课堂探究·素养提升——强化创新性题型1 频率分布直方图、频率分布折线图的绘制及频率分布直方图的应用[经典例题]例1 在拜登上任之前的美国历届总统中,就任时年龄最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年龄最大的是特朗普,他于2016年就任,当时70岁.下面按时间顺序(从1789年的华盛顿到2016年的特朗普,共45任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,4 6,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,47,70.(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图;(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况;状元随笔 找出此组数据的最大值和最小值→确定分组的组距和组数→列出频率分布表→由频率分布表绘制频率分布直方图、折线图→根据图形特点作分析(3)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的统计图如图所示,则以下四种说法中,正确的个数为( )①甲的成绩的平均数等于乙的成绩的平均数②甲的成绩的中位数大于乙的成绩的中位数③甲的成绩的方差小于乙的成绩的方差④甲的成绩的极差等于乙的成绩的极差A.1 B.2 C.3 D.4状元随笔 根据频数计算平均数、中位数、方差、极差,判断结果.(4)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:①求频率分布直方图中a的值;②分别求出成绩落在[50,60)与[60,70)中的学生人数.状元随笔 求出第一个和第二个小矩形的面积(即频率),再计算学生人数.方法归纳绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率组距”所占的比例来定高.如我们预先设定以“”为1单位长度,代表“0.1”,则若一个组的频率组距为0.2,则该小矩形的高就是“”(占两个单位长度),依此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.频率分布直方图的意义(1)频率分布直方图以面积的形式反映了数据落在各组内频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)频数/相应的频率=样本容量.跟踪训练1 (1)有一个容量为200的样本,数据的分组以及各组的频数如下:[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;[5,10),41;[10,15),20;[15,20],17.①列出样本的频率分布表;②画出频率分布直方图和频率分布折线图;③求样本数据不足0的频率.(2)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示),由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.状元随笔 (1)①求极差;②组距及组数;③分组;④列表;⑤画直方图.(2)各小长方形的面积表示数据落在相应区间的频率,和为1→建立关a 于的方程→求解即可依据样本容量和频率求出三组的频数和,即抽样的总体个数→求出抽样比→所求人数即得题型2 柱形图、扇形图及其应用[直观想象]例2 (1)为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别无关C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数(2)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半状元随笔 (1)根据柱形图的构成特点读取图中信息,逐个判断,对于C,D要注意计算.(2)根据饼图的构成特点读取图中信息,逐个计算作出判断.方法归纳1.画柱形图的步骤和注意问题(1)步骤:第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制柱形图.(2)注意问题:在柱形图中,各个矩形图的宽度没有严格要求,但高度必须以数据为准,它直观反映了各部分在总体中所占比重的大小.2.画扇形图的步骤和注意问题(1)步骤:第一步计算各部分所占百分比以及对应圆心角的度数;第二步在圆中按照上述圆心角画出各个扇形并恰当标注.(2)注意问题:扇形图表示总体的各部分之间的百分比关系,但不同总量下的扇形统计图,其不同的百分比不可以作为比较的依据.跟踪训练2 (1)如图是某手机商城中A,B,C三种品牌的手机各季度销量的百分比条形图,根据该图,以下结论中一定正确的是( )A.四个季度中,每季度B品牌和C品牌总销量之和均不低于A品牌的销量B.B品牌第二季度的销量小于第三季度的销量C.第一季度销量最大的为C品牌,销售最小的为B品牌D.A品牌的全年销售量最大(2)某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖18元、二等奖8元、三等奖4元、参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是( )A.获得参与奖的人数最多B.各个奖项中参与奖的总费用最高C.购买每件奖品费用的平均数为4元D.购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍题型3 折线图及其应用[数据分析]例3 某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月份C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元状元随笔 读取折线图的信息,逐项判断.方法归纳绘制折线图的步骤和注意问题(1)步骤:先整理和观察数据统计表,建立直角坐标系,用两坐标轴上的点分别表示数据,再描出数据的相应点,顺次连接相邻的点,得到一条折线.(2)注意问题:画折线统计图时,横轴、纵轴表示的实际含义要标明确.跟踪训练3 (多选)某班三位同学的数学测试成绩及班级平均分的关系图如图所示其中说法正确的是( )A.王伟同学的数学学习成绩高于班级平均水平,且较稳定B.张诚同学的数学学习成绩波动较大C.赵磊同学的数学学习成绩低于班级平均水平D.在6次测试中,每一次成绩都是王伟第1,张诚第2,赵磊第3题型4 茎叶图及其应用[数据分析]例4 某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划.为了了解训练效果,执行训练计划前,他统计了10场比赛的得分,计算出得分的中位数为15分,平均得分为15分,得分的方差为46.3.执行训练后也统计了10场比赛的得分,成绩茎叶图如图所示:(1)请计算该篮球运动员执行训练计划后统计的10场比赛得分的中位数、平均得分与方差;(2)如果仅从执行训练计划前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?状元随笔 (1)由茎叶图能计算该篮球运动员执行训练计划后统计的10场比赛得分的中位数,根据平均数公式可得平均得分,由方差公式可得方差;(2)尽管中位数训练后比训练前稍小,但平均得分一样,训练后方差小于训练前方差说明训练后得分稳定性提高了,由此能求出结果.方法归纳茎叶图中的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.跟踪训练4 为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6,1.2,2.7,1.5,2.8,1.8,2.2,2.3,3.2,3.5,2.5,2.6,1.2,2.7,1.5,2.9,3.0,3.1,2.3,2.4服用B药的20位患者日平均增加的睡眠时间:3.2,1.7,1.9,0.8,0.9,2.4,1.2,2.6,1.3,1.4,1.6,0.5,1.8,0.6,2.1,1.1,2.5,1.2,2.7,0.5根据两组数据完成如图所示的茎叶图,从茎叶图看,哪种药的疗效更好?5.1.3 数据的直观表示新知初探·自主学习知识点一数量关系知识点二变化趋势知识点三比例情况知识点四集中 分散知识点五最大值与最小值的差 k 不小于k的最小整数 左闭右开 闭 分组 频数累计频数 频率 合计 样本容量 1 频率组距 各小长方形的面积 1 高度与频数 频率组距1[基础自测]1.解析:直方图的高表示频率与组距的比值,直方图的面积为频率.答案:BCD2.解析:结合茎叶图中成绩的情况可知,乙班平均成绩较高.答案:乙3.解析:110×70%+150×40%=77+60=137.答案:B4.解析:这组数据中,13出现了10次,出现次数最多,所以众数为13,排序后第15个数和第16个数都是14,所以中位数是14.答案:C 课堂探究·素养提升例1 【解析】 (1)以4为组距,列频率分布表如下:分组频数频率[42,46)20.0444[46,50)70.1555[50,54)80.1778[54,58)160.3556[58,62)50.1111[62,66)40.0889[66,70]30.0667合计451.0000画出相应的频率分布直方图和频率分布折线图,如图所示.(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,45岁及45岁以下和65岁以上就任的总统所占的比例相对较小.(3)在①中,x 乙=15×(5+5+5+6+9)=6,x 甲=15×(4+5+6+7+8)=6,故甲的成绩的平均数等于乙的成绩的平均数,故①正确;在②中,甲的成绩的中位数为6,乙的成绩的中位数为5,故甲的成绩的中位数大于乙的成绩的中位数,故②正确;在③中,甲的成绩的方差为15×(22×2+12×2)=2,乙的成绩的方差为15×(12×3+32×1)=2.4,故甲的成绩的方差小于乙的成绩的方差,故③正确;在④中,甲的成绩的极差为4,乙的成绩的极差也为4,故甲的成绩的极差等于乙的成绩的极差,故④正确,故正确的个数为4.(4)①据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1 200=0.005.②成绩落在[50,60)中的学生人数为2×0.005×10×20=2人.成绩落在[60,70)中的学生人数为3×0.005×10×20=3人.【答案】 (1)(2)见解析 (3)D (4)见解析跟踪训练1 解析:(1)①频率分布表如下:分组频数频率[-20,-15)70.035[-15,-10)110.055[-10,-5)150.075[-5,0)400.2[0,5)490.245[5,10)410.205[10,15)200.1[15,20]170.085合计200 1.00②频率分布直方图和频率分布折线图如图所示:③样本数据不足0的频率为:0.035+0.055+0.075+0.2=0.365.(2)因为频率分布直方图中各小长方形的面积之和为1,所以10×(0.005+0.035+a +0.020+0.010)=1,解得a=0.030.由图可知身高在[120,150]内的学生人数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内的学生中选取的人数为1860×10=3.答案:(1)见解析 (2)0.030 3例2 【解析】 (1)由题图,可得是否倾向选择生育二胎与户籍有关、与性别无关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为60×60%=36(人),女性人数为40×60%=24(人),不相同.(2)设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项符合题意;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项不符合题意;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项不符合题意;新农村建设后,养殖收入与第三产业收入的总和占经济收入为30%+28%=58%>50%,所以超过了经济收入的一半,所以D项不符合题意.【答案】 (1)C (2)A跟踪训练2 解析:(1)对于A,第四季度中,A品牌销量大于50%,B品牌和C品牌总销量之和小于50%,故A错误;对于B,因为B品牌每个季度的销量不确定,所以无法判断,故B错误;对于C,第一季度销量最大的是A品牌,故C错误;对于D,由图知,四个季度A品牌的销量都最大,所以A品牌的全年销量最大,故D 正确.(2)由题意,设全班人数为a,由扇形统计图可知,一等奖占5%,二等奖占10%,三等奖占30%,参与奖占55%.获得参与奖的人数最多,故A正确;各奖项的费用:一等奖5%a×18=0.9a,二等奖10%a×8=0.8a,三等奖占30%a×4=1.2a,参与奖占55%a×2=1.1a,可知各个奖项中三等奖的总费用最高,故B错误;平均费用5%×18+10%×8+30%×4+55%×2=4元,故C正确;一等奖奖品数为5%a,二等奖奖品数为10%a,三等奖奖品数为30%a,故D正确.答案:(1)D (2)B例3 【解析】 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A正确,不符合题意;由题图可知,结余最高为7月份,为80-20=60(万元),故B正确,不符合题意;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确,不符合题意;由题图可知,前6个月的平均收入为16(40+60+30+30+50+60)=45(万元),故D 错误,符合题意.【答案】 D跟踪训练3 解析:从题图中看出王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张诚同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高,第6次测试张诚没有赵磊的成绩好.答案:ABC例4 【解析】 (1)训练后得分的中位数为:14+152=14.5(分);平均得分为:8+9+12+14+14+15+16+18+21+2310=15(分);方差为:110[(8-15)2+(9-15)2+(12-15)2+(14-15)2+(14-15)2+(15-15)2+(16-15)2+(18-15)2+(21-15)2+(23-15)2]=20.6.(2)尽管中位数训练后比训练前稍小,但平均得分一样,训练后方差20.6小于训练前方差46.3,说明训练后得分稳定性提高了,这是投篮水平提高的表现.故此训练计划对该篮球运动员的投篮水平的提高有帮助.跟踪训练4 解析:由观测结果可绘制茎叶图如图所示:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.。
2019-2020学年新教材高中数学第5章统计与概率单元质量测评(含解析)新人教B版必修第二册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第5章统计与概率单元质量测评(含解析)新人教B版必修第二册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第5章统计与概率单元质量测评(含解析)新人教B版必修第二册的全部内容。
第五章统计与概率单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列调查,比较适用普查而不适用抽样调查方式的是()A.为了了解中央电视台春节联欢晚会的收视率B.为了了解高一某班的每个学生星期六晚上的睡眠时间C.为了了解夏季冷饮市场上冰淇淋的质量情况D.为了考查一片实验田某种水稻的穗长情况答案B解析A选项做普查时数量太大,且该调查对调查结果准确性的要求不高,适合采用抽样调查的方式;B选项班级人数有限,比较容易调查因而适合普查;C选项数量大并且耗时长,不适合普查;D选项普查时数量太大,要费太大的人力、物力,得不偿失,不适合普查.故选B.2.近几年来移动支付越来越普遍,为了了解某地10000名居民常用的支付方式,从中抽取了500名居民,对其常用支付方式进行统计分析.在这个问题中,10000名居民的常用支付方式的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案A解析10000名居民的常用支付方式的全体是总体,样本容量是500,每个居民的常用支付方式是个体,500名居民的常用支付方式是从总体中抽取的一个样本.故选A。
5.1.3数据的直观表示
课后篇巩固提升
夯实基础
1.如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是()
什么样的活动最能促进同学们进行垃圾分类
A.回答该问卷的总人数不可能是100
B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多
C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少
D.回答该问卷的受访者中,选择“公益广告”的人比选择“学校要求”的少8个
2.某校有文科教师120名,理科教师225名,其男女比例如图,则该校女教师的人数为()
A.96
B.126
C.144
D.174
,该校文科教师中女教师的人数为120×0.7=84,该校理科教师中女教师的人数为225×0.4=90,所以该校女教师的人数为84+90=174,故选D.
3.某位教师2017年的家庭总收入为80 000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4 750元,则该教师2018年的旅行费用为()
A.21 250元
B.28 000元
C.29 750元
D.85 000元
,2017年的就医花费为80000×10%=8000(元),
则2018年的就医花费为8000+4750=12750(元),
×35=29750(元).故选C.
2018年的旅行费用为12750
15
4.(多选)某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至11月期间“跑团”每月跑步的平均里程(单位:千米)的数据,绘制了下面的折线图.根据折线图,下列结论不正确的是()
A.月跑步平均里程的中位数为6月份对应的里程数
B.月跑步平均里程逐月增加
C.月跑步平均里程高峰期大致在8月、9月
D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳
,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9、10月份,故A,B,C中结论错误.
5.CPI是居民消费价格指数的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.如图是根据统计局发布的2018年1~7月的CPI同比增长与环比增长涨跌幅数据绘制的折线图(注:2018年2月与2017年2月相比较,叫同比;2018年2月与 2018年1月相比较,叫环比).根据该折线图,下列结论错误的是()
2018年1~7月CPI涨跌幅(%)
A.2018年1~7月CPI有涨有跌
B.2018年2~7月CPI涨跌波动不大,变化比较平稳
C.2018年1~7月分别与2017年1~7月相比较,1月CPI涨幅最大
D.2018年1~7月分别与2017年1~7月相比较,CPI有涨有跌
6.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男女学生各有500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为.
,所以女同学中喜欢篮球运动的有,500名女同学中喜欢篮球运动的频率为1
5
100人,500名男同学中喜欢篮球运动的频率为3
,所以男同学中喜欢篮球运动的有300人.故从所有
5
×32=24.
喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为300
400
7.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图(1)中将②对应的部分补充完整.
从题图中知,选①的共60人,占总人数的百分比为30%,所以总人数为60÷30%=200,即本次一共调查了200名学生.
(2)被调查的学生中,选②的有200-60-30-10=100(人),补充完整的条形统计图如图所示.
8.某生产企业对其所生产的甲、乙两种产品进行质量检测,分别各抽查6件产品,检测其质量的误差,测得数据如下(单位:mg):
甲:131********
乙:1513981623
(1)画出样本数据的茎叶图;
(2)分别计算甲、乙两组数据的方差并分析甲、乙两种产品的质量(精确到0.1).
根据题目中的数据,画出茎叶图如图所示.
=14,
(2)根据茎叶图得出,甲的平均数是8+13+13+14+15+21
6
乙的平均数是
8+9+13+15+16+23
6=14;
甲的方差是s 甲
2=16[(-6)2
+(-1)2
+(-1)2
+02
+12
+72
]≈14.7. 乙的方差是s 乙2=16
[(-6)2
+(-5)2
+(-1)2
+12
+22
+92
]≈24.7.所以s 甲=s 乙,s 甲2<s 乙
2, 所以甲产品质量好,重量误差较稳定.
能力提升
1.某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为一等奖18元、二等奖8元、三等奖4元、参与奖2元,获奖人数的分配情况如图,则以下说法不正确...
的是( )
A.获得参与奖的人数最多
B.各个奖项中参与奖的总费用最高
C.购买每件奖品费用的平均数为4元
D.购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍
2.中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的一套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是( )
A.2018年1月至4月的仓储指数比2017年同期波动性更大
B.2017年、2018年的最大仓储指数都出现在4月份
C.2018年全年仓储指数平均值明显低于2017年
D.2018年各月仓储指数的中位数与2017年各月仓储指数中位数差异明显
3.
某高校组织学生举办辩论赛,六位评委为选手A 打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为 .
83,85,87,95,这四个数的平均数s =1
4(83+85+87+95)=1752
,这四个数的中位数
为1
2(85+87)=86,则所剩数据的平均数与中位数的差为
1752
-86=3
2.
4.为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的最大速度的中位数; (2)计算甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.
茎叶图如下:
所以甲的最大速度的中位数为
35+312
=33,乙的最大速度的中位数为
33+342
=33.5.
(2)甲的最大速度的平均数为s 1=1
6(27+30+31+35+37+38)=33, 乙的最大速度的平均数为s 2=1
6(28+29+33+34+36+38)=33,
甲的最大速度的方差为s12=1
6(36+9+4+4+16+25)=47
3
,
乙的最大速度的方差为s22=1
6(25+16+1+9+25)=38
3
,
甲、乙的最大速度的平均数相等,乙的方差更小,则乙的发挥更稳定,故乙参加比赛更合适.。