2010线性代数试题与答案
- 格式:doc
- 大小:203.50 KB
- 文档页数:8
A . PAB. APC. QAD. AQ全国2010年度4月高等教育自学考试线性代数(经管类)试题答案1.已知2阶行列式a ? m, b 1 b 2n ,则b 1 b 2(B )b 1 b 2C 2a 〔a ?C 2A . m n B. n mC. m nD. (m n)2 .设 A , B , C 均为 n 阶方阵,AB BA , AC CA ,则 ABC ( D )ABC (AB)C (BA)C B(AC) B(CA) BCA .3.设A 为3阶方阵,B 为4阶方阵,且|A| 1 , |B| 2,则行列式||B|A|之值为(A )A.8B. 2C. 2D. 8||B|A| | 2A| ( 2)3|A|8 .a 11a 12a 13a 113a 〔2 a 131 0 0 1 0 04 . Aa 21a 22 a 23, Ba 21 3a ?2a 23, P3 0,Q 3 1 0,则B (B)a 31a 32a 33a 313a 32a 330 0 10 0 1一、单项选择题(本大题共10小题,每小题2分,共20 分) b ib 2b 1 b 2a 1a 2A . ACBB. CABC. CBAD. BCAC 2m n n m .an a 12 a 131 0 0 an 3a 12 a 13AP a 21a 22a 230 3 0 a 213a 22 a 23Ba 31a 32a 330 0 1a 313a 32 a 335.已知A 是一个3 4矩阵,下列命题中正确的是( C )A .若矩阵A 中所有3阶子式都为0,则秩(A )=2B. 若A 中存在2阶子式不为0,则秩(A )=2相关相关的一个极大无关组.C. 若秩(A )=2,则A 中所有3阶子式都为0D. 若秩(A )=2,则A 中所有2阶子式都不为 6. F 列命题中错误的是(C )A . 只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性C. 由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性7.已知向量组3线性无关,线性相关,则(D )A . 1必能由2,3,线性表出 B.2必能由1, 3,线性表出C.3必能由1, 2,线性表出D.必能由3线性表出注:8.设A 为m n 矩阵,m n ,则方程组Ax =O 只有零解的充分必要条件是 A 的秩(D )注:方程组Ax =O 有n 个未知量.9.设A 为可逆矩阵,则与 A 必有相同特征值的矩阵为( A )A . A T B. A 2 C. A 1 D. A| E A T | |( E A )T | | E A|,所以A 与A T 有相同的特征值.10 •二次型f (X 1,X 2,X 3) X 12 X ;近2X 1X 2的正惯性指数为( C)A . 0B. 1C. 2D. 3f (X i ,X 2,X 3)(X i X 2)2 x f y i 2 y f ,正惯性指数为 2.二、填空题(本大题共 10小题,每小题2分,共20 分)11 .行列式2007 2008的值为2009 2010--------------------------12.设矩阵 A 2 011, B 01,则A T B -------------------------------------------------------A .小于 mB.等于 mC.小于nD.等于n2007 2008 2009 20102000 2000 2000 20007 8 9 1013 •设 (3, 1,0,2)T ,(3,1, 1,4)T ,若向量 满足 2 3,贝V ____________3 2 (9,3, 3,12)T (6, 2,0,4)T(3,5, 3,8)T •14 .设A 为n 阶可逆矩阵,且| A| 1,则| | A 1 | _______________________n|A 11|A|15 .设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程 组Ax =o 的解,贝y |A | _______________ .n 个方程、n 个未知量的Ax =0有非零解,则| A| 0.16.齐次线性方程组X1 X2 X3 0的基础解系所含解向量的个数为2x 1 x 2 3X 3基础解系所含解向量的个数为 nr 3 2 1 .117•设n 阶可逆矩阵A 的一个特征值是3,则矩阵尹必有一个特征值为2 2x 0的特征值为4,1, 2,则数x由 1x0412,得 x 2.a 1/,2 019 .已知A 1/" b 0是正交矩阵,则a b _______________________________0 0 120 .二次型 f (x 1, x 2, x 3) 4x 1x 2 2x 1x 3 6x 2x 3 的矩阵是三、计算题(本大题共 6小题,每小题9分,共54 分)18.设矩阵Aab ca b c1 1 1 解:D2ab 22c2 ab 22cabc abc3..333.332.22a ab bc ca b ca b cabc(b a)(c a)1 b a1 c aabc(b a)(c a)(c b).22. 已知矩阵B (2,1,3) , C(1,2,3),求( 1) A B T C ;(2) A 2 .22 4 6解: (1) AB TC1 (1,2,3) 123 ;33 6 92(2)注意到 CB T (1,2,3) 113,所以32 4 6 A 2 (B T C)(B T C) B T (CB T )C 13B T C 13A 13 1 2 3 . 21.计算行列式Da 2 a a 3b cb 2c 2的值.b b 3c c 32 11 1解:A (1, 2 ,3, 4)1 2 1 1 3 0 3 11 111 1 0 1 1 1 0 10 1 1 0 0 1 1 0 0 0 0 2 0 0 0 10 0 0 1 0 0 0 01 1 0 1 1 1 0 1 12 1 1 0 1 1 03 0 3 1 0 3 32 2 11 11 111 0 1 10 0 1 0 1 0 0 1 , 向量组的秩为 3, 1 , 2,4是一个0 0 0 0极大无关组,3 1 212 31 424.已知矩阵 A 01 2, B2 5 .(1)求 A 1; ( 2)解矩阵方程 AX B00 11 31231 0 0 1 20 10 3解: ( 1 )(A,E) 01 20 1 0 0 10 01 200100 10 01 0011 0012 112 10 1001 2,A 10 1 20 0100 10 01121 1 4 4 9(2) X A 1B0 1 2 2 5 0 11 .0 011313、 1x 12x 2 3x 3425.问 a 为何值线性方程组2x 2 ax 32 有惟一 解?有无穷多解?并在有解2x 12x 23x 36时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).1 23 4 12 341 234解:( A,b) 02a 2 0 2 a 2 0 2a 2 .2 23623 20 0a 3012 a 3时, r(A,b) r(A) 2 n ,有无穷多解,此时 (A,b) 0 2 00a 3时, r (A,b ) r (A ) 3 ,有惟一解,此时1( A,b)0 0 34 a2 10 12 02 0010 02 00 02 02 10 10 01 0002 0 1 , 10x 1x 2 x 32 1; 343200数. 1 0 0 21 00 2 3 2 0 1 3/2 0 0 0 0 0 0 02x 1 22 1, X 2 1 ?X 3,通解为12X 3 X 3k 3/2 ,其中k 为任意常26 .设矩阵A 2 0 00 3a 的三个特征值分别为1,2,5,求正的常数a 的值及可逆矩阵P,0 a 3 1 0 0 使 P 1AP 0 2 0 0 0 52 0 0解:由 |A|0 3a 0 a 32 3 a 2(9 a 2) 1 2 5,a 3得 a 2 4,对于 1 1,解(E A)x 0 :X 1 X2X 3X 3对于 2 2,解(E A )x 0 :0 1 0 x 1 x 1 0 0 1 , x 2 0,取 p 2X 3 0对于 3 5,解(E A )x 0 :3 0 0 1 0 0 X1 0 0E A 0 2 2 0 1 1 , X2 x3,取p3 1 .0 2 2 0 0 0 X3 X3 10 1 0 1 0 0令P (P1, P2 ,P3) 1 0 1 则P是可逆矩阵,使P 1AP 0 2 0 .1 0 1 0 0 5四、证明题(本题6分)27 .设A, B, A B均为n阶正交矩阵,证明(A B) 1 A 1 B 1.证:A, B, A B均为n阶正交阵,则A A 1, B T B1, (A B)T(A B) 1,所以(A B) 1 (A B)T A T B T A 1 B 1.全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1 .设3阶方阵A ( 1,2,3),其中i ( i 1,2,3)为A的列向量,若|B| |( 1 2 2, 2, 3)| 6,则|A| ( C )|A| 1( 1, 2, 3)l 1( 1 2 2, 2, 3)1 6 .A. 12B. 6C. 6D. 122•计算行列式3 0 2 0 2 10 5 0 0 0 2 0 2 3 2 3A. 180B. 120C. 120D. 1803.若A 为3阶方阵且|A 1| 2,则|2A| ( C )A.1B. 2C. 4D. 821 31 |A| -, |2A|2 |A| 8 三 4 .224. 设1, 2, 3, 4都是3维向量,则必有(B )A . 1,2, 3,4线性无关 B.1,2, 3,4线性相关C.1可由2, 3, 4线性表示 D.1不可由2, 3, 4线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则r(A) ( C )A. 2B. 3C. 4D. 5由 6 r(A) 2,得 r(A) 4 .6 .设A B 为同阶方阵,且r(A) r(B),则(C ) 3 0 2 03 0 22 10 53 032 10 53 ( 2)2 02 1022 3 2 33(2) 30A . A 与B 相似B. |A| |B|C. A 与B 等价D. A 与B 合同注:A与B有相同的等价标准形.7.设A为3阶方阵,其特征值分别为2,1,0,则|A 2E| ( D )A. 0B. 2C. 3D. 24A 2E的特征值分别为4,3,2,所以| A 2E | 4 3 2 24 .8 .若A B相似,贝y下列说法错误.的是(B )A. A与B等价B. A与B合同C. |A| |B|D. A与B有相同特征值注:只有正交相似才是合同的.9 .若向量(1, 2,1)与(2,3,t)正交,则t ( D )A. 2B. 0C. 2D. 4由内积2 6 t 0 ,得t 4.10 .设3阶实对称矩阵A的特征值分别为2,1,0,则(B )A. A正定B. A半正定C. A负定 D . A半负定对应的规范型2z2 z;0 zj 0,是半正定的.、填空题(本大题共 10小题,每小题2分,共20 分)3211 •设 A 01 , B2 1 1,则 AB0 1 0243 2 2 1 1 AB 0 1 0 1 02412 .设A 为3阶方阵,且|A| 3 , 则I3A 1] _______________________13 1 31 31|3A 1 3 |A 1 3|A|33 9 •13 .三元方程 x 1 x 2 x 3 1的通解是 _____________________14 .设 (1,2,2),则与 反方向的单位向量是 ___________________15.设A 为5阶方阵,且r (A ) 3,则线性空间W {x|Ax 0}的维数是 _____________________1 II II13(1,2,2).1W {x|Ax 0}的维数等于Ax 0基础解系所含向量的个数:n r 5 3 2 .16.17 .若A B 为5阶方阵,且Ax 0只有零解,且r(B) 3,则r(AB) __________________________Ax 0只有零解,所以A 可逆,从而r(AB) r(B) 3 .2 1 018.实对称矩阵 1 0 1所对应的二次型 仁咅飞入) _________________________ .0 1 11 119 .设3元非齐次线性方程组 Ax b 有解1 2 , 22,且r(A) 2,则Ax b 的 33通解是 _______________ .1 1 1(1 2) 0是Ax 0的基础解系,Ax b 的通解是2 k 0 032f (X 「X 2,X 3)2 X32x 1 x 2 2x 2X 3.120 •设2,则A T的非零特征值是 ________________31由T (1,2,3) 2 14,可得A2( T ) T 14 T 14A,设A的非零特征值3是,则2 14 ,14 •三、计算题(本大题共6小题,每小题9分,共54 分)21 .计算5阶行列式D 2 0 0 0 1 0 2 0 0 0 0 0 2 0 00 0 0 2 01 0 0 0 2解:连续3次按第2行展幵2 0 0 10 2 0 0 D 2 0 0 2 010 0 22 0 0 1 0 0 1 4 322.设矩阵X满足方程0 1 0 X 0 0 1 2 0 1 ,求X.0 0 2 0 1 0 1 2 02 0 0 1 0 0 1 4 3解:记A 0 1 0, B 0 0 1 C 2 0 1 ,贝yAXB C0 0 2 0 1 0 1 2 01/2 0 0 1 0 0A 10 1 0 ,B 10 0 10 0 1/2 0 1 08 3 24 .4 3 10 0x 2 3x 3 x 4 123 .求非齐次线性方程组 3x 1 x 2 3x 3 4x 44 的通解. X 1 5X 2 9X 3 8X 41 1 3 1 1 1 1 3 1 1 解:(A,b) 3 1 3 4 4 0 4 6 7 11 598 04671 4 4 12 44 1 0 3/2 0 1 3/2 00 03/4 5/4 7/4 1/4 ,0 05 3 3 X 1 —X 3X 44 2 4X 21 4 3X 3 2 3 7 X 4,通解为 X 3X 3X4X 45/4 3/2 3/4 1/43/2 7/4k 1k 20 1 0 01k 1, k 2都是任意常数.24 .求向量组 1(1,2, 1,4),2(9,100,10,4),3( 2, 4,2, 8)的秩和一个极大无关组.解: ( T , T , T ) 21004 1 10 24 4 81 92 1502 0410 1 102 0 190 1 1 20 81 92 1 9 2 1 9 2 0 10 0 0 0 0 0 01 02 0 1 0 0 0 0 0 0 0向量组的秩为2,1 , 2是一个极大无关组.25.已知A2 1 25 a 3的一个特征向量(1,1, 1)T ,求a,b 及 所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设所对应的特征值,则A,即,从而1a2 b1 ,可得 a 3,b0,1;对于1,解齐次方程组 E A)x 0:EA 1 1,0x1 x2 x3 x3x3,x3基础解系为属于1的全部特征向量为,k 为任意非零实数.26.,试确定 a 使r( A)2.解:2 2 a2四、27.22,a0时r(A) 2.证明题(本大题共 1 小题,6 分)3是Ax b ( b 0)的线性无关解,证明 3 1 是对应齐次线性方程组Ax0 的线性无关解.证:因为i, 2, 3是Ax b的解,所以 1 是Ax 0的解;k1 k20得k i 0 ,只有零解k i k2 0,所以2 i,3 i线性无关.k20全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A表示方阵A的逆矩阵,r(A)表示矩阵A的秩,(,)表示向量与的内积,E表示单位矩阵,|A表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)an a12 a13 2an 2a12 2a131.设行列式a21 a 22 a23 =4,则行列式 a21 a22 a 23=()a31 a32 a33 3a31 3a 32 3a33A.12B.24C.36D.482. 设矩阵A, B, C, X为同阶方阵,且A, B可逆,AXE=C,则矩阵X=( )A. A®B.CAB-1C.^1A-1CD.C B A13. 已知Y+A E=0,则矩阵A-1=( )A. A- EB.- A-E002 4. 设 1, 2, 3 , 4, 5是四维向量,则()A.1, 2, 3, 4,5一定线性无关 B.1, 2 , 3, 4,5一定线性相关C. 5一定可以由1, 2, 3,4线性表示 D. 1一定可以由2, 3, 4,5线性表出5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则()B. A =EC.r (A )=n D.0<r ( A )<( n )6. 设A 为n 阶方阵,r ( A )< n ,下列关于齐次线性方程组 Ax =0的叙述正确的 是()A.Ax =0 只有零解B.Ax =0 的基础解系含 r (A ) 个解向量C.Ax =O 的基础解系含n -r (A )个解向量D.Ax =O 没有解7. 设 1, 2是非齐次线性方程组 Ax =b 的两个不同的解,则( )A. i 2是Ax =b 的解B. i 2是Ax =b 的解C. 3 1 2 2是 Ax =b 的解D. 2 1 3 2是 Ax =b 的解3908. 设 1, 2, 3为矩阵 A = 0 4 5 的三个特征值,则 1 2 3=( )A.A =0A.20B.24002C.28D.309.设P为正交矩阵,向量,的内积为(,)=2,贝y(P ,P)=(A. 1B.12C. 3D.2210.二次型f (X1, X2, X3)= x-X2X22x1X2 2x1X3 2x2X3 的秩为( ) 2A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20 分)请在每小题的空格中填上正确答案。
010线性代数期末试题及参考答案一. 解答:1.(F )()2.(T )3.(F )。
如反例:,。
4.(T )(相似矩阵行列式值相同)5.(F )二. 解答:1.选B 。
初等矩阵一定是可逆的。
2.选B 。
A 中的三个向量之和为零,显然A 线性相关; B 中的向量组与,,等价, 其秩为3,B 向量组线性无关;C 、D 中第三个向量为前两个向量的线性组合,C 、D 中的向量组线性相关。
3.选C 。
由,)。
4.选D 。
A 错误,因为,不能保证;B 错误,的基础解系含有个解向量;C 错误,因为有可能,无解;D 正确,因为。
5.选A 。
A 正确,因为它们可对角化,存在可逆矩阵,使得,因此都相似于同一个对角矩阵。
三. 解答:1.(按第一列展开) 2. ;(=)AA n λλ=100010000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭000010001B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭1α2α3α052=-+E A A ⇒()2232()3A A E E A E A E E +-=⇒+-=()112()3A E A E -⇒+=-n m <()(|)R A R A b =0=Ax ()A R n -()(|)1R A n R A b n =<=+b Ax =()R A n =,P Q 1112(,,,)n PAP diag QBQ λλλ--== ,A B ()!11n n +-3153*A 3233A3. 相关(因为向量个数大于向量维数)。
因为,。
4. 。
因为,原方程组的导出组的基础解系中只含有一个解向量,取为,由原方程组的通解可表为导出组的通解与其一个特解之和即得。
5.( 四. 解答:1.解法一:。
将与组成一个矩阵,用初等行变换求。
=。
故 。
解法二:。
,因此。
2.解:,, 。
124,,ααα3122ααα=+124| |0A ααα=≠()()TTk 42024321--+()3=A R 1322ηηη-+6=a ())02=⇒=A A R AB B A =+⇒()1()A E B A B A E A --=⇒=-A E -A (|)A E A -1(|())E A E A --()|A E A -⎪⎪⎪⎭⎫ ⎝⎛221121243233121120)(31r r --⎪⎪⎪⎭⎫⎝⎛22112124323310000121313,r r r r -- ⎪⎪⎪⎭⎫⎝⎛-12112014323010000123r r - ⎪⎪⎪⎭⎫ ⎝⎛-121120222110100001322r r - 100001011222001325⎛⎫⎪- ⎪ ⎪---⎝⎭3r - 100001011222001325⎛⎫⎪- ⎪ ⎪-⎝⎭23r r -⎪⎪⎪⎭⎫ ⎝⎛--523100301010100001⎪⎪⎪⎭⎫ ⎝⎛--=523301100B AB B A =+⇒()1()A E B A B A E A --=⇒=-1021101()332113121326A E --⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪-==--- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1001()103325B A E A -⎛⎫⎪ ⎪=-=- ⎪⎪-⎝⎭⎪⎪⎪⎪⎪⎭⎫⎝⎛--------==111111*********1T A αβA A 42-=()()11()()()()()()44n n n T T T T T T T T A Aαβαβαβαβαβαβαβαβ--===-=-3.解法一:由方程组有无穷多解,得,因此其系数行列式。
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内.错选或未选均无分。
1。
设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A. m+n B。
—(m+n) C。
n—m D. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是( )A。
–6 B。
6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有( )A. A =0B。
B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1B. 2C. 3D. 46。
设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C。
有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A。
所有r-1阶子式都不为0 B。
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
2010线性代数试题及答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
全国2011年1月自学考试线性代数试题课程代码:02198说明:本卷中,A T 表示矩阵A 转置,det(A )表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,(α,β)表示向量α,β的内积,E 表示单位矩阵.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 是4阶方阵,且det(A )=4,则det(4A )=( )A .44B .45C .46D .472.已知A 2+A +E =0,则矩阵A -1=( )A .A +EB .A -EC .-A -ED .-A +E 3.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )A .A -1CB -1B .CA -1B -1C .B -1A -1CD .CB -1A -14.设A 是s×n 矩阵(s≠n),则以下关于矩阵A 的叙述正确的是( )A .A T A 是s×s 对称矩阵B .A T A =AA TC .(A T A )T =AA TD .AA T 是s×s 对称矩阵5.设α1,α2,α3,α4,α5是四维向量,则( )A .αl ,α2,α3,α4,α5一定线性无关B .αl ,α2,α3,α4,α5一定线性相关C .α5一定可以由α1,α2,α3,α4线性表出D .α1一定可以由α2,α3,α4,α5线性表出6.设A 是n 阶方阵,若对任意的n 维向量X 均满足AX =0,则( )A .A =0B .A =EC .秩(A )=nD .0<秩(A )<n7.设矩阵A 与B 相似,则以下结论不正确...的是( ) A .秩(A )=秩(B )B .A 与B 等价C .A 与B 有相同的特征值D .A 与B 的特征向量一定相同8.设1λ,2λ,3λ为矩阵A=⎪⎪⎪⎭⎫ ⎝⎛200540093的三个特征值,则1λ2λ3λ=( )A .10B .20C .24D .309.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A .1B .2C .3D .4 10.设A ,B 是正定矩阵,则( )A .AB 一定是正定矩阵B .A +B 一定是正定矩阵C .(AB )T 一定是正定矩阵D .A -B 一定是负定矩阵二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2010线性代数期末试题及参考答案一、判断题(正确填T ,错误填F 。
每小题2分,共10分)1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
( ) 2. A ,B 是同阶方阵,且≠AB ,则111)(---=ABAB 。
( )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。
( ) 5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。
( )二、单项选择题(每小题3分,共15分)1.下列矩阵中,( )不是初等矩阵。
(A )00101010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(C) 10002001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 10001201⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。
(A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+3.设A 为n阶方阵,且250A A E +-=。
则1(2)A E -+=( )(A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +4.设A 为n m ⨯矩阵,则有( )。
(A )若n m <,则b Ax =有无穷多解;(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;(C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )(A )A 与B 相似 (B )A B ≠,但|A-B |=0(C )A=B (D )A 与B 不一定相似,但|A|=|B|三、填空题(每小题4分,共20分)1.0121n n-。
2.A 为3阶矩阵,且满足=A 3,则1-A=______,*3A=。
3.向量组1111α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2025α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3247α⎛⎫ ⎪= ⎪ ⎪⎝⎭,4120α⎛⎫ ⎪= ⎪ ⎪⎝⎭是线性 (填相关或无关)的,它的一个极大线性无关组是 。
4. 已知123,,ηηη是四元方程组Ax b =的三个解,其中A 的秩()R A =3,11234η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,234444ηη⎛⎫⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭,则方程组Ax b =的通解为 。
5.设2311153A a -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且秩(A )=2,则a = 。
四、计算下列各题(每小题9分,共45分)。
1.已知A+B=AB ,且121342122A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵B 。
2.设(1,1,1,1),(1,1,1,1)αβ=--=--,而TA αβ=,求nA 。
3.已知方程组1123211232123x x ax x x x x ax x a ⎧++=-⎪⎪-+=-⎨⎪⎪-++=⎩有无穷多解,求a 以及方程组的通解。
4.求一个正交变换将二次型化成标准型32312123222132184422),,(x x x x x x x x x x x x f ++---=5. A ,B 为4阶方阵,AB+2B =0,矩阵B 的秩为2且|E+A |=|2E -A |=0。
(1)求矩阵A 的特征值;(2)A 是否可相似对角化?为什么?;(3)求|A+3E |。
五.证明题(每题5分,共10分)。
1.若A 是对称矩阵,B 是反对称矩阵,AB BA -是否为对称矩阵?证明你的结论。
2.设A 为m n ⨯矩阵,且的秩()R A 为n ,判断TA A 是否为正定阵?证明你的结论。
线性代数试题解答一、 1.(F )(AA nλλ=)2.(T )3.(F )。
如反例:100010000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,00010001B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭。
4.(T )(相似矩阵行列式值相同) 5.(F ) 二、1.选B 。
初等矩阵一定是可逆的。
2.选B 。
A 中的三个向量之和为零,显然A 线性相关; B 中的向量组与1α,2α,3α等价, 其秩为3,B 向量组线性无关;C 、D 中第三个向量为前两个向量的线性组合,C 、D 中的向量组线性相关。
3.选C。
由052=-+E A A ⇒()2232()3A A E E A E A E E+-=⇒+-=,()112()3A E A E -⇒+=-)。
4.选D 。
A 错误,因为n m <,不能保证()(|)R A R A b =;B 错误,0=Ax 的基础解系含有()A R n -个解向量;C 错误,因为有可能()(|)1R A n R A b n =<=+,b Ax =无解;D 正确,因为()R A n =。
5.选A 。
A 正确,因为它们可对角化,存在可逆矩阵,P Q ,使得1112(,,,)n PAPdiag Q BQλλλ--== ,因此,A B 都相似于同一个对角矩阵。
三、1.()!11n n +-(按第一列展开) 2. 31;53(*A3=233A)3. 相关(因为向量个数大于向量维数)。
124,,ααα。
因为3122ααα=+,124| |0A ααα=≠。
4. ()()TTk 42024321--+。
因为()3=A R ,原方程组的导出组的基础解系中只含有一个解向量,取为1322ηηη-+,由原方程组的通解可表为导出组的通解与其一个特解之和即得。
5.6=a (())02=⇒=A A R 四、1.解法一:AB B A =+⇒()1()A E B A B A E A--=⇒=-。
将A E -与A 组成一个矩阵(|)A E A -,用初等行变换求1(|())E A E A --。
()|A E A -=⎪⎪⎪⎭⎫ ⎝⎛221121243233121120)(31r r --⎪⎪⎪⎭⎫ ⎝⎛22112124323310000121313,r r r r -- ⎪⎪⎪⎭⎫ ⎝⎛-1211214323010000123r r -⎪⎪⎪⎭⎫ ⎝⎛-121120222110100001322r r - 100001011222001325⎛⎫ ⎪-⎪ ⎪---⎝⎭3r -100001011222001325⎛⎫ ⎪- ⎪ ⎪-⎝⎭23r r - ⎪⎪⎪⎭⎫ ⎝⎛--5231301010100001。
故 ⎪⎪⎪⎭⎫⎝⎛--=523301100B 。
解法二:AB B A =+⇒()1()A E B A B A E A--=⇒=-。
121101()332113121326A E --⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪-==--- ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,因此101()103325B A E A -⎛⎫ ⎪ ⎪=-=- ⎪ ⎪-⎝⎭。
2.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--------==1111111111111111TA αβ,A A 42-=,()()11()()()()()()44n n nTTTTTTTTA Aαβαβαβαβαβαβαβαβ--===-=- 。
3.解法一:由方程组有无穷多解,得()(|)3R A R A b =<,因此其系数行列式11||112011a A a=-=-。
即1-=a 或4=a 。
当1-=a 时,该方程组的增广矩阵1111(|)11211111A b --⎛⎫⎪ ⎪=--→ ⎪ ⎪--⎝⎭1101230102000⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭于是()(|)23R A R A b ==<,方程组有无穷多解。
分别求出其导出组的一个基础解系13122T-⎛⎫⎪⎝⎭,原方程组的一个特解()10T-,故1-=a 时,方程组有无穷多解,其通解为()1310122TTk -⎛⎫-+⎪⎝⎭,当4=a 时增广矩阵1141(|)112114116A b -⎛⎫⎪ ⎪=--→⎪⎪-⎝⎭1141022000015-⎛⎫ ⎪ ⎪-- ⎪ ⎪⎝⎭,()2(|)3R A R A b =<=,此时方程组无解。
解法二:首先利用初等行变换将其增广矩阵化为阶梯形。
222111111111(|)1121022002201111110(1)(4)12a a a Ab a a aa a aa a a a ⎛⎫ ⎪---⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪ ⎪=--→--→-- ⎪ ⎪⎪⎪ ⎪⎪-++- ⎪⎝⎭⎝⎭+-- ⎪⎝⎭由于该方程组有无穷多解,得()(|)3R A R A b =<。
因此21(1)(4)102a a a +-=-=,即1a =-。
求通解的方法与解法一相同。
4.解:首先写出二次型的矩阵并求其特征值。
二次型的矩阵122224242A -⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭,2122||224(2)(7)242A E λλλλλλ---=---=--+--因此得到其特征值为122λλ==,37λ=-。
再求特征值的特征向量。
解方程组(2)0A E x -=,得对应于特征值为122λλ==的两个线性无关的特征向量()1210Tη=-,()221Tη=。
解方程组(7)0A E x +=得对应于特征值为37λ=-的一个特征向量()3122Tη=-。
再将()1210Tη=-,()221Tη=正交化为()1210Tp =-,224155Tp ⎛⎫=⎪⎝⎭。
最后将()1210Tp =-,224155Tp ⎛⎫=⎪⎝⎭,()3122Tη=-单位化后组成的矩阵即为所求的正交变换矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--3235032155455311552552,其标准形为232221722y y y f -+=。
5. 解:(1)由02=-=+A E A E 知-1,2为A 的特征值。
02=+B AB ⇒()02=+B E A ,故-2为A 的特征值,又B 的秩为2,即特征值-2有两个线性无关的特征向量,故A 的特征值为-1,2,-2,-2。
(2)能相似对角化。
因为对应于特征值-1,2各有一个特征向量,对应于特征值-2有两个线性无关的特征向量,所以A 有四个线性无关的特征向量,故A 可相似对角化。
(3)E A 3+的特征值为2,5,1,1。
故E A 3+=10。
五、1.BA AB -为对称矩阵。
证明:()()()TT TBA AB BA AB -=-=T T T T B A A B -=()B A BA ---=BA AB -,所以BA AB -为对称矩阵。
2.A A T 为正定矩阵。
证明:由()A A A A TTT=知A A T 为对称矩阵。