茂名市2016年中考数学试题解析版
- 格式:doc
- 大小:26.62 KB
- 文档页数:13
2016年广东省茂名市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是( )A .﹣2016B .2016C .﹣D .2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为( )A .0.245×104B .2.45×103C .24.5×102D .2.45×10113.如图是某几何体的三视图,该几何体是( )A .球B .三棱柱C .圆柱D .圆锥4.下列事件中,是必然事件的是( )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片5.如图,直线a 、b 被直线c 所截,若a∥b,∠1=60°,那么∠2的度数为()A .120° B.90° C.60° D.30°6.下列各式计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2+3a 2=4a 4D .a 4÷a 2=a 27.下列说法正确的是( )A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°8.不等式组的解集在数轴上表示为()A. B. C. D.9.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150° B.140° C.130° D.120°10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是.12.已知∠A=100°,那么∠A补角为度.13.因式分解:x2﹣2x= .14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.三、解答题(共10小题,满分75分)16.计算:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0.17.先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,(1)补全求证部分;(2)请你写出证明过程.证明:.19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.22.如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B (a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A 类图书的标价是B 类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B 类图书的数量少10本,请求出A 、B 两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A 类图书每本标价降低a 元(0<a <5)销售,B 类图书价格不变,那么书店应如何进货才能获得最大利润?24.如图,在△ABC 中,∠C=90°,D 、F 是AB 边上的两点,以DF 为直径的⊙O 与BC 相交于点E ,连接EF ,过F 作FG⊥BC 于点G ,其中∠OFE=∠A.(1)求证:BC 是⊙O 的切线;(2)若sinB=,⊙O 的半径为r ,求△EHG 的面积(用含r 的代数式表示).25.如图,抛物线y=﹣x 2+bx+c经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、G 为顶点的四边形是正方形时,请求出点M 的坐标.2016年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是()A.﹣2016 B.2016 C.﹣ D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是﹣2016.故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2450=2.45×103,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是某几何体的三视图,该几何体是()A.球 B.三棱柱 C.圆柱 D.圆锥【考点】由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120° B.90° C.60° D.30°【考点】平行线的性质.【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=48°∴∠2=48°.故选C.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.6.下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4﹣2=a2,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.下列说法正确的是()A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°【考点】多边形内角与外角;截一个几何体;平移的性质;全面调查与抽样调查.【专题】多边形与平行四边形.【分析】A、长方体的截面不一定是长方形,错误;B、调查日光灯的使用寿命适合抽样调查,错误;C、利用平移的性质判断即可;D、多边形的外角和是确定的,错误.【解答】解:A、长方体的截面不一定是长方形,错误;B、了解一批日光灯的使用寿命适合采用的调查方式是抽样调查,错误;C、一个圆形和它平移后所得的圆形全等,正确;D、多边形的外角和为360°,错误,故选C【点评】此题考查了多边形内角与外角,截一个几何体,平移的性质,以及全面调查与抽样调查,弄清各自的定义及性质是解本题的关键.8.不等式组的解集在数轴上表示为()A. B. C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C :数轴表示解集为x≤﹣1,故选项C 错误;D :数轴表示解集为x≥1,故选项D 错误; 故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150° B.140° C.130° D.120° 【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论. 【解答】解:∵A、B 、C 是⊙O 上的三点,∠B=75°, ∴∠AOC=2∠B=150°. 故选A .【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是 5 .【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:2、4、5、6、8.位于最中间的数是5,所以这组数的中位数是5.故答案为:5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.已知∠A=100°,那么∠A补角为80 度.【考点】余角和补角.【专题】计算题;实数.【分析】根据两个角之和为180°时,两角互补求出所求角度数即可.【解答】解:如果∠A=100°,那么∠A补角为80°,故答案为:80【点评】此题考查了余角和补角,熟练掌握补角的定义是解本题的关键.13.因式分解:x2﹣2x= x(x﹣2).【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取x即可得到结果.【解答】解:原式=x(x﹣2),故答案为:x(x﹣2)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是6+6 .【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.三、解答题(共10小题,满分75分)16.计算:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0.【考点】实数的运算;零指数幂.【分析】分别利用有理数的乘方运算法则结合零指数幂的性质和绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0=1+2﹣﹣1=.【点评】此题主要考查了有理数的乘方运算、零指数幂的性质、绝对值的性质、二次根式的性质等知识,正确把握相关性质是解题关键.17.先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=1时,原式=2+1=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..【考点】平行四边形的性质.【分析】(1)根据题意容易得出结论;(2)连接AC,与平行四边形的性质得出AB∥CD,AD∥BC,证出∠BAC=∠DCA,∠BCA=∠DAC,由ASA证明△ABC≌△CDA,得出对应边相等即可.【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键.19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B品种有120吨,占30%即可求得调查的这三种荔枝的总吨数;(2)总数量500乘以C品种荔枝的吨数所占的百分比即可求解.【解答】解:(1)120÷30%=400(吨).答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式直接解答;(2)列出树状图,找到所有可能的结果,再找到第一次抽到数字“1”且第二次抽到数字“2”的数目,即可求出其概率.【解答】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字“2”的概率=;(2)列树状图为:由树形图可知:第一次抽到数字“1”且第二次抽到数字“2”的概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD的长;(2)利用(1)中所求,结合CD=AD•tan60°求出答案.【解答】解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD===4(m),答:教学楼与旗杆的水平距离是4m;(2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4m,∴CD=AD•tan60°=4×=12(m),答:旗杆CD的高度是12m.【点评】此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键.22.如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B (a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.【考点】反比例函数与一次函数的交点问题;解二元一次方程组;待定系数法求一次函数解析式.【分析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.【解答】解:(1)∵点A(﹣1,4)在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,得:,解得:.(2)连接AO,设线段AO与直线l相交于点M,如图所示.∵A、O两点关于直线l对称,∴点M为线段OA的中点,∵点A(﹣1,4)、O(0,0),∴点M的坐标为(﹣,2).∴直线l 与线段AO 的交点坐标为(﹣,2).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法求函数系数;(2)得出点M 为线段AO 的中点.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了中点坐标公式降低了难度.23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A 类图书的标价是B 类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B 类图书的数量少10本,请求出A 、B 两类图书的标价; (2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A 类图书每本标价降低a 元(0<a <5)销售,B 类图书价格不变,那么书店应如何进货才能获得最大利润? 【考点】一次函数的应用;分式方程的应用;一元一次不等式组的应用.【分析】(1)先设B 类图书的标价为x 元,则由题意可知A 类图书的标价为1.5x ,然后根据题意列出方程,求解即可.(2)先设购进A 类图书t 本,总利润为w 元,则购进B 类图书为(1000﹣t )本,根据题目中所给的信息列出不等式组,求出t 的取值范围,然后根据总利润w=总售价﹣总成本,求出最佳的进货方案. 【解答】解:(1)设B 类图书的标价为x 元,则A 类图书的标价为1.5x 元, 根据题意可得﹣10=,化简得:540﹣10x=360, 解得:x=18,经检验:x=18是原分式方程的解,且符合题意, 则A 类图书的标价为:1.5x=1.5×18=27(元), 答:A 类图书的标价为27元,B 类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点评】本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【考点】切线的判定.【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF 平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;(2)由在△OBE中,sinB=,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF•sinB=r,∴BG==r,∴EG=BG﹣BE=r,∴S△FGE=EG•FG=r2,EG:FG=1:2,∵BC是切线,∴∠GEH=∠EFG,∵∠EGH=∠FGE,∴△EGH∽△FGE,∴=()=,∴S△EHG=S△FGE=r2.【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.25.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF 上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P 的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).【点评】本题考查的是二次函数的图象和性质、待定系数法求函数解析式以及正方形的性质,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.。
2016届广东省茂名市中考数学一、选择题(共10小题;共50分)1. 的相反数是A. B. C. D.2. 2015年茂名市生产总值约亿元,将用科学记数法表示为A. B. C. D.3. 如图是某几何体的三视图,该几何体是A. 球B. 三棱柱C. 圆柱D. 圆锥4. 下列事件中,是必然事件的是A. 两条线段可以组成一个三角形B. 人中至少有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视,它正在播放动画片5. 如图,直线被直线所截,若,,那么的度数为A. B. C. D.6. 下列说法正确的是A. B. C. D.7. 下列说法正确的是A. 长方形的截面一定是长方形B. 了解一批日光灯的使用寿命适合采用的调查方式是普查C. 一个图形和它平移后所得的图形全等D. 多边形的外角和不一定都等于8. 不等式组的解集在数轴上表示为A. B.C. D.9. 如图,是上的三点,,则的度数是A. B. C. D.10. 我国古代数学名著《孙子算经》中记载了一道题,大意是:匹马恰好拉了片瓦,已知匹大马能拉片瓦,匹小马能拉片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,那么可列方程组为A. B. C. D.二、填空题(共5小题;共25分)11. 一组数据的中位数是 .12. 已知,那么的补角为度.13. 因式分解: .14. 已知矩形的对角线与相交于点,若,那么 .15. 如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点对应点对应点落在直线上,再将绕点顺时针旋转到的位置,使点的对应点落在直线上,依次进行下去.若点的坐标是,点的坐标是,则点的横坐标是 .三、解答题(共10小题;共130分)16. 计算:17. 先化简,再求值:,其中.18. 某同学要证明命题"平行四边形的对边相等."是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形是平行四边形.求证:,.(1)补全求证部分:(2)请你写出证明过程.19. 为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种、、在6月上半月的销售量进行调查统计,绘制成如下统计图(均不完整),请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商家计划六月下半月进货、、三种荔枝共千克,根据该市场六月上半月的销售情况,求该商家应购进品种荔枝多少千克比较合理?20. 有四张正面分别标有数字,,,的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字 " " 的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字 " " 且第二次抽到数字 " "的概率.21. 如图,在数学活动课中,小敏为了测量校园内旗杆的高度,先在教学楼的底端点处,观测到旗杆顶端的仰角,然后爬到教学楼上的处,观测到旗杆底端的俯角是.已知教学楼高米.(1)求教学楼与旗杆的水平距离:(结果保留根号)(2)求旗杆的高度.22. 如图,一次函数的图象与反比例函数(为常数,)的图象交于点和点.(1)求反比例函数的表达式和的值:(2)若、两点关于直线对称,请连接,并求出直线与线段的交点坐标.23. 某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划书时发现:类图书的标价是类图书标价的倍,若顾客用元购买图书,能单独购买类图书的数量恰好比单独购买类图书的数量少本,请求出、两类图书的标价:(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案:类图书每本按标价降低元销售,类图书价格不变,那么书店应如何进货才能获得最大利润?24. 如图,在中,,是边上的两点,以为直径的与相交于点,连接,过作于点,其中.(1)求证:是的切线:(2)若,的半径为,求的面积(用含的代数式表示).25. 如图.抛物线经过,两点,且与轴交于点,点是抛物线的顶点,抛物线的对称轴交轴于点,连接.(1)求经过,,三点的抛物线的函数表达式;(2)若点是线段上一点,当时,求点的坐标;(3)在(2)的条件下,过点作轴于点,为抛物线上一动点,为轴上一动点,为直线上一动点,当以为顶点的四边形是正方形时,请求出点的坐标.答案第一部分1. A2. B3. D4. B5. C6. D7. C8. B9. A10. C第二部分11.12.13.14.15.【解析】提示:,, .点的横坐标,点的横坐标,点的横坐标,点的横坐标.第三部分16.17.当时,18. (1)(2)如图,连接.四边形是平行四边形,,.,.,.,.(也可以连接,证明).19. (1)(吨)答:该市场六月上半月共销售这三种荔枝吨.(2)(千克)答:该商家应购进品种荔枝千克比较合理.20. (1)(2)列表如图,共有种结果,每种结果出现的可能性相同,第一次抽到数字 " " 且第二次抽到数字 " " 的结果有种..21. (1)教学楼点处观测旗杆底部处的俯角是,,在中,,,米,(米).因此,教学楼与旗杆的水平距离是(米).(也可先求,利用去计算得到结论)(2)在中,,,(米),(米),因此,旗杆的高度是米.22. (1)把,分别代入,得把代入,得 .所以反比例函数的表达式是(2)如图,连接与直线交于点,过点作轴于点,过点作轴于点,则,.由轴对称的性质可知,是的垂直平分线,即 .,,.., .点坐标为.23. (1)设类图书的标价为元,则类图书的标价为元.依题意,得解得经检验,是原方程的解且符合题意..答:类图书的标价为元,类图书的标价为元.(2)设购进类图书本,总利润为元.依题意,得根据题意,列不等式组解得.当时,,随的增大而增大,当时,.当时,,随的增大而减小当时,.当时,.综上,当时,类购本,类购本,获利最大.24. (1)连接,.,,,,.又点在上,是的切线.(2)连接,过作于 .在中,,,.在中,,,.,.连接,则.,又,..,.又,.是的平分线且....25. (1)抛物线经过,两点,解得(2)如图,连接,.,当时,,点坐标为 .设直线解析式为 .将,分别代入表达式,得则设坐标为 .由勾股定理,得,.解得 ..坐标为.(3)设坐标为,则坐标为 . 当以为顶点的四边形是正方形时,,.(1)时,解得(2)时,解得点的坐标为,,.第11页(共11 页)。
2016年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是()A.﹣2016 B.2016 C.﹣D.【考点】相反数.【解析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是﹣2016.故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×1011【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2450=2.45×103,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是某几何体的三视图,该几何体是()A.球B.三棱柱C.圆柱D.圆锥【考点】由三视图判断几何体.【解析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片【考点】随机事件.【解析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120°B.90°C.60°D.30°【考点】平行线的性质.【解析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=48°∴∠2=48°.故选C.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.6.下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【解析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4﹣2=a2,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.下列说法正确的是()A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°【考点】多边形内角与外角;截一个几何体;平移的性质;全面调查与抽样调查.【专题】多边形与平行四边形.【解析】A、长方体的截面不一定是长方形,错误;B、调查日光灯的使用寿命适合抽样调查,错误;C、利用平移的性质判断即可;D、多边形的外角和是确定的,错误.【解答】解:A、长方体的截面不一定是长方形,错误;B、了解一批日光灯的使用寿命适合采用的调查方式是抽样调查,错误;C、一个圆形和它平移后所得的圆形全等,正确;D、多边形的外角和为360°,错误,故选C【点评】此题考查了多边形内角与外角,截一个几何体,平移的性质,以及全面调查与抽样调查,弄清各自的定义及性质是解本题的关键.8.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【解析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°【考点】圆周角定理.【解析】直接根据圆周角定理即可得出结论.【解答】解:∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【解析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是 5 .【考点】中位数.【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:2、4、5、6、8.位于最中间的数是5,所以这组数的中位数是5.故答案为:5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.已知∠A=100°,那么∠A补角为80 度.【考点】余角和补角.【专题】计算题;实数.【解析】根据两个角之和为180°时,两角互补求出所求角度数即可.【解答】解:如果∠A=100°,那么∠A补角为80°,故答案为:80【点评】此题考查了余角和补角,熟练掌握补角的定义是解本题的关键.13.因式分解:x2﹣2x= x(x﹣2).【考点】因式分解-提公因式法.【专题】计算题.【解析】原式提取x即可得到结果.【解答】解:原式=x(x﹣2),故答案为:x(x﹣2)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【解析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是6+6 .【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【解析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.三、解答题(共10小题,满分75分)16.计算:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0.【考点】实数的运算;零指数幂.【解析】分别利用有理数的乘方运算法则结合零指数幂的性质和绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0=1+2﹣﹣1=.【点评】此题主要考查了有理数的乘方运算、零指数幂的性质、绝对值的性质、二次根式的性质等知识,正确把握相关性质是解题关键.17.先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【解析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=1时,原式=2+1=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..【考点】平行四边形的性质.【解析】(1)根据题意容易得出结论;(2)连接AC,与平行四边形的性质得出AB∥CD,AD∥BC,证出∠BAC=∠DCA,∠BCA=∠DAC,由ASA证明△ABC≌△CDA,得出对应边相等即可.【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键.19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?【考点】条形统计图;用样本估计总体;扇形统计图.【解析】(1)根据B品种有120吨,占30%即可求得调查的这三种荔枝的总吨数;(2)总数量500乘以C品种荔枝的吨数所占的百分比即可求解.【解答】解:(1)120÷30%=400(吨).答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.【考点】列表法与树状图法.【解析】(1)根据概率公式直接解答;(2)列出树状图,找到所有可能的结果,再找到第一次抽到数字“1”且第二次抽到数字“2”的数目,即可求出其概率.【解答】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字“2”的概率=;(2)列树状图为:由树形图可知:第一次抽到数字“1”且第二次抽到数字“2”的概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B 处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【解析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD 的长;(2)利用(1)中所求,结合CD=AD•tan60°求出答案.【解答】解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD===4(m),答:教学楼与旗杆的水平距离是4m;(2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4m,∴CD=AD•tan60°=4×=12(m),答:旗杆CD的高度是12m.【点评】此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键.22.如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.【考点】反比例函数与一次函数的交点问题;解二元一次方程组;待定系数法求一次函数解析式.【解析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k 值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.【解答】解:(1)∵点A(﹣1,4)在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,得:,解得:.(2)连接AO,设线段AO与直线l相交于点M,如图所示.∵A 、O 两点关于直线l 对称,∴点M 为线段OA 的中点,∵点A (﹣1,4)、O (0,0),∴点M 的坐标为(﹣,2).∴直线l 与线段AO 的交点坐标为(﹣,2).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法求函数系数;(2)得出点M 为线段AO 的中点.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了中点坐标公式降低了难度.23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【考点】一次函数的应用;分式方程的应用;一元一次不等式组的应用.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000﹣t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价﹣总成本,求出最佳的进货方案.【解答】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点评】本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).。
2016年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:﹣2的相反数为2.故选:A .2.(3分)如图所示,a 与b 的大小关系是( )A .a <bB .a >bC .a =bD .b =2a【解答】解:根据数轴得到a <0,b >0,∴b >a ,故选:A .3.(3分)下列所述图形中,是中心对称图形的是( )A .直角三角形B .平行四边形C .正五边形D .正三角形【解答】解:A 、直角三角形不是中心对称图形,故本选项错误;B 、平行四边形是中心对称图形,故本选项正确;C 、正五边形不是中心对称图形,故本选项错误;D 、正三角形不是中心对称图形,故本选项错误.故选:B .4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( )A .0.277×107B .0.277×108C .2.77×107D .2.77×108【解答】解:将27700000用科学记数法表示为2.77×107,故选:C .5.(3分)如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH的周长为( )A.√2B.2√2C.√2+1D.2√2+1【解答】解:∵正方形ABCD的面积为1,∴BC=CD=√1=1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=12BC=12,CF=12CD=12,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=√2CE=√2 2,∴正方形EFGH的周长=4EF=4×√22=2√2;故选:B.6.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选:B.7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选:C.8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A .34B .43C .35D .45 【解答】解:由勾股定理得OA =√32+42=5,所以cos α=45.故选:D .9.(3分)已知方程x ﹣2y +3=8,则整式x ﹣2y 的值为( )A .5B .10C .12D .15 【解答】解:由x ﹣2y +3=8得:x ﹣2y =8﹣3=5,故选:A .10.(3分)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则△APC 的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是( )A .B .C .D .【解答】解:设正方形的边长为a ,当P 在AB 边上运动时,y =12ax ;当P 在BC 边上运动时,y =12a (2a ﹣x )=−12ax +a 2;当P 在CD 边上运动时,y =12a (x ﹣2a )=12ax ﹣a 2;当P 在AD 边上运动时,y =12a (4a ﹣x )=−12ax +2a 2, 大致图象为:故选:C . 二、填空题(共6小题,每小题4分,满分24分)11.(4分)9的算术平方根是 3 .【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.12.(4分)分解因式:m 2﹣4= (m +2)(m ﹣2) .【解答】解:m 2﹣4=(m +2)(m ﹣2).故答案为:(m +2)(m ﹣2).13.(4分)不等式组{x −1≤2−2x2x 3>x−12的解集是 ﹣3<x ≤1 .【解答】解:{x −1≤2−2x①2x 3>x−12②, 解①得x ≤1,解②得x >﹣3,所以不等式组的解集为﹣3<x ≤1.故答案为﹣3<x ≤1.14.(4分)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12cm ,OA =13cm ,则扇形AOC 中AC ̂的长是 10π cm (计算结果保留π).【解答】解:∵圆锥的高h 为12cm ,OA =13cm ,∴圆锥的底面半径为√132−122=5cm ,∴圆锥的底面周长为10πcm,∴扇形AOC中AĈ的长是10πcm,故答案为:10π.15.(4分)如图,矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=√3.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=12AC=12×2√3=√3,故答案为:√3.16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD 是⊙O的直径,AB=BC=CD.连接P A、PB、PC,若P A=a,则点A到PB和PC的距离之和AE+AF=1+√32a.【解答】解:如图,连接OB、OC.∵AD 是直径,AB =BC =CD ,∴AB̂=BC ̂=CD ̂, ∴∠AOB =∠BOC =∠COD =60°,∴∠APB =12∠AOB =30°,∠APC =12∠AOC =60°,在Rt △APE 中,∵∠AEP =90°(AE 是A 到PB 的距离,AE ⊥PB ),∴AE =AP •sin30°=12a ,在Rt △APF 中,∵∠AFP =90°,∴AF =AP •sin60°=√32a , ∴AE +AF =1+√32a . 故答案为1+√32a .三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(−12)﹣1. 【解答】解:|﹣3|﹣(2016+sin30°)0﹣(−12)﹣1 =3﹣1+2=2+2=4.18.(6分)先化简,再求值:a+3a •6a 2+6a+9+2a−6a 2−9,其中a =√3−1. 【解答】解:原式=a+3a •6(a+3)2+2(a−3)(a+3)(a−3)=6a(a+3)+2a a(a+3)=2(a+3)a(a+3)=2a, 当a =√3−1时,原式=√3−1=√3+1)(√3−1)(√3+1)=√3+1. 19.(6分)如图,已知△ABC 中,D 为AB 的中点. (1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE =4,求BC 的长.【解答】解:(1)作线段AC 的垂直平分线MN 交AC 于E ,点E 就是所求的点.(2)∵AD =DB ,AE =EC ,∴DE ∥BC ,DE =12BC ,∵DE =4,∴BC =8.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m 的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x 米,可得:1200x =12001.5x +4,解得:x =100,经检验x =100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y %,可得:1200100=1200100+100y%+2,解得:y =20,经检验y =20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD 为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.【解答】解:解法一:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,在Rt△ACD中,AC=a,∴AD=12a,由勾股定理得:CD=√a2−(12a)2=√3a2,同理得:FC=√32×√3a2=3a4,CH=√32×3a4=3√3a8,在Rt△HCI中,∠I=30°,∴HI=2HC=3√3a 4,由勾股定理得:CI=(3√3a4)2−(3√3a8)2=9a8,解法二:∠DCA=∠B=30°,在Rt△DCA中,cos30°=CD AC,∴CD=AC•cos30°=√32a,在Rt△CDF中,cos30°=CF CD,CF=√32×√32a=34a,同理得:CH=cos30°CF=√3×3a=3√3a,在Rt △HCI 中,∠HIC =30°,tan30°=CH CI ,CI =3√38a ÷√33=98a ;答:CI 的长为9a 8.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了 250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 108 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 480 人.【解答】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:75250×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);故答案为:(1)250;(3)108;(4)480.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线y =kx +1(k ≠0)与双曲线y =2x (x >0)相交于点P (1,m ).(1)求k 的值;(2)若点Q 与点P 关于直线y =x 成轴对称,则点Q 的坐标是Q ( 2,1 );(3)若过P 、Q 二点的抛物线与y 轴的交点为N (0,53),求该抛物线的函数解析式,并求出抛物线的对称轴方程.【解答】解:(1)∵直线y =kx +1与双曲线y =2x (x >0)交于点P (1,m ),∴m =2,把P (1,2)代入y =kx +1得:k +1=2,解得:k =1;(2)连接PO ,QO ,PQ ,作P A ⊥y 轴于A ,QB ⊥x 轴于B ,则P A =1,OA =2, ∵点Q 与点P 关于直线y =x 成轴对称,∴直线y =x 垂直平分PQ ,∴OP =OQ ,∴∠POA =∠QOB ,在△OP A 与△OQB 中,{∠PAO =∠OBQ∠POA =∠QOB OP =OQ,∴△POA ≌△QOB ,∴QB =P A =1,OB =OA =2,∴Q (2,1);故答案为:2,1;(3)设抛物线的函数解析式为y =ax 2+bx +c ,∵过P 、Q 二点的抛物线与y 轴的交点为N (0,53), ∴{2=a +b +c1=4a +2b +c c =53,解得:{ a =−23b =1c =53, ∴抛物线的函数解析式为y =−23x 2+x +53,∴对称轴方程x =−1−23×2=34.24.(9分)如图,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,∠ABC =30°,过点B 作⊙O的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作⊙O 的切线AF ,与直径BC 的延长线交于点F .(1)求证:△ACF ∽△DAE ;(2)若S △AOC =√34,求DE 的长;(3)连接EF ,求证:EF 是⊙O 的切线.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30°∴∠DAE=∠ACF=120°,∴△ACF∽△DAE;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF∴OC=CF,∵S△AOC=√3 4,∴S△ACF=√3 4,∵∠ABC =∠AFC =30°,∴AB =AF ,∵AB =12BD ,∴AF =12BD ,∴∠BAE =∠BEA =30°,∴AB =BE =AF ,∴AF DE =13, ∵△ACF ∽△DAE ,∴S △ACFS △DAE =(AF DE )2=19, ∴S △DAE =9√34,过A 作AH ⊥DE 于H ,∴AH =√33DH =√36DE ,∴S △ADE =12DE •AH =12×√36•DE 2=9√34,∴DE =3√3;(3)∵∠EOF =∠AOB =120°,在△AOF 与△BOE 中,{∠OBE =∠OAF∠OEB =∠AFO OA =OB,∴△AOF ≌△BEO ,∴OE =OF ,∴∠OFG =12(180°﹣∠EOF )=30°,∴∠AFO =∠GFO ,过O 作OG ⊥EF 于G ,∴∠OAF =∠OGF =90°,在△AOF 与△OGF 中,{∠OAF =∠OGF∠AFO =∠GFO OF =OF,∴△AOF ≌△GOF ,∴OG=OA,∴EF是⊙O的切线.25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接P A、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,{AB =PQ∠ABO =∠PQO BO =QO∴△AOB ≌△POQ (SAS ),∴OA =OP ,∠AOB =∠POQ ,∴∠AOP =∠BOQ =90°,∴OA ⊥OP ;(3)如图,过O 作OE ⊥BC 于E . ①如图1,当P 点在B 点右侧时, 则BQ =x +2,OE =x+22,∴y =12×x+22•x ,即y =14(x +1)2−14, 又∵0≤x ≤2,∴当x =2时,y 有最大值为2;②如图2,当P 点在B 点左侧时, 则BQ =2﹣x ,OE =2−x 2, ∴y =12×2−x 2•x ,即y =−14(x ﹣1)2+14, 又∵0≤x ≤2,∴当x =1时,y 有最大值为14; 综上所述,∴当x =2时,y 有最大值为2.。
2015年中考数学试卷及参考答案一、选择题(本大题10小题,每小题3分,共30分) 1.2-=( ) A.2 B.2- C.12 D.12- 2.据国家统计局2014年12月4日发布消息,2014年省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( ) A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=( )A.28x -B.28xC.216x -D.216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C. 0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值围是( ) A.2a ≥ B.2a ≤ C.2a > D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)11. 正五边形的外角和等于 (度). 12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .13. 分式方程321x x=+的解是 . 14. 若两个相似三角形的周长比为2:3,则它们的面积比是 .15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点 运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)2015年省初中毕业生学业考试参考答案一、选择题1.【答案】A.2.【答案】B.3.【答案】B.4.【答案】C.5.【答案】A.6.【答案】D.7. 【答案】B.8.【答案】C.9.【答案】D. 【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形. 10.【答案】D.二、填空题11. 【答案】360. 12.【答案】6. 13.【答案】2x =. 14.【答案】4:9.15.【答案】1021. 16.【答案】4.【略析】由中线性质,可得AG =2GD , 则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17.【答案】解:(1)(2)0x x --=∴10x -=或20x -=∴11x =,22x =18. 【答案】解:原式=1(1)(1)x x x x x-⋅+-=11x + 当21x =+时,原式=122211=-+. 19. 【答案】(1) 如图所示,MN 为所作; (2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB ,由折叠的性质可知AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF ,∴∠AFG =∠B ,又AG =AG ,∴△ABG ≌△AFG ;(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元;(2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥ 答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 【答案】(1) ∵A (1,3),∴OB =1,AB =3,又AB =3BD ,∴BD =1,∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3);(3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-,当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. 【答案】(1) ∵AB 为⊙O 直径,»»BPPC =, ∴PG ⊥BC ,即∠ODB =90°,∵D 为OP 的中点,∴OD =1122OP OB =, ∴cos ∠BOD =12OD OB =, ∴∠BOD =60°,∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACB =∠ODB ,∴AC ∥PG ,∴∠BAC =∠BOD =60°;(2) 由(1)知,CD =BD ,∵∠BDP =∠CDK ,DK =DP ,∴△PDB ≌△CDK ,∴CK =BP ,∠OPB =∠CKD ,∵∠AOG =∠BOP ,∴AG =BP ,∴AG =CK∵OP =OB ,∴∠OPB =∠OBP ,又∠G =∠OBP ,∴AG ∥CK ,∴四边形AGCK 是平行四边形;(3) ∵CE =PE ,CD =BD ,∴DE ∥PB ,即DH ∥PB∵∠G =∠OPB ,∴PB ∥AG ,∴DH ∥AG ,∴∠OAG =∠OHD ,∵OA =OG ,∴∠OAG =∠G ,∴∠ODH =∠OHD ,∴OD =OH ,又∠ODB =∠HOP ,OB =OP ,∴△OBD ≌△HOP ,∴∠OHP =∠ODB =90°,∴PH ⊥A B.25.【答案】(1) 26;22; (2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°,∴sin 15°=FC NC ,又NC =x , ∴624FC x -=, ∴NE =DF =62224x -+. ∴点N 到AD 的距离为62224x -+cm ; (3) ∵sin 75°=FN NC,∴624FN x +=, ∵PD =CP =2,∴PF =6224x -+, ∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·。
2016年广东省茂名市中考真题数学一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是( )A.-2016B.2016C.-1 2016D.1 2016解析:只有符号不同的两个数互为相反数,可得答案.2016的相反数是-2016.答案:A.2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为( )A.0.245×104B.2.45×103C.24.5×102D.2.45×1011解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2450=2.45×103.答案:B3.如图是某几何体的三视图,该几何体是( )A.球B.三棱柱C.圆柱解析:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.答案:D.4.下列事件中,是必然事件的是( )A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片解析:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误.答案:B.5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为( )A.120°B.90°C.60°D.30°解析:∵直线被直线a、b被直线c所截,且a∥b,∠1=48°∴∠2=48°.答案:C.6.下列各式计算正确的是( )A.a2·a3=a6C.a2+3a2=4a4D.a4÷a2=a2解析:A、a2·a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4-2=a2,故本选项正确.答案:D.7.下列说法正确的是( )A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°解析:A、长方体的截面不一定是长方形,错误;B、了解一批日光灯的使用寿命适合采用的调查方式是抽样调查,错误;C、一个圆形和它平移后所得的圆形全等,正确;D、多边形的外角和为360°,错误.答案:C8.不等式组11xx-⎧⎨≤⎩>,的解集在数轴上表示为( )A. B. C. D.解析:不等式组11xx-⎧⎨≤⎩>,的解集为-1<x≤1,A :数轴表示解集为无解,故选项A 错误;B :数轴表示解集为-1<x ≤1,故选项B 正确;C :数轴表示解集为x ≤-1,故选项C 错误;D :数轴表示解集为x ≥1,故选项D 错误;答案:B9.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A.150°B.140°C.130°D.120°解析:∵A 、B 、C 是⊙O 上的三点,∠B=75°,∴∠AOC=2∠B=150°.答案:A.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=+=⎧⎨⎩C.131003100x y x y ⎧+=+=⎪⎨⎪⎩D.1003100x y x y +=+=⎧⎨⎩解析:设有x 匹大马,y 匹小马,根据题意得131003100.x y x y ⎧+=+=⎪⎨⎪⎩, 答案:C二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是 .解析:先对这组数据按从小到大的顺序重新排序:2、4、5、6、8.位于最中间的数是5,所以这组数的中位数是5.答案:5.12.已知∠A=100°,那么∠A 补角为 度.解析:如果∠A=100°,那么∠A 补角为80°.答案:8013.因式分解:x 2-2x= .解析:原式=x(x-2).答案:x(x-2)14.已知矩形的对角线AC 与BD 相交于点O ,若AO=1,那么BD= .解析:在矩形ABCD 中,∵角线AC 与BD 相交于点O ,AO=1,∴AO=CO=BO=DO=1,∴BD=2.答案:2.15.如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A 的对应点A 1落在直线上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=3x 上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是,1),则点A 8的横坐标是.解析:由题意点A 2的横坐标32+1),点A 4的横坐标,点A 6的横坐标92,点A 8的横坐标答案:+6.三、解答题(共10小题,满分75分)16.计算:(-1)2016|-(π-3.14)0. 解析:分别利用有理数的乘方运算法则结合零指数幂的性质和绝对值的性质、二次根式的性质分别化简求出答案.答案:(-1)2016π-3.14)017.先化简,再求值:x(x-2)+(x+1)2,其中x=1.解析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.答案:原式=x 2-2x+x 2+2x+1=2x 2+1,当x=1时,原式=2+1=3.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD 是平行四边形.求证:AB=CD , .(1)补全求证部分;(2)请你写出证明过程.证明: .解析:(1)根据题意容易得出结论;(2)连接AC ,与平行四边形的性质得出AB ∥CD ,AD ∥BC ,证出∠BAC=∠DCA ,∠BCA=∠DAC ,由ASA 证明△ABC ≌△CDA ,得出对应边相等即可.答案:(1)已知:如图,四边形ABCD 是平行四边形.求证:AB=CD ,BC=DA ;故答案为:BC=DA ;(2)连接AC ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠BAC=∠DCA ,∠BCA=∠DAC ,在△ABC 和△CDA 中,BAC DCA AC CA BCA DAC ∠=∠=∠=∠⎧⎪⎨⎪⎩,,,∴△ABC ≌△CDA(ASA),∴AB=CD ,BC=DA ;19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A 、B 、C 在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A 、B 、C 三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C 品种荔枝多少千克比较合理?解析:(1)根据B 品种有120吨,占30%即可求得调查的这三种荔枝的总吨数;(2)总数量500乘以C 品种荔枝的吨数所占的百分比即可求解.答案:(1)120÷30%=400(吨).答:该市场6月上半月共销售这三种荔枝400吨;(2)500×40040120400--=300(千克). 答:该商场应购进C 品种荔枝300千克比较合理.20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.解析:(1)根据概率公式直接解答;(2)列出树状图,找到所有可能的结果,再找到第一次抽到数字“1”且第二次抽到数字“2”的数目,即可求出其概率.答案:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字“2”的概率=14. (2)列树状图为:由树形图可知:第一次抽到数字“1”且第二次抽到数字“2”的概率=112. 21.如图,在数学活动课中,小敏为了测量校园内旗杆CD 的高度,先在教学楼的底端A 点处,观测到旗杆顶端C 的仰角∠CAD=60°,然后爬到教学楼上的B 处,观测到旗杆底端D 的俯角是30°,已知教学楼AB 高4米.(1)求教学楼与旗杆的水平距离AD ;(结果保留根号)(2)求旗杆CD 的高度.解析:(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD 的长;(2)利用(1)中所求,结合CD=AD-tan60°求出答案.答案:(1)∵教学楼B 点处观测到旗杆底端D 的俯角是30°,∴∠ADB=30°,在Rt △ABD 中,∠BAD=90°,∠ADB=30°,AB=4m ,∴AD=4tan t an 30AB ADB ==∠︒(m),答:教学楼与旗杆的水平距离是(2)∵在Rt △ACD 中,∠ADC=90°,∠CAD=60°,m ,∴CD=AD ·tan60°,答:旗杆CD 的高度是12m.22.如图,一次函数y=x+b 的图象与反比例函数y=k x(k 为常数,k ≠0)的图象交于点A(-1,4)和点B(a ,1).(1)求反比例函数的表达式和a 、b 的值;(2)若A 、O 两点关于直线l 对称,请连接AO ,并求出直线l 与线段AO 的交点坐标.解析:(1)由点A 的坐标结合反比例函数图象上点的坐标特征,即可求出k 值,从而得出反比例函数解析式;再将点A 、B 坐标分别代入一次函数y=x+b 中得出关于a 、b 的二元一次方程组,解方程组即可得出结论;(2)连接AO ,设线段AO 与直线l 相交于点M.由A 、O 两点关于直线l 对称,可得出点M 为线段AO 的中点,再结合点A 、O 的坐标即可得出结论.答案:(1)∵点A(-1,4)在反比例函数y=k x(k 为常数,k ≠0)的图象上, ∴k=-1×4=-4,∴反比例函数解析式为y=-4x . 把点A(-1,4)、B(a ,1)分别代入y=x+b 中,得:411b a b =-+⎧⎨=+⎩,,解得:45a b =-⎧⎨=⎩,.(2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.∵A、O两点关于直线l对称,∴点M为线段OA的中点,∵点A(-1,4)、O(0,0),∴点M的坐标为(-12,2).∴直线l与线段AO的交点坐标为(-12,2).23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?解析:(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.答案:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元.(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,()1812100016800600t xt+-≤⎧⎪⎨≥⎪⎩,,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大;当3≤a<5时,3-a<0,t=600时,总利润最大;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=12∠A.(1)求证:BC是⊙O的切线;(2)若sinB=35,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).解析:(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=12∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;(2)由在△OBE 中,sinB=35,⊙O 的半径为r ,可求得OB ,BE 的长,然后由在△BFG 中,求得BG ,FG 的长,则可求得EG 的长,易证得△EGH ∽△FGE ,然后由相似三角形面积比等于相似比的平方,求得答案.答案:(1)连接OE ,∵在△ABC 中,∠C=90°,FG ⊥BC ,∴∠BGF=∠C=90°,∴FG ∥AC ,∴∠OFG=∠A ,∴∠OFE=12∠OFG ,∴∠OFE=∠EFG , ∵OE=OF ,∴∠OFE=∠OEF ,∴∠OEF=∠EFG ,∴OE ∥FG ,∴OE ⊥BC ,∴BC 是⊙O 的切线.(2)∵在Rt △OBE 中,sinB=35,⊙O 的半径为r , ∴OB=53r ,BE=43r ,∴BF=OB+OF=83r , ∴FG=BF ·sinB=85r ,∴3215r =,∴EG=BG-BE=45r , ∴S △FGE =12EG ·FG=1625r 2,EG :FG=1:2, ∵BC 是切线,∴∠GEH=∠EFG ,∵∠EGH=∠FGE ,∴△EGH ∽△FGE ,∴14EGH FGE S EG S FG ∆∆⎛⎫ ⎪⎭==⎝,∴S △EHG =14S △FGE =425r 2. 25.如图,抛物线y=-x 2+bx+c 经过A(-1,0),B(3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD.(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、G 为顶点的四边形是正方形时,请求出点M 的坐标. 解析:(1)利用待定系数法求出过A ,B ,C 三点的抛物线的函数表达式;(2)连接PC 、PE ,利用公式求出顶点D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为(x ,-2x+6),利用勾股定理表示出PC 2和PE 2,根据题意列出方程,解方程求出x 的值,计算求出点P 的坐标;(3)设点M 的坐标为(a ,0),表示出点G 的坐标,根据正方形的性质列出方程,解方程即可. 答案:(1)∵抛物线y=-x 2+bx+c 经过A(-1,0),B(3,0)两点, ∴10930b c b c --+=⎧⎨-++=⎩,,解得,23b c =⎧⎨=⎩,, ∴经过A ,B ,C 三点的抛物线的函数表达式为y=-x 2+2x+3.(2)如图1,连接PC 、PE , x=-()2221b a =-⨯-=1,当x=1时,y=4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y=mx+n ,则430m n m n +=+=⎧⎨⎩,,解得,26m n =-⎧⎨=⎩,, ∴直线BD 的解析式为y=-2x+6,设点P 的坐标为(x ,-2x+6),则PC 2=x 2+(3+2x-6)2,PE 2=(x-1)2+(-2x+6)2,∵PC=PE ,∴x 2+(3+2x-6)2=(x-1)2+(-2x+6)2,解得,x=2,则y=-2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a ,0),则点G 的坐标为(a ,-a 2+2a+3),∵以F 、M 、G 为顶点的四边形是正方形,∴FM=MG ,即|2-a|=|-a 2+2a+3|,当2-a=-a 2+2a+3时,整理得,a 2-3a-1=0,解得,a=32±, 当2-a=-(-a 2+2a+3)时,整理得,a 2-a-5=0,解得,a=12±, ∴当以F 、M 、G 为顶点的四边形是正方形时,点M 的坐标为(32+,0),(32,0),(12,0),(12-,0). 考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
茂名市2016年中考数学试题解析版2016年广东省茂名市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.2016的相反数是() A.�2016 B.2016 C.� D. 2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×1011 3.如图是某几何体的三视图,该几何体是() A.球 B.三棱柱 C.圆柱D.圆锥 4.下列事件中,是必然事件的是() A.两条线段可以组成一个三角形 B.400人中有两个人的生日在同一天 C.早上的太阳从西方升起 D.打开电视机,它正在播放动画片 5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120° B.90° C.60° D.30° 6.下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2 7.下列说法正确的是() A.长方体的截面一定是长方形 B.了解一批日光灯的使用寿命适合采用的调查方式是普查 C.一个圆形和它平移后所得的圆形全等 D.多边形的外角和不一定都等于360° 8.不等式组的解集在数轴上表示为() A. B. C. D. 9.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是() A.150° B.140° C.130° D.120° 10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.二、填空题(共5小题,每小题3分,满分15分) 11.一组数据2、4、5、6、8的中位数是. 12.已知∠A=100°,那么∠A补角为度. 13.因式分解:x2�2x= . 14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= . 15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.三、解答题(共10小题,满分75分) 16.计算:(�1)2016+ �|�|�(π�3.14)0. 17.先化简,再求值:x(x�2)+(x+1)2,其中x=1. 18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,(1)补全求证部分;(2)请你写出证明过程.证明:. 19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理? 20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率. 21.如图,在数学活动课中,小敏为了测量校园内旗杆CD 的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度. 22.如图,一次函数y=x+b的图象与反比例函数y= (k为常数,k≠0)的图象交于点A (�1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l 与线段AO的交点坐标. 23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别 A类 B类进价(单位:元) 18 12 备注 1、用不超过16800元购进A、B两类图书共1000本; 2、A类图书不少于600本; (1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B 类图书价格不变,那么书店应如何进货才能获得最大利润? 24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.(1)求证:BC是⊙O的切线;(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示). 25.如图,抛物线y=�x2+bx+c经过A(�1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N 为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.2016年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1.2016的相反数是() A.�2016 B.2016 C.�D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是�2016.故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×1011 【考点】科学记数法―表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2450=2.45×103,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.如图是某几何体的三视图,该几何体是() A.球B.三棱柱 C.圆柱 D.圆锥【考点】由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键. 4.下列事件中,是必然事件的是() A.两条线段可以组成一个三角形 B.400人中有两个人的生日在同一天 C.早上的太阳从西方升起 D.打开电视机,它正在播放动画片【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、两条线段可以组成一个三角形是不可能事件,故A错误; B、400人中有两个人的生日在同一天是必然事件,故B正确; C、早上的太阳从西方升起是不可能事件,故C错误; D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为() A.120° B.90° C.60° D.30° 【考点】平行线的性质.【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=48° ∴∠2=48°.故选C.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等. 6.下列各式计算正确的是() A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误; B、(a2)3=a2×3=a6,故本选项错误; C、a2+3a2=4a2,故本选项错误; D、a4÷a2=a4�2=a2,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键. 7.下列说法正确的是()A.长方体的截面一定是长方形 B.了解一批日光灯的使用寿命适合采用的调查方式是普查 C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360° 【考点】多边形内角与外角;截一个几何体;平移的性质;全面调查与抽样调查.【专题】多边形与平行四边形.【分析】A、长方体的截面不一定是长方形,错误;B、调查日光灯的使用寿命适合抽样调查,错误;C、利用平移的性质判断即可;D、多边形的外角和是确定的,错误.【解答】解:A、长方体的截面不一定是长方形,错误; B、了解一批日光灯的使用寿命适合采用的调查方式是抽样调查,错误; C、一个圆形和它平移后所得的圆形全等,正确; D、多边形的外角和为360°,错误,故选C 【点评】此题考查了多边形内角与外角,截一个几何体,平移的性质,以及全面调查与抽样调查,弄清各自的定义及性质是解本题的关键. 8.不等式组的解集在数轴上表示为()A. B. C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为�1<x≤1, A:数轴表示解集为无解,故选项A错误; B:数轴表示解集为�1<x≤1,故选项B正确; C:数轴表示解集为x≤�1,故选项C错误; D:数轴表示解集为x≥1,故选项D错误;故选B 【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 9.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150° B.140° C.130° D.120° 【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为() A. B. C. D.【考点】由实际问题抽象出二元一次方程组.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C 【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.二、填空题(共5小题,每小题3分,满分15分) 11.一组数据2、4、5、6、8的中位数是 5 .【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:2、4、5、6、8.位于最中间的数是5,所以这组数的中位数是5.故答案为:5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 12.已知∠A=100°,那么∠A补角为80 度.【考点】余角和补角.【专题】计算题;实数.【分析】根据两个角之和为180°时,两角互补求出所求角度数即可.【解答】解:如果∠A=100°,那么∠A补角为80°,故答案为:80 【点评】此题考查了余角和补角,熟练掌握补角的定义是解本题的关键. 13.因式分解:x2�2x= x(x�2).【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取x即可得到结果.【解答】解:原式=x(x�2),故答案为:x(x�2)【点评】此题考查了因式分解�提公因式法,熟练掌握提取公因式的方法是解本题的关键. 14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质. 15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x 上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是 6 +6 .【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标( +1),点A4的横坐标3( +1),点A6的横坐标( +1),点A8的横坐标6( +1).故答案为6 +6.【点评】本题考查坐标与图形的变换�旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.三、解答题(共10小题,满分75分) 16.计算:(�1)2016+ �|�|�(π�3.14)0.【考点】实数的运算;零指数幂.【分析】分别利用有理数的乘方运算法则结合零指数幂的性质和绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:(�1)2016+ �|�|�(π�3.14)0 =1+2 ��1 = .【点评】此题主要考查了有理数的乘方运算、零指数幂的性质、绝对值的性质、二次根式的性质等知识,正确把握相关性质是解题关键. 17.先化简,再求值:x(x�2)+(x+1)2,其中x=1.【考点】整式的混合运算―化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2�2x+x2+2x+1=2x2+1,当x=1时,原式=2+1=3.【点评】此题考查了整式的混合运算�化简求值,熟练掌握运算法则是解本题的关键. 18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA (1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..【考点】平行四边形的性质.【分析】(1)根据题意容易得出结论;(2)连接AC,与平行四边形的性质得出AB∥CD,AD∥BC,证出∠BAC=∠DCA,∠BCA=∠DAC,由ASA证明△ABC≌△CDA,得出对应边相等即可.【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键. 19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B品种有120吨,占30%即可求得调查的这三种荔枝的总吨数;(2)总数量500乘以C品种荔枝的吨数所占的百分比即可求解.【解答】解:(1)120÷30%=400(吨).答:该市场6月上半月共销售这三种荔枝400吨;(2)500× =300(千克).答:该商场应购进C品种荔枝300千克比较合理.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式直接解答;(2)列出树状图,找到所有可能的结果,再找到第一次抽到数字“1”且第二次抽到数字“2”的数目,即可求出其概率.【解答】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字“2”的概率= ;(2)列树状图为:由树形图可知:第一次抽到数字“1”且第二次抽到数字“2”的概率= .【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D 的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD的长;(2)利用(1)中所求,结合CD=AD•tan60°求出答案.【解答】解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD= = =4 (m),答:教学楼与旗杆的水平距离是4 m;(2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4 m,∴CD=AD•tan60°=4 × =12(m),答:旗杆CD的高度是12m.【点评】此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键. 22.如图,一次函数y=x+b的图象与反比例函数y= (k为常数,k≠0)的图象交于点A(�1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l 对称,请连接AO,并求出直线l与线段AO的交点坐标.【考点】反比例函数与一次函数的交点问题;解二元一次方程组;待定系数法求一次函数解析式.【分析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO 的中点,再结合点A、O的坐标即可得出结论.【解答】解:(1)∵点A(�1,4)在反比例函数y= (k为常数,k≠0)的图象上,∴k=�1×4=�4,∴反比例函数解析式为y=�.把点A(�1,4)、B(a,1)分别代入y=x+b中,得:,解得:.(2)连接AO,设线段AO与直线l相交于点M,如图所示.∵A、O两点关于直线l 对称,∴点M为线段OA的中点,∵点A(�1,4)、O(0,0),∴点M的坐标为(�,2).∴直线l与线段AO的交点坐标为(�,2).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法求函数系数;(2)得出点M 为线段AO的中点.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了中点坐标公式降低了难度. 23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书 ] 书本类别 A类 B类进价(单位:元) 18 12 备注 1、用不超过16800元购进A、B两类图书共1000本; 2、A类图书不少于600本;… (1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【考点】一次函数的应用;分式方程的应用;一元一次不等式组的应用.【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000�t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价�总成本,求出最佳的进货方案.【解答】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得�10= ,化简得:540�10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27�a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27�a�18)t+(18�12)(1000�t) =(9�a)t+6(1000�t) =6000+(3�a)t,故当0<a<3时,3�a>0,t=800时,总利润最大;当3≤a<5时,3�a<0,t=600时,总利润最大;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点评】本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解. 24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.(1)求证:BC是⊙O的切线;(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【考点】切线的判定.【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE= ∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;(2)由在△OBE中,sinB= ,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE= ∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB= ,⊙O的半径为r,∴OB= r,BE= r,∴BF=OB+OF= r,∴FG=BF•sinB= r,∴BG= = r,∴EG=BG�BE= r,∴S△FGE= EG•FG= r2,EG:FG=1:2,∵BC是切线,∴∠GEH=∠EFG,∵∠EGH=∠FGE,∴△EGH∽△FGE,∴ =()= ,∴S△EHG= S△FGE= r2.【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键. 25.如图,抛物线y=�x2+bx+c经过A(�1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,�2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=�x2+bx+c经过A(�1,0),B(3,0)两点,∴ ,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=�x2+2x+3;(2)如图1,连接PC、PE, x=�=�=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=�2x+6,设点P的坐标为(x,�2x+6),则PC2=x2+(3+2x�6)2,PE2=(x�1)2+(�2x+6)2,∵PC=PE,∴x2+(3+2x�6)2=(x�1)2+(�2x+6)2,解得,x=2,则y=�2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,�a2+2a+3),∵以F、M、G为顶点的四边形是正方形,∴FM=MG,即|2�a|=|�a2+2a+3|,当2�a=�a2+2a+3时,整理得,a2�3a�1=0,解得,a= ,当2�a=�(�a2+2a+3)时,整理得,a2�a�5=0,解得,a= ,∴当以F、M、G为顶点的四边形是正方。