有无除氧器热力系统的热经济性分析
- 格式:pdf
- 大小:281.61 KB
- 文档页数:2
除氧器排气余热回收系统节能效益分析张友志发布时间:2021-10-29T04:15:50.439Z 来源:《中国科技人才》2021年第20期作者:张友志[导读] 近年来,各行各业发展都十分快速。
随着国家环境保护排放标准不断提高,节能减排工作越来越引起各级政府和相关企业的高度重视。
身份证号码:4115211988****5332摘要:近年来,各行各业发展都十分快速。
随着国家环境保护排放标准不断提高,节能减排工作越来越引起各级政府和相关企业的高度重视。
发电厂作为能源转换的一个至关重要环节,开展节能减排工作十分必要。
在全国大力推行节能减排的形势下,生物质电厂的节能减排也引起了一些行业内人士的高度重视。
并参照国内一些燃煤发电厂节能改造经验,经过充分研究和科学论证,确定对原有系统中的除氧器进行有效利用,这不仅可以回收热能,减少燃料消耗,同时还可以回收排放蒸汽的凝结水,减少除盐水消耗,从而实现节能减排目的。
关键词:除氧器排气;余热回收;节能效益引言分析热电厂除氧器排汽回收利用的现状,进而提出采用逐级回收系统和排汽回收装置联合利用的改造措施,介绍综合回收系统在某企业热电厂的应用效果。
结果表明,该项改造技术在节能、节水和环保方面都取得了显著成效,具备进一步推广的应用价值。
热电厂除氧器系统的排汽量较大,含有大量热能的蒸汽排至大气,浪费现象比较严重。
为了达到节能创效的目的,采用新型余汽回收节能装置将其回收,可使热量得到充分利用,既实现节能降耗的目的,又达到了环保的要求。
1增设余热回收系统的必要性在生物质电厂实际运行中,除氧器是伴随机组运行而连续运行的设备,在除氧器对空排气中,排放少量不凝结气体的同时,还携带排放了大量蒸汽。
按照生物质电厂除氧器的实际运行参数和排汽管道规格进行初步估算,除氧器对空排气所排放的蒸汽流量为2t/h。
按照每年机组年利用小时数7000h计算,每年除氧器对空排气所排放的蒸汽量为14000t,其对应的热损失为36499.96GJ。
几种除氧方法的比较和分析1 热力除氧热力除氧一般有大气式热力除氧和喷射式热力除氧。
其原理是将锅炉给水加热至沸点,使氧的溶解度减小,水中氧不断逸出,再将水面上产生的氧气连同水蒸汽一道排除,还能除掉水中各种气体(包括游离态CO2,N2),如用铵钠离子交换法处理过的水,加热后3也能除去。
除氧后的水不会增加含盐量,也不会增加其他气体溶解量,操作控制相对容易,而且运行稳定,可靠,是目前应用最多的一种除氧方法。
为了保证热力除氧器具有可靠的效果,在设计和运行中应满足足下列条件 :a .增加水与蒸汽的接触面积,水流分配要均匀。
b .保证氧气在水中的溶解压力与水面上它的分压力之间有压力差。
c.保证使水被加热到除氧器工作压力下的沸腾温度,一般采用 104℃。
热力除氧技术是一种普遍采用的成熟技术,但在实际应用中还存在着一些问题 : 首先经热力除氧以后的软水水温较高,容易达到锅炉给水泵的汽化温度,致使给水在输送过程中容易被汽化;而且当热负荷变动频繁,管理跟不上,除氧水温 <104℃时,使除氧效果不好。
其次,这种除氧方法要求设备高位布置,增加了基建投资,设计、安装、操作都不方便。
,为了达到给水泵中软化水汽化的目的,这种除氧方法一般要求除氧器高位配置,在使用过程中会产生很大的噪音和震动,带来不便。
第三,使得锅炉房自耗汽量增大,减少了有效外供汽。
第四,对与小型快装锅炉和要求低温除氧的场合,热力除氧有一定的局限性,对于纯热水锅炉房也不能采用。
对于采取热力除氧的锅炉,在装新锅炉时,将大气热力除气器装在地面,而将除氧后的高温软化水输送管道经过软水箱,使其与软水箱中的水进行热交换,而后流至锅炉给水泵,经省煤器进入锅炉。
这样改进首先可以减少锅炉房的振动和噪音,改善了锅炉房的工作环境,还降低了锅炉房的工程造价。
其次,通过在软水箱中的热交换,软水箱中的水温提高了,热量没有浪费,同时也相当于除氧器进水温度,除氧器将进水加热到饱和温度的时间也缩短了,有利于达到预期的除氧效果。
45.中间再热单元机组旁路系统的作用是什么?46.化学补充水补入热力系统时应考虑哪些问题,应如何选择补入点。
47.简述什么是工程上的最佳热化系数及其意义。
48.中间再热对给水回热加热有何影响?简述原因。
45.缩短启动时间,延长汽轮机寿命(2分);保护再热器(2分);回收工质,降低噪声(1分)46.1.补充水含有计多气体,补入系统后要除氧(1分)2.补充水入系统要考虑水量调节方便。
(1分)3.补水补入系统后要考虑热经济,补水温度低,要选择与其水温相近的点补入,综合以上三点,补充水补入点应选择在凝汽器或除氧器。
(2分)4.既表明系统的热经济性,又表明系统的技术经济最佳状态的热化系统称为工程上热化系数最佳值(3分)。
工程上热化系数最佳值,作为国家宏观控制发展热电联产事业的一个指标具有重要的节能意义。
(2分)48.中间再热使给水回热加热的效果减弱。
(2分)原因:功率相同的条件下,再热使汽轮机的主蒸汽消耗量减少,回热抽汽量减少,回热抽汽功减少(1分)。
再热使汽轮机的中、低压缸各级抽汽焓和过热度增加,回热抽汽量减少,回热抽汽作功减少。
(2分)46.对主蒸汽管道的要求是什么?47.简述为什么要对给水除氧。
48.以C型机带采暖负荷为例,分析其热经济性随热负荷在一年中的变化规律及原因。
49.简述并列运行凝汽式机组的负荷经济分配的任务及原则。
46.系统简单,工作安全可靠(2分);运行调度灵活,便于切换(1分);便于维修,安装和扩建(1分);投资费用和运行费用最少(1分)47.给水中的氧会对钢铁组成的热力管道和设备产生强烈的腐蚀(3分),二氧化碳及会加剧氧腐蚀,危及设备及系统的安全运行(2分),因此要对给水除氧。
48.抽汽式供热机组以供热工况为设计工况(1分),其供热汽流的ηih=1,而凝汽汽流发电的绝对内效率低于同档次凝汽式机组的绝对内效率ηi,即存在ηic<ηi<ηih的关系。
(2分)在采暖期,由于热负荷比较高,机组在接近设计工况下运行时,热经济性很高。
除氧器的特性及其对机组的影响【摘要】近年来的煤、油价格飚升,使火电企业的利润空间越来越小甚至造成亏损。
降低运行成本是各电厂的主要工作任务,降低发电煤耗、节约厂用电是降低运行成本的主要手段。
本文主要针因除氧器工作参数的变化对机组热经济性的影响进行分析。
除氧器的运行情况不仅对机组的热经济性有很大的影响,而且直接关系到机组的运行寿命跟安全。
【关键词】除氧器;等效焓降;热经济性0 引言随着火力发电厂装机向高参数、大容量趋势的发展,提高运行经济性,降低能耗己经成为电厂节约一次能源的迫切要求。
因此,在火力发电厂设计和改造中,始终要考虑安全性和经济性。
热经济性分析是电厂热力系统性能监测的有效工具,是发现机组运行中存在问题并进行优化的基础。
对热力系统进行热经济性在线分析能够提高电厂运行管理水平,增加电厂的经济效益。
因此准确了解机组能耗指标是电厂节能降耗、提高经济性的基础[1]。
除氧器在电厂热力系统中承担除氧任务,以防止设备腐蚀。
同时,它又是回热系统中的混合式加热器之一,并作为凝结水泵和给水泵之间的缓冲和贮水装置,以汇集高压加热器疏水等。
在火力电厂锅炉给水处理工艺过程中,除氧是一个非常关键的环节。
氧是给水系统和锅炉的主要腐蚀性物质,给水中的氧应当迅速得到清除,否则它会腐蚀锅炉的给水系统和部件,腐蚀产物氧化铁会进入锅炉内,沉积或附着在锅炉管壁和受热面上,形成传热不良的铁垢,而且腐蚀会造成管道内壁出现点坑,造成阻力系数增大。
管道腐蚀严重时,甚至会发生管道爆炸事故。
另外,在热交换器中若有气体聚集就会妨碍传热过程的进行,降低设备的传热效果。
因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。
国家规定蒸发量大于等于2t/h的蒸汽锅炉和水温大于等于95℃的热水锅炉都必需除氧。
除氧器的主要作用是除去给水中的氧气,保证给水的品质。
除氧器本身又是给水回热系统中的—个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的疏水、排气等均可通人除氧器汇总并加以利用,减少电厂的汽水损失。
300MW供热机组热力经济性分析我国社会经济的快速发展,带动了各个行业的经济发展,对电力的需求也越来越大。
因此,汽轮机的系统、结构等不断改善,逐渐向大容量发展。
若机组设备在多种因素影响下出现故障,则会降低其预期功能,降低其经济性,甚至对整个机组的安全运行带来较大影响。
所以,机组经济性性和安全性具有密切关系,只有确保机组运行的稳定性,才能提高其经济性。
文章主要对300MW供热机组热力经济性进行了分析。
标签:300MW供热机组;热力经济性;分析经济全球化的不断发展,促使我国经济得到了快速发展,经济发展对电力的需求逐渐增加,火力发电比例非常大。
大部分火力发电机组投入生产后,不仅在很大程度上提高了机组运行效率,也节省了自然资源,改善了生态环境,也减少了劳动力,降低了投资成本。
对于大型火力发电机组而言,在发展过程中必须着重考虑的是发电对不可再生资源、环境等带来的影响。
因此,为了实现可持续发展,就要采取措施提高发电技术。
只有确保了机组运行的稳定性,才能提高其生产的经济效益。
由于机组热力系统的安全性与经济性彼此互相影响,对机组运行状况进行实时监测,并分析其经济性具有重要意义。
1 300MW供热机组热力系统热经济性分析方法简介对火力发电机组的运行性能、热力系统性能等进行分析意义重大。
通过分析,可以对机组循环中的各项热力参数、流量平衡性等有充分的了解,利于机组各项热经济指标的计算。
目前采用的热力系统经济计算方法比较多,比如常规热平衡法、循环函数法、矩阵法以及等效热降法等。
1.1 常规热平衡法此方法应用比较广泛,是采用流量平衡与能量的方法。
在计算过程中主要用两种方法,即并联、串联。
常规热平衡发电原因是以物质平衡关系为基础,通过对热力系统的热经济性展开计算,可以计算出研究对象的N个热量平衡式、流量方程式,从而获得N+1个流量值,并根据得到的系统水、蒸汽的流量值、参数值,用吸热方程进行计算,就能获得系统热经济性指标。
这种方法应用比较方便,但要根据系统变化不断变化,适用性比较差。
除氧器的热力系统及运行 [ 日期:2005-01-22 ] [ 来自:本站原创]除氧器在运行中,不同工况下它的出水量(负荷)、给水含氧量、迸水量、迸水温度、排汽量、给水泵可靠的运行和具有较高的回热经济性等,都与除氧器热力系统的设计拟定和正确的运行方式有关。
一)除氧器热力系统拟宝和运行中主要注意的问题1.低负荷汽源切换及备用汽源的设置除氧器在低负荷运行时本级抽汽压力降低,定压运行除氧器为维持恒定压力应切换到一级抽汽;滑压运行除氧器为保证自动向大气排气,也需改变运行方式及切换汽源。
一般在上一级较高抽汽管至本级抽汽管上装设自动切换阀,当除氧器工作压力降至某一最低值,本级抽汽满足不了除氧器压力,自动切换至上一级抽汽而停止本级抽汽。
在锅炉开始启动而汽轮机未投运前,或锅炉需要清洗、点火上水时,其用水都必须经过除氧,为此应该设置备用汽源以代替汽轮机抽汽向除氧器供汽。
对母管制电厂可以利用母管上运行的其他机组抽汽作为备用汽源。
而单元制机组,一般设置辅助蒸汽联箱(称厂用蒸汽联箱),用辅助蒸汽联箱的蒸汽作备用汽源。
向辅助蒸汽联箱供汽的汽源,运行机组一一般取自高压缸排汽(即冷再热蒸汽),新建电厂来自启动锅炉,扩建的老厂可用老机组抽汽。
2.除氧器的冷态启动除氧器冷态启动时应注意壳体预热,避免除氧器和给水箱左右及上下壁之间因温差过大产生较大的热应力,该热应力可引起除氧器振动。
现代大型电厂除氧器体积很大,如600MW机组2 400t小除氧器及给水箱,除氧器卧式壳体长15m,直径2. 5m,壁厚25mrn,给水箱长26. 0 4m,直径3. 8m,壁厚32mm,水箱重125.45t。
冷态启动宜采用先送汽后上水的方法,用辅助蒸汽预热壳体20min,使除氧器压力达到0. 1196~0. 149MPa,然后将除盐后的水送人除氧器,逐渐开大迸汽阀,并保持以上压力,使水温达到104~110℃进行大气式除氧。
随机组负荷上升,供除氧器运行的机组抽汽压力超过0.149MPa后,停止辅助蒸汽切换到相应抽汽管上,随机组滑参数启动的要求升压至额定工作压力。
一、单项选择题1、电厂实际生产的能量转换过程中,在数量上以下列哪种热量损失为最大?(D)A、锅炉损失B、汽轮机内部损失C、管道损失D、冷源损失2、凝汽式发电厂的发电煤耗率可表示为:(A)A、发电厂在一段时间内耗用的总煤量与发电量之比B、发电厂在一段时间内耗用的总煤量与对外供电量之比C、发电厂在一段时间内耗用的总煤量与平均负荷之比D、发电在在一段时间内耗用的总煤量与厂用电之比3、随着回热加热级数的增多,(C)。
A、回热循环效率的增加值逐渐增多B、回热循环效率的增加值不变C、回热循环效率的增加值逐渐减少4、其它条件不变,提高蒸汽初压力循环效率的变化将:(D)A、提高B、降低C、不一定D、先提高后降低5、其它条件不变提高蒸汽初温,循环效率提高的原因是(B)A、冷源损失数量减少B、平均吸热温度提高C、蒸汽湿度减少D、蒸汽容积流量增加6、再热机组在各级回热分配上,一般采用增大高压缸排汽的抽汽量,降低再热后第一级回热的抽汽量是为了(A)。
A、减少给水加热过程是的不可逆损失B、尽量利用高压缸排汽进行回热加热C、保证再热后各回热加热器安全D、增加再热器后各级回热抽汽的抽汽作功量7、采用中间再热的目的是:(B)A、提高回热经济性B、提高初参数后使排汽湿度不超过允许值C、提高机组设计功率D、利用锅炉烟道的余热以降低排烟温度8、提高蒸汽初温,其它条件不变,汽机相对内效率(A)。
A、提高B、降低C、不变D、先提高后降低9、提高蒸汽初压,其它条件不变,汽机相对内效率(B)。
A、提高B、降低C、不变D、先降低后提高10、若提高凝汽器真空,机组出力增加ΔNd,循环水泵功率增加ΔNs,则最佳真空为:(A)。
A、ΔNd-ΔNs之差最大时对应的真空B、ΔNd/ΔNs最大时对应的真空C、(ΔNd-ΔNs)/ΔNs 最大时对应的真空D、(ΔNd-ΔNs)/ΔNd 最大时对应的真空11、常用的烟气中间再热,再热后蒸汽的(B)A、温度增加,压力增加B、温度增加,压力下降C、温度下降,压力下降D、温度不变,压力下降12、采用中间再热,导致回热的热经济效果(B)A、增强B、减弱C、可能增加也可能减弱D、不变13、提高蒸汽初压主要受到(A)A、汽轮机低压级湿度的限制B、锅炉汽包金属材料的限制C、工艺水平的限制14、过热蒸汽冷却段的作用是:(A)A、降低加热蒸汽的过热度B、对作过功的部分蒸汽进行再热C、减小对相邻加热器加热蒸汽的排挤D、保证回热抽气等温升分配15、在给水泵连接系统中,往往采用前置泵,其作用是:(B)A、增大电动给水泵的总压头B、避免主给水泵入口水汽化C、可以和主给水泵的互为备用D、增大主给水泵的流量E、提高主给水泵的负荷适应性16、回热加热器端差增大表明加热器运行经济性(B)。