运动对慢性疲劳综合症小鼠NK细胞活性和IL-2水平的影响
- 格式:pdf
- 大小:180.84 KB
- 文档页数:3
不同运动方式对衰老小鼠心肌细胞凋亡的影响摘要:本研究旨在评估训练不同运动方式对衰老小鼠心肌细胞凋亡的影响。
结果显示,比较不同的运动方式(徒手跑步,电动滑板,游泳)对衰老小鼠心肌细胞凋亡的影响,发现游泳对衰老小鼠心肌细胞凋亡的保护作用最为明显,其次是电动滑板,徒手跑步的效果最差。
这些结果提示我们,多种不同的运动方式都可以帮助衰老小鼠有效地减少心肌细胞凋亡,提高免疫力。
关键词:衰老,小鼠,运动方式,心肌细胞凋亡。
正文:随着人口老龄化的加剧,衰老对于老年人造成的健康问题受到了越来越多的重视,其中心肌细胞凋亡是一个潜在的健康危险因素。
运动作为一种有效的老化保健方式,改善了衰老小鼠的免疫功能,但是如何改善衰老小鼠心肌细胞凋亡,存在种类及数量不确定的问题。
为了评估不同运动方式对衰老小鼠心肌细胞凋亡的影响,我们采用了徒手跑步、电动滑板和游泳三种训练方式,比较不同方式对衰老小鼠心肌细胞凋亡的影响。
从实验结果来看,游泳的效果最好,可以在衰老小鼠的心肌凋亡细胞做出明显的保护作用,而电动滑板及徒手跑步也有一定的保护作用,但较游泳要低一些。
这说明,游泳是一种有用的保护衰老小鼠心肌细胞凋亡的方式。
本研究可以为衰老者选择合适的运动方式,有助于减少心脏病和其他心脏疾病的风险,从而提高老年人的生活质量。
本研究发现,多种不同的运动方式都有助于减少老年小鼠心肌细胞凋亡,从而提高其免疫力。
因此,我们建议衰老者可以选择一种合适的运动方式来改善自身健康。
徒手跑步是一种便捷、低成本的运动方式,老年人可以在室外采取徒手跑步,在增强免疫力的同时也能改善心肌细胞凋亡的情况。
电动滑板以及游泳也是常用的运动方式,它们可以促进血液循环,改善呼吸系统的功能,可以帮助老年人预防心脏病和高血压等疾病。
同时,它们可以改善老年人的体质,减轻关节酸痛,增强内脏的功能,并有助于缓解压力。
此外,衰老者可以通过社区老年活动中心,接受合适的训练课程,以减轻自身身体症状,改善老年人心肌细胞凋亡。
运动生理学第五章免疫与运动测试题及答案总计: 6 大题,37 小题,共100 分答题时间:120一、单选题(该大题共10小题,每小题1分。
)1.下列哪种激素不属于免疫抑制类调节物质:A.β-内啡肽B.促肾上腺皮质激素C.糖皮质激素D.儿茶酚胺2.“open window”理论主要表明:A.运动后有一段免疫低下期B.运动后有一段免疫增强期C.经常参加锻炼者免疫功能会增强D.经常参加运动训练者免疫功能会增强3.下列哪种物质可缓解胸腺和脾脏的萎缩,并增加淋巴细胞活性:A.生物素B.胡萝卜素C.L-精氨酸D.谷氨酰胺4.在免疫应答中,起核心作用的免疫细胞是:A.单核-巨噬细胞B.NK细胞C.淋巴细胞D.粒细胞5.下列哪种反应不会引起免疫抑制作用:A.交感神经兴奋B.副交感神经兴奋C.应激激素升高D.血糖水平升高6.免疫防御异常的后果是:A.易发生肿瘤B.易发生超敏反应C.易发生感染D.易发生自身免疫性疾病7.具有吞噬杀伤、抗原提呈和分泌作用的细胞是:A.B细胞B.T细胞C.单核-巨噬细胞D.中性粒细胞8.下列哪种细胞能够杀伤被抗体覆盖的靶细胞:A.B细胞B.T细胞C.NK细胞D.K细胞9.主要介导体液免疫的细胞是:A.B细胞B.T细胞C.NK细胞D.K细胞10.下列哪种细胞不属于淋巴细胞:A.T细胞B.B细胞C.NK细胞D.单核细胞二、填空题(该大题共10小题,每小题1分。
)11.脊髓和胸腺是淋巴干细胞增殖、分化成T细胞和B细胞的场所;接受免疫细胞的主要场所,包括()、()和()。
12.大负荷运动之后,离体发生的对丝裂原和内毒素的反应过程中,所生成的细胞因子(),表明机体免疫系统产生细胞因子的能力()。
13.T细胞主要参与机体的()免疫应答;而B细胞在抗原刺激下形成大量的(),主要参与机体的()免疫应答。
14.吞噬细胞、单核吞噬细胞及体液中的抗菌物质,有抑菌、()、()等作用的都属于非特异性免疫。
15.免疫系统主要功能是识别并排除体内的非己物质,执行此功能的细胞称为免疫细胞,包括()、()、()和粒细胞等。
doi:10.3969/j.issn.1000⁃484X.2020.21.023ILC2在炎症性疾病中作用的研究进展①毋梦林 牛志国 曹 旗 黄青松(新乡医学院医学检验学院,河南省免疫与靶向药物重点实验室,新乡453003) 中图分类号 R392.9 文献标志码 A 文章编号 1000⁃484X (2020)21⁃2672⁃06①本文受国家自然科学基金(81200506㊁81570624㊁81770721㊁U1804167)和河南省自然科学基金重点项目(162300410210)资助㊂作者简介:毋梦林,女,硕士,主要从事肾脏纤维化方面的研究,E⁃mail:2387906399@㊂通讯作者及指导教师:曹 旗,男,博士,教授,主要从事巨噬细胞与肾脏炎症方面的研究,E⁃mail:qi.cao @xx⁃㊂黄青松,女,博士,副教授,主要从事肾脏免疫生物治疗方面的研究,E⁃mail:xxmuhqs@㊂[摘 要] 2型固有淋巴细胞(ILC2)是最近发现的新型固有淋巴细胞群体,主要存在于肺㊁肠道㊁皮肤及黏膜组织,在IL⁃25和IL⁃33等刺激下能够产生IL⁃4㊁IL⁃5㊁IL⁃9和IL⁃13等Th2型细胞因子,在自身免疫病㊁抗感染和体内免疫平衡中发挥重要作用㊂本文综述了ILC2在炎症性疾病发展过程中的免疫学特性及其发挥的作用,及脏器局部微环境改变对ILC2的影响,为进一步了解ILC2参与的炎症性疾病发病机制及相关治疗提供理论依据㊂[关键词] 2型固有淋巴细胞;炎症;Th2型细胞因子Research progress of ILC2in inflammatory diseasesWU Meng⁃Lin ,NIU Zhi⁃Guo ,CAO Qi ,HUANG Qing⁃Song .Henan Key Laboratory of Immunology and Targeted Drugs ,School of Laboratory Medicine ,Xinxiang Medical University ,Xinxiang 453003,China[Abstract ] Type 2innate lymphoid cell(ILC2)are a newly discovered new type of innate lymphocytes,which mainly found inlungs,intestines,skin and mucosal tissues.Under the stimulation of IL⁃25and IL⁃33,they can produce Th2cytokines such as IL⁃4,IL⁃5,IL⁃9and IL⁃13,which play an important role in autoimmune diseases,anti⁃infection and immune balance in vivo.This article reviewsthe immunological characteristics and role of ILC2in development of inflammatory diseases,as well as influence of local organ microen⁃vironment changes on ILC2,so as to provide theoretical basis for further understanding of the pathogenesis and related treatment of ILC2in inflammatory diseases.[Key words ] Type 2innate lymphoid cell;Inflammation;Th2cytokines 固有淋巴细胞(innate lymphoid cells,ILCs)是对抗感染的关键免疫防御系统之一,具有典型淋巴细胞的形态特征,是一类非B 细胞㊁非T 细胞的淋巴细胞,但又可产生与辅助性T 细胞亚群匹配的效应细胞因子,且ILC 表面高表达细胞因子受体亚单位,包括IL⁃2受体α亚单位(CD25)和IL⁃7受体α亚单位(CD127)等[1]㊂由于ILC 不表达抗原特异性识别受体BCR 或TCR,而是通过对损伤诱导的信号做出反应,如对上皮细胞产生的细胞因子信号诱导做出反应,与自然杀伤(natural killer,NK)细胞和淋巴组织诱导(lymphtissue inducer,LTi)细胞统称为固有淋巴细胞,参与免疫反应㊁组织发育及重塑[2]㊂ILC 和T 细胞相互调节,放大或限制免疫应答㊂ILC 来源于共同淋巴祖细胞(common lymphoid progenitor,CLP),转录因子DNA 抑制子2(Id2)能够抑制CLP 向T㊁B 细胞分化,上调CD161和早幼粒细胞白血病锌指蛋白表达,维持CD127表达,并促进其向共同ILC 祖细胞分化,最后通过转录因子T⁃bet㊁GATA 结合蛋白3(GATA binding protein 3,GATA3)㊁维甲酸相关孤核受体γt(retinoid acid receptor related orphan receptor γt,RORγt)等将ILC 祖细胞分为ILC1㊁ILC2和ILC33个亚群,并且这3个亚群与辅助性T 细胞亚群Th1㊁Th2㊁Th17功能平行,并形成类似的细胞因子受体表达模式㊂ILC1在IL⁃12㊁IL⁃15和IL⁃18的刺激下,可分泌IFN⁃γ和TNF,在抗胞内菌及抗寄生虫感染中发挥重要作用[3⁃5];ILC2在IL⁃25和IL⁃33等刺激因子作用下产生Th2,如IL⁃4㊁IL⁃5㊁IL⁃9和IL⁃13,在多种炎症环境中调节固有免疫和适应性免疫反应[6];ILC3在IL⁃1β和IL⁃23刺激后产生IFN⁃γ㊁IL⁃17和IL⁃22,并参与慢性炎症反应和组织㊃2762㊃中国免疫学杂志2020年第36卷修复等[7]㊂1 ILC2的发育与调控ILC2作为固有免疫细胞的一员,是介于固有免疫和适应性免疫应答的跨界细胞,其表达的表面分子有CD25㊁CD90㊁CD117㊁CD127㊁ST2(IL⁃1R1)㊁IL17RB及NKp30受体等,可以非特异地保护机体免受多种生物体侵害,如寄生虫㊁细菌㊁病毒㊁真菌和过敏原[8]㊂然而,当免疫调节作用失控时,它们可以促发慢性炎症,如由ILC2促发的过敏和哮喘[9,10]㊂ILC2作为小鼠和人类2型免疫反应的中枢调节因子之一,主要分布于黏膜组织(肺和肠道)㊁非淋巴器官(肝㊁肾和内脏脂肪组织)㊁淋巴器官(脾㊁骨髓)及血液,有助于宿主防御㊁组织修复及抗炎症性疾病[11,12]㊂ILC2在转录因子Id2㊁RORα和GATA3的调控下发育成熟,实验表明ILC2的发育依赖GATA3的产生,GATA3可直接调节ILC2的增殖及其生存相关基因,即使在ILC2完全成熟后, GATA3对其晚期发育维持和存活也具有重要作用[13]㊂ILC2活化的主要途径是通过其表面受体ST2/T1或IL⁃17受体等接受IL⁃33㊁IL⁃25以及胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin, TSLP)刺激,进而主要产生并分泌IL⁃5和IL⁃13,而在豆蔻酰佛波醇乙酯(phorbol⁃12⁃myristate⁃13⁃acetate,PMA)刺激下还可产生IL⁃4㊁IL⁃9和双调蛋白,主要介导2型免疫应答㊂ILC2的表型㊁激活状态和功能可因其所在的组织及细胞因子微环境的改变而改变[14]㊂此外,ILC2还可以被脂质递质半胱氨酰白三烯(cysteinyl leukotrienes,CysLT)㊁前列腺素D2(prostaglandin D2,PGD⁃2)㊁TNF相似配体1 (TNF⁃like ligand1A,TL⁃1⁃A)及癌细胞激活[15⁃17]㊂而脂质A4(lipoxin A4,LXA4)㊁前列腺素E和前列腺素I2(prostaglandin I2,PGI2)可以抑制ILC2激活[18]㊂免疫反应在体内无处不在,ILC2在体内与脂类代谢㊁寄生虫感染㊁过敏性炎症㊁皮肤炎症等炎症性疾病密切相关[19⁃22]㊂2 ILC2的作用2.1 ILC2与消化系统的关系 ILC2并不是一个统一的种群,其表达的标记也存在不一致性,这主要取决于驱动其激活的细胞因子[23]㊂自然性ILC2 (nILC2)和炎症性ILC2(iILC2)是最近发现的2个亚群,iILC2在全身受到刺激时,仅存在于肺脏,在炎症过程中受趋化信号作用在组织间迁移,nILC2和iILC2的主要区别在于细胞因子受体的表达模式,nILC2对IL⁃33的刺激保持稳定状态并表达ST2,低表达类似于致死细胞凝集素受体G1(KLRG1), iILC2在IL⁃25刺激或感染后表达大量的活化标记KLRG1和IL⁃25受体(IL⁃17RB),但不表达ST2[24]㊂iILC2的发展依赖于IL2Rγ和IL⁃17Rα,且iILC2在蠕虫感染期间是nILC2的暂时态祖细胞,最终将转化为nILC2或者ILC3,有助于对抗蠕虫和真菌引起的免疫反应[24]㊂ILC2分泌大量IL⁃13和双调蛋白(amphiregulin,Areg),IL⁃13使杯状细胞分泌黏液并通过平滑肌收缩清除寄生虫,双调蛋白通过激活上皮细胞表面的表皮生长因子受体(epidermal growth factor receptor,EGFR)进而促进上皮细胞的增殖和修复[25]㊂炎症性肠道疾病的特点是Th1/Th2类细胞因子比例失衡,Th1型免疫反应促进炎症发展, Th2型免疫反应是宿主对抗寄生虫的防御反应㊂IL⁃25或寄生虫诱导下发生的Th2型免疫反应的发生机制是来源于肠道固有层中驻留的nILC2能够不依赖T/B细胞介导的免疫反应,而依赖于1⁃磷酸鞘氨醇(S1P)介导的趋化反应,通过淋巴管上皮细胞进入淋巴管,并通过血液循环迁移至外周组织,分泌Th2型细胞因子发挥抗炎反应,ILC2的肠⁃肺循环就是肠道中nILC2迁移至肺部成为iILC2,由于nILC2数量较少,增殖速度低于iILC2,因此iILC2是ILC2细胞对抗寄生虫感染的重要来源[26]㊂研究发现, ILC的另一个新型调节细胞亚群(ILCregs)不同于ILC和调节性T细胞(Treg),其表达Id3和Sox4等转录因子而缺乏ILC2和Treg的典型转录因子(如RORα㊁GATA3和Foxp3),在肠道炎症的发生和调节中起重要作用[27]㊂在炎症刺激作用下,肠内ILCregs增多,该细胞通过分泌IL⁃10抑制ILC1和ILC3的活化,从而抑制ILC1和ILC3分泌的IFN⁃γ以及IL⁃17A对肠道黏膜的损伤作用,但并不抑制ILC2在肠道炎症过程中的功能㊂以上结论提示ILCregs对肠道炎症起保护作用㊂2.2 ILC2与呼吸系统的关系2.2.1 肺炎 呼吸道黏膜与外界环境直接相通,时刻接受病原体㊁理化因素及变应原等刺激因素的影响,是多种病原体感染和炎症的病变部位㊂ILC2广泛存在于机体的各组织,其中黏膜组织,尤其是肺脏黏膜组织,是人类和小鼠ILC2的主要聚集地,占主导地位㊂急性和慢性肺炎通过抑制精氨酸酶⁃1 (Arg1)活性发生,小鼠和人ILC2内的Arg1活性被抑制,破坏了ILC2的代谢过程,抑制了ILC2的增殖和细胞因子产生,从而破坏了ILC2在肺部的抗炎反应,表明Arg1是ILC2的关键调控因子[28]㊂在慢性㊃3762㊃毋梦林等 ILC2在炎症性疾病中作用的研究进展 第21期呼吸系统疾病加重期,ILC2与NK细胞和肺泡巨噬细胞相互作用,ILC2产生大量IL⁃5,并在感染期间诱导嗜酸性粒细胞生成,从而引发哮喘㊂ILC2和Treg可促进肺炎时肺上皮细胞损伤后的修复[29,30]㊂ILC2高表达RORα,RORα敲除的小鼠均缺乏ILC2,缺乏ILC2的小鼠虽然拥有正常的Th2细胞免疫应答,但不能对蛋白酶抗原产生快速的肺部炎症反应, ILC2是肺损伤后修复的中枢调节因子,可恢复肺组织急性损伤后的稳态[31]㊂研究发现,细胞间黏附分子1(ICAM⁃1)缺陷小鼠骨髓和周围组织中的ILC2水平明显降低,且ILC2功能受损,Th2型细胞因子的分泌也显著降低,在给予ICAM⁃1缺陷小鼠过敏原刺激后,肺中ILC2的数量减少导致气道炎症明显缓解,这些结果将ICAM⁃1确定为ILC2的调节器[32]㊂有研究发现ILC2释放的IL⁃13可驱动血吸虫感染引起的肺炎㊁肺纤维化和胶原沉积,敲除IL⁃25或其受体IL⁃17RB可减轻肉芽肿体积和血吸虫卵数量,提示IL⁃25和ILC2可能是治疗血吸虫感染引起的肺炎及肺纤维化的靶标[33]㊂2.2.2 哮喘 ILC2释放大量Th2型细胞因子,如IL⁃4㊁IL⁃5㊁IL⁃13,驱动2型免疫反应发挥对蠕虫的防御作用,但如果不严格控制ILC2,则可引发病理性的2型免疫应答,过敏性气道炎症就是其中之一㊂过敏性哮喘是一种气道慢性炎症性疾病,通常是无害的过敏原或病原体接触患者,表现为Th2细胞㊁肥大细胞和嗜酸性粒细胞高度活化,IgE水平显著升高,并作出不恰当的Th2反应㊂ILC2诱导哮喘患者Th2相关细胞因子活性上调,导致哮喘控制的顽固性状态,被过敏原破坏或激活的上皮细胞产生IL⁃33㊁TSLP和IL⁃25,激活ILC2,产生IL⁃5㊁IL⁃9和IL⁃13,引起过敏性哮喘,其中IL⁃4可促使Th0细胞向Th2细胞转化,还可促进B细胞分泌抗体[34,35];IL⁃5可以募集并活化嗜酸性粒细胞;IL⁃13可以促进杯状细胞分泌黏液,并触发气道高反应的显著变化[36]㊂人类在呼吸道疾病的发病率和严重程度上存在显著的性别差异,淋巴细胞限制雌激素受体α缺陷提示,是雄性激素调节ILC2在肺和骨髓的功能,且ILC2由于雄性激素的过量而减少,表明雄性激素抑制ILC前体向ILC2的转变,也提示了女性哮喘患病率比男性高2倍的原因[37]㊂ILC2是哮喘免疫反应最重要的调节因子,骨髓源性抑制细胞骨髓源性抑制细胞(myeloid⁃derived suppressor cells,MDSCs)因其免疫抑制活性备受关注,早期研究表明,Th2细胞因子的增加与MDSCs有关㊂在哮喘患者㊁慢性阻塞性肺疾病或呼吸道病毒感染患者的外周血中,ILC2或MDSCs及其特有的细胞因子或转录因子显著增强㊂同时,在哮喘患者中发现一种以Th2为主的细胞,这种Th2极化与ILC2和MDSCs之间的协同作用密切相关,并增强了气道的高反应性,因此ILC2和MDSCs可能是哮喘的治疗的新方向[38]㊂2.3 ILC2与神经系统的关系 有研究发现人和小鼠肠道中的ILC2具有丰富的β2⁃肾上腺素能受体,肾上腺素能神经元与ILC2共定位,在机体受到寄生虫㊁真菌或其他病原菌感染时,肠道中的肾上腺素能神经元会产生大量肾上腺素,后者与小肠ILC2中的β2⁃肾上腺素能受体结合,抑制ILC2增殖,减弱2型免疫反应,从而保护寄生虫[39]㊂在此基础上,该课题组还发现了小鼠胃肠道中ILC2与表达神经肽U (NMU)的胆碱能神经元共定位,ILC2选择性地表达NMU受体1(NMUR1)[40]㊂ILC2受NMU诱导后细胞快速活化㊁增殖,分泌Th2型细胞因子IL⁃5㊁IL⁃9和IL⁃13,从而增强2型免疫作用,发挥抗寄生虫反应,最终保护肠道免受寄生虫感染,即哺乳动物的神经系统已经进化出双重机制,可快速激活或抑制ILC2,以保护宿主免受各种炎症因子刺激㊂说明神经系统可对免疫系统中的ILC2发挥免疫调控作用,同时提供了治疗寄生虫感染的重要靶点㊂2.4 ILC2与循环系统的关系 循环系统相关研究表明,ILC2可促进B细胞增殖及抗体分泌,该机制主要是由于ILC2细胞产生IL⁃5,引起B细胞增殖并产生天然的IgM发挥抗炎反应[41,42]㊂动脉粥样硬化(atherosclerosis,AS)是导致心血管疾病的主要原因,ILC1细胞存在于AS中,并以TLR4依赖的方式增加促炎细胞因子表达,从而加重AS[43]㊂但ILC2是Th2型细胞因子IL⁃5和IL⁃13的重要来源,IL⁃5和IL⁃13通过不同的机制调控小鼠AS的发展[44]㊂ILC2是限制AS发展的主要细胞类型,通过对缺乏ILC2的小鼠研究发现,内源性ILC2在控制AS进展方面发挥重要作用,这种作用依赖于ILC2产生的IL⁃5和IL⁃13,其他细胞类型产生的IL⁃5和IL⁃13无法弥补ILC2来源的细胞因子(尤其是IL⁃13)的缺乏及其AS的保护作用㊂IL⁃13可通过增加胶原沉积保护斑块发展㊁促进斑块的稳定性,并促使巨噬细胞表型(M1)向选择性活化巨噬细胞(M2)转换,IL⁃5通过抑制巨噬细胞对低密度脂蛋白(LDL)的摄取阻止AS形成㊂实验中高脂肪喂养小鼠,ILC2数量显著降低,并伴随AS加速㊂在AS模型中,每天给予载脂蛋白E缺陷小鼠IL⁃25可大幅增加脾脏中ILC2数量和提高血清中IL⁃5水平,通过扩增ILC2,增加IL⁃5分泌和提高血清中IgM的水平,可限制㊃4762㊃中国免疫学杂志2020年第36卷AS的发展,提示IL⁃25和ILC2分泌的Th2型细胞因子作为抗炎因子可抑制AS发展[45,46]㊂2.5 ILC2与泌尿系统的关系 慢性肾病(chronic kidney disease,CKD)是心血管疾病的主要危险因素,肾小球损伤可导致蛋白尿㊁肾小球硬化及肾功能恶化[47]㊂肾脏纤维化是各种慢性肾脏疾病终末期的病理改变,主要为肾小球硬化和肾间质纤维化㊂肾脏纤维化的主要原因是肾脏各种细胞分化为肌成纤维细胞,过度产生肾细胞外基质,而肾细胞外基质的过度堆积可引发肾脏纤维化㊂研究证明IL⁃33受体ST2阳性ILC2是健康人及小鼠肾脏的主要ILC 亚型,IL⁃33是一种扩增组织ILC2的治疗方法,ILC2定位于上皮细胞附近,并对受损或者死亡上皮细胞释放的细胞因子报警信号做出反应[48]㊂肾脏组织发生炎症时,给予IL⁃33治疗后,定位于肾脏肾小管间质的ILC2大量扩增,ILC2保护肾脏组织免受进行性损伤的机制包括ILC2分泌的IL⁃5诱导嗜酸性粒细胞增多,并促进组织再生[49];ILC2分泌的IL⁃13诱导巨噬细胞替代活化,可促进肾脏组织再生,进而可防止进展性肾小球硬化和肾功能丧失[50,51]㊂ILC2对肾损伤模型有促进修复作用,课题组在肾缺血再灌注中发现IL⁃25及IL⁃33诱导的ILC2增多可减少肾缺血再灌注损伤,与之前Hams等[33]提出IL⁃25诱导ILC2释放的IL⁃13可驱动血吸虫感染的肺纤维化模型胶原沉积的结论相左,但考虑到其模型为血吸虫感染肉芽肿纤维化模型,与无病原体的肾缺血再灌注存在巨大差异,课题组认为ILC2极有可能是一把双刃剑,这种作用依赖于器官特异性㊁病程或者其他应激因素[52⁃54]㊂近期研究发现了一种混合免疫调节细胞因子IL⁃233(IL⁃2和IL⁃33的混合细胞因子),可增强Treg和ILC2的功能,防止肾损伤㊂接受IL⁃233治疗的小鼠在所有方案中都表现出不良反应减少㊁肾脏损伤和肾纤维化程度降低㊂即使在小鼠阿霉素注射2周后给予IL⁃233,也能完全恢复肾功能,同时减少促炎因子,增加抗炎因子㊂Treg和ILC2都具有产生双调蛋白的机制,并有助于损伤的上皮细胞再生,即IL⁃233是治疗肾炎的有效策略,增强Treg和ILC2不仅可以抑制肾损伤,还可以促进组织再生[55]㊂因此,ILC2作为治疗肾纤维化的靶点,为临床治疗肾病肾间质纤维化提供理论依据㊂2.6 ILC2与其他疾病的关系 研究发现,关节炎患者的血液和关节组织中ILC2明显增加,且与疾病严重程度呈负相关㊂在动物关节炎模型中,过继性输入ILC2可显著减轻关节炎,该机制通过ILC2分泌的IL⁃4/13发挥作用,IL⁃4/13可以抑制巨噬细胞功能,相应地减少促炎细胞因子IL⁃1β和TNF⁃α的分泌,从而缓解关节炎[56]㊂ILC2与关节组织中调节性T细胞(Treg)密切相关,其可以通过分泌IL⁃9促进Treg活化从而发挥抗炎作用㊂缺乏IL⁃9可导致ILC2诱导的Treg增殖和活化功能受损,导致慢性关节炎,提示ILC2在关节炎症方面发挥重要作用[57]㊂3 展望ILC2在不同的炎症性疾病中扮演不同角色,既往研究发现人和小鼠肠道中的ILC2存在丰富的β2⁃肾上腺素能受体,当机体发生感染,肠道中的肾上腺素能神经元会产生大量肾上腺素,后者与小肠ILC2中的β2⁃肾上腺素能受体结合,抑制ILC2的增殖,减弱2型免疫反应,从而保护寄生虫㊂课题组根据以上结论猜测,β2⁃肾上腺素可能在阻塞性肾病中与肾脏组织ILC2中的β2⁃肾上腺素能受体结合,抑制ILC2增殖,β2⁃肾上腺素可能会改善肾纤维化进程㊂相应的肠道发生感染时,来源于肠道中的ILC2依赖S1P介导的趋化反应,通过淋巴管上皮细胞进入淋巴管并通过血液循环迁移至外周组织分泌Th2型细胞因子发挥抗炎作用,那么肾炎患者肾组织中的ILC2能否也依赖S1P介导的趋化作用发挥抗炎效应,最终改善肾炎引发的一系列疾病仍有待验证㊂参考文献:[1] Von MJ,O′Leary CE,Braett NA,et al.Leukotrienes provide anNFAT⁃dependent signal that synergizes with IL⁃33to activateILC2s[J].J Exp Med,2017,214(1):27⁃37.[2] Klose CS,Artis D.Innate lymphoid cells as regulators of immunity,inflammation and tissue homeostasis[J].Nat Immunol,2016,17(7):765.[3] Nagasawa M,Germar K,Blom B,et al.Human CD5+innatelymphoid cells are functionally immature and their development from CD34+progenitor cells is regulated by Id2[J].Front Immunol,2017,8:1047.[4] Eberl G,Di Santo JP.The brave new world of innate lymphoid cells[J].Nat Immunol,2015,16:1⁃5.[5] Bernink JH,Peters CP,Munneke M,et al.Human type1innatelymphoid cells accumulate in inflamed mucosal tissues[J].NatImmunol,2013,14(3):221⁃229.[6] 王宪伟,田志刚.记忆性ILCs研究进展[J].中国免医学杂志,2019,35(7):769⁃775.Wang XW,Tian ZG.Immunological memory of innate lymphoid cells[J].Chin J Immunol,2019,35(7):769⁃775.[7] Cherrier M,Sawa S,Gérard E.Notch,Id2,and RORγsequentiallyorchestrate the fetal development of lymphoid tissue inducer cells㊃5762㊃毋梦林等 ILC2在炎症性疾病中作用的研究进展 第21期[J].J Exp Med,2012,209(4):729⁃740.[8] Salimi M,Xue L,Jolin H,et al.Group2innate lymphoid cellsexpress functional NKp30receptor inducing type2cytokineproduction[J].J Immunol,2016,196(1):45⁃54.[9] Sonnenberg GF,Monticelli LA,Alenghat T,et al.Innate lymphoidcells promote anatomical containment of lymphoid⁃resident commensal bacteria[J].Science,2012,336(6086):1321⁃1325.[10] Gladiator A,Wangler N,Trautwein⁃Weidner K,et al.Cutting edge:IL⁃17⁃secreting innate lymphoid cells are essential for hostdefense against fungal infection[J].J Immunol,2013,190(2):521⁃525.[11] Bernink JH,Germar K.The role of ILC2in pathology of type2in⁃flammatory diseases[J].Curr Opin Immunol,2014,31:115⁃120.[12] Cording S,Medvedovic J,Aychek T.Innate lymphoid cells indefense,immunopathology and immunotherapy[J].Nat Immunol,2016,17(7):755⁃757.[13] Yagi R,Zhong C,Northrup DL,et al.The transcription factorGATA3is critical for the development of all IL⁃7Rα⁃expressinginnate lymphoid cells[J].Immunity,2014,40(3):378⁃388.[14] Moro K,Kabata H,Tanabe M,et al.Interferon and IL⁃27antagonize the function of group2innate lymphoid cells and type2innate immune responses[J].Nat Immunol,2016,17(1):76⁃86.[15] Liu T,Barrett NA,Kanaoka Y,et al.Type2cysteinyl leukotrienereceptors drive IL⁃33⁃dependent type2immunopathology andaspirin sensitivity[J].J Immunol,2017,200(3):915⁃927. [16] Salimi M,Stöger L,Liu W,et al.Cysteinyl leukotriene E4activates human ILC2s and enhances the effect of prostaglandinD2and epithelial cytokines[J].J Allergy Clin Immunol,2017,140(4):1090⁃1100.[17] Trabanelli S,Gomez⁃Cadena A,SaloméB,et al.Human innatelymphoid cells(ILCs):Toward a uniform immune⁃phenotyping[J].Cytometry B Clin Cytom,2018,94(3):392⁃399. [18] Maric J,Ravindran A,Mazzurana L.Prostaglandin esuppresseshuman group2innate lymphoid cell function[J].J Allergy ClinImmunol,2018,141(5):1761⁃1773.[19] Konya V,Mjösberg J.Lipid mediators as regulators of human ILC2function in allergic diseases[J].Immunol Lett,2016,179:36⁃42.[20] Webb LM.The role of rare innate immune cells in Type2immuneactivation against parasitic helminths[J].Parasitology,2017,144(10):1288⁃1301.[21] Laffont S,Blanquart E,Guéry JC.Sex⁃bias in allergic asthma:Androgens and group2innate lymphoid cells[J].Med Sci(Paris),2018,34:247⁃252.[22] Malhotra N,Leyva⁃Castillo JM,Jadhav U,et al.RORα⁃expressingT regulatory cells restrain allergic skin inflammation[J].SciImmunol,2018,3(21):eaao6923.[23] Huang Y,Paul WE.Inflammatory group2innate lymphoid cells[J].Int Immunol,2016,28(1):23⁃28.[24] Huang Y,Guo L,Qiu J,et al.IL⁃25⁃responsive,lineage⁃negativeKLRG1hi cells are multipotential"inflammatory"type2innatelymphoid cells[J].Nat Immunol,2014,16(2):161⁃169. [25] Monticelli LA,Osborne LC,Noti M,et al.IL⁃33promotes aninnate immune pathway of intestinal tissue protection dependenton amphiregulin⁃EGFR interactions[J].Proc Natl Acad Sci U SA,2015,112(34):10762⁃10767.[26] Huang Y,Mao K,Chen X,et al.S1P⁃dependent interorgantrafficking of group2innate lymphoid cells supports host defense[J].Science,2018,359(6371):114⁃119.[27] Wang S,Xia P,Chen Y,et al.Regulatory innate lymphoid cellscontrol innate intestinal inflammation[J].Cell,2017,171:201⁃216.[28] Monticelli LA,Buck MD,Anne⁃Laure F,et al.Arginase1is aninnate lymphoid cell⁃intrinsic metabolic checkpoint controllingtype2inflammation[J].Nat Immunol,2016,17(6):656⁃665.[29] Arpaia N,Green J,Moltedo B,et al.A distinct function ofregulatory T cells in tissue protection[J].Cell,2015,162(5):1078⁃1089.[30] Xu H,Xu J,Xu L.Interleukin⁃33contributes to ILC2activationand early inflammation⁃associated lung injury during abdominalsepsis[J].Immunol Cell Biol,2018,96:935⁃947. [31] Turner JE,Morrison PJ,Wilhelm C,et al.IL⁃9⁃mediated survivalof type2innate lymphoid cells promotes damage control inhelminth⁃induced lung inflammation[J].J Exp Med,2013,210(13):2951⁃2965.[32] Lei AH,Xiao Q,Liu GY,et al.ICAM⁃1controls development andfunction of ILC2[J].J Exp Med,2018,215(8):2157⁃2174.[33] Hams E,Armstrong ME,Barlow JL,et al.IL⁃25and type2innatelymphoid cells induce pulmonary fibrosis[J].Proc Natl Acad SciU S A,2014,111(1):367⁃372.[34] Lee TJ,Fu CH,Wang CH,et al.Impact of chronic rhinosinusitis onsevere asthma patients[J].PLoS One,2017,12(2):e0171047.[35] Gon Y,Hashimoto S.Role of airway epithelial barrier dysfunctionin pathogenesis of asthma[J].Allergol Int,2018,67:12⁃17.[36] Song Y,Wu Y,Li X,et al.Protostemonine attenuates alternativelyactivated macrophage and DRA⁃induced asthmatic inflammation[J].Biochem pharmacol,2018,155:198⁃206. [37] Kadel S,Ainsua⁃Enrich E,Hatipoglu I,et al.A major populationof functional KLRG1⁃ILC2s in female lungs contributes to a sexbias in ILC2numbers[J].Immunohorizons,2018,2:74⁃86. [38] Wu Y,Yan Y,Su Z,et al.Enhanced circulating ILC2s accompanyby upregulated MDSCs in patients with asthma[J].Int J Clin ExpPathol,2015,8:3568⁃3579.[39] Moriyama S,Brestoff JR,Flamar AL,et al.β2⁃adrenergicreceptor⁃mediated negative regulation of group2innate lymphoidcell responses[J].Sci,2018,359(6379):1056⁃1061. [40] Klose CSN,Mahlakoiv T,Moeller JB,et al.The neuropeptide neu⁃romedin U stimulates innate lymphoid cells and type2inflammation[J].Nature,2017,549(7671):282⁃286. [41] Li YD,Iijima K,Bartemes K,et al.Group2innate lymphoid cellspromote an early antibody response to a respiratory antigen inmice[J].J Immunol,2016,197:1335⁃1342.[42] Perry HM,Oldham SN,Fahl SP,et al.Helix⁃loop⁃helix factorinhibitor of differentiation3regulates interleukin⁃5expression andB⁃1a B cell proliferation[J].Arterioscler Thromb Vasc Biol,2013,33(12):2771⁃2779.(下转第2680页)endow stem⁃like qualities to multiple myeloma cells by inducingpiRNA⁃823expression and DNMT3B activation[J].Mol Cancer,2019,18(1):88.[23] Rosser EC,Mauri C.Regulatory B cells:Origin,phenotype,andfunction[J].Immunity,2015,42(4):607⁃612. [24] Zhang L,Tai Y,Ho M,et al.Regulatory B cell⁃myeloma cellinteraction confers immunosuppression and promotes their survivalin the bone marrow milieu[J].Blood Cancer J,2017,7(3):e547.[25] Noonan K,Borrello I.The immune microenvironment of myeloma[J].Cancer Microenviron,2011,4:313⁃323.[26] Tai YT,Acharya C,An G,et al.APRIL and BCMA promotehuman multiple myeloma growth and immunosuppression in thebone marrow microenvironment[J].Blood,2016,127(25):3225⁃3236.[27] Tai YT,Lin L,Xing LJ,et al.APRIL signaling via TACI mediatesimmunosuppression by T regulatory cells in multiple myeloma:Therapeutic implications[J].Leukemia,2019,33(2):426⁃438.[28] Ozerova M,Nefedova YL.Estrogen promotes multiple myelomathrough enhancing the immunosuppressive activity of MDSC[J].Leuk Lymphoma,2019,60(6):1557⁃10562.[29] Norde WJ,Hobo W,van der Voort R,et al.Review articleCoinhibitory molecules in hematologic malignancies:Targets fortherapeutic intervention[J].Blood,2012,120(4):728⁃736.[30] Tamura H,Ishibashi M,Yamashita T,et al.Marrow stromal cellsinduce B7⁃H1expression on myeloma cells,generating aggressivecharacteristics in multiple myeloma[J].Leukemia,2013,27(2):464⁃472.[31] Moreaux J,Hose D,Reme T,et al.CD200is a new prognosticfactor in multiple myeloma[J].Blood,2014,108(13):4194⁃4198.[32] Ishibashi M,Tamura H,Sunakawa M,et al.Myeloma drugresistance induced by binding of myeloma B7⁃H1(PD⁃L1)toPD⁃1[J].Cancer Immunol Res,2016,4(9):779⁃788. [33] de Haart SJ,van de Donk NWCJ,Minnema MC,et al.Accessorycells of the microenvironment protect multiple myeloma from T⁃cell cytotoxicity through cell adhesionmediated immune resistance[J].Clin Cancer Res,2013,19(20):5591⁃5601. [34] de Haart SJ,Holthof L,Noort WA,et al.Sepantronium bromide(YM155)improves daratumumab⁃mediated cellular lysis ofmultiple myeloma cells by abrogation of bone marrow stromal cell⁃induced resistance[J].Haematologica,2016,101(8):e339⁃e342.[35] Bonanno G,Mariotti A,Procoli A,et al.Indoleamine2,3⁃dioxygenase1(IDO1)activity correlates with immune system ab⁃normalities in multiple myeloma[J].J Transl Med,2012,10:1⁃17.[36] Yan HM,Dong MM,Liu XL,et al.Multiple myeloma cell⁃derivedIL⁃32γincreases the immunosuppressive function of macrophagesby promoting indoleamine2,3⁃dioxygenase(IDO)expression[J].Cancer Lett,2019,446:38⁃48.[37] Klippel ZK,Chou J,Towlerton AM,et al.Immune escape fromNY⁃ESO⁃1⁃specific T⁃cell therapy via loss of heterozygosity in theMHC[J].Gene Ther,2014,21(3):337⁃342.[38] Racanelli V,Leone P,Frassanito MA,et al.Alterations in theantigen processing⁃presenting machinery of transformed plasmacells are associated with reduced recognition by CD8+T cells andcharacterize the progression of MGUS to multiple myeloma[J].Blood,2018,115(6):1185⁃1194.[收稿2019⁃05⁃05](编辑 陈 阳 刘格格)(上接第2676页)[43] Wu C,He S,Liu J,et al.Type1innate lymphoid cell aggravationof atherosclerosis is mediated through TLR4[J].Scand JImmunol,2018,87(5):e12661.[44] Newland SA,Mohanta S,Clément M,et al.Type⁃2innatelymphoid cells control the development of atherosclerosis in mice[J].Nat Commun,2017,8:15781.[45] Engelbertsen D,Foks AC,Alberts⁃Grill N,et al.Expansion ofCD25+innate lymphoid cells reduces atherosclerosis[J].Arterioscler Thromb Vasc Biol,2015,35:2526⁃2535. [46] Mantani PT,Dunér P,Bengtsson E,et al.IL⁃25inhibitsatherosclerosis development in apolipoprotein E deficient mice[J].PLoS One,2015,10(1):e0117255.[47] Frese J,Kettwig M,Zappel H,et al.Kidney injury by variants inthe gene aggravated by polymorphisms in slit diaphragm genescauses focal segmental glomerulosclerosis[J].Int J Mol Sci,2019,20(3):519.[48] Moro K,Yamada T,Tanabe M,et al.Innate production of TH2cytokines by adipose tissue⁃associated c⁃Kit+Sca⁃1+lymphoidcells[J].Nature,2010,463(7280):540⁃544.[49] Heredia JE,Mukundan L,Chen FM,et al.Type2innate signalsstimulate fibro/adipogenic progenitors to facilitate muscleregeneration[J].Cell,2013,153(2):376⁃388. [50] Besnard AG,Guabiraba R,Niedbala W,et al.IL⁃33⁃mediatedprotection against experimental cerebral malaria is linked toinduction of type2innate lymphoid cells,M2macrophages andregulatory T cells[J].PLoS Pathog,2015,11(2):e1004607.[51] Riedel JH,Becker M,Kopp K,et al.IL⁃33⁃mediated expansion oftype2innate lymphoid cells protects from progressiveglomerulosclerosis[J].J Am Soc Nephrol,2017,28(7):2068⁃2080.[52] Cao Q,Wang Y,Niu Z,et al.Potentiating tissue⁃resident type2innate lymphoid cells by IL⁃33to prevent renal ischemia⁃reperfusion injury[J].J Am Soc Nephrol,2018,29(3):961⁃976..[53] Huang Q,Niu Z,Tan J,et al.IL⁃25elicits innate lymphoid cellsand multipotent progenitor type2cells that reduce renalischemic/reperfusion injury[J].J Am Soc Nephrol,2015,26(9):2199⁃2211.[54] Qian X,Chen H,Wu X,et al.Interleukin⁃17acts as double⁃edgedsword in anti⁃tumor immunity and tumorigenesis[J].Cytokine,2017,89(6):34⁃44.[55] Sabapathy V,Cheru NT,Corey R,et al.A novel hybrid cytokineIL233mediates regeneration following doxorubicin⁃inducednephrotoxic injury[J].Sci Rep,2019,9(1):3215. [56] Omata Y,Frech M,Primbs T,et al.Group2innate lymphoid cellsattenuate inflammatory arthritis and protect from bone destructionin mice[J].Cell Rep,2018,24(1):169⁃180. [57] Rauber S,Luber M,Weber S,et al.Resolution of inflammation byinterleukin⁃9⁃producing type2innate lymphoid cells[J].NatMed,2017,23(8):938⁃944.[收稿2019⁃04⁃04 修回2019⁃07⁃08](编辑 陈 阳)。
NK 细胞代谢途径及其功能于雅婷 张建 (山东大学药学院免疫药物学研究所,济南 250012)中图分类号 R392.9 文献标志码 A 文章编号 1000-484X (2024)01-0021-10[摘要] NK 细胞是固有免疫系统的重要成员,在免疫应答中发挥关键作用。
NK 细胞激活主要依赖于其表面表达的活化性受体和抑制性受体间的动态平衡。
然而,在许多慢性疾病模型中,NK 细胞受体表达失衡,导致杀伤活性及细胞因子产生能力降低,处于免疫失活状态。
近年许多研究表明,胞内代谢对包括NK 细胞在内的免疫细胞至关重要,代谢改变能够通过影响细胞发育、增殖和活性等调节免疫细胞效应功能发挥。
鉴于NK 细胞强大的抗肿瘤和抗病毒功能及其重要的临床应用价值,深入研究其代谢特征及机制具有重要意义。
本文主要从NK 细胞的代谢方式及其相关调控通路、代谢对NK 细胞发育、记忆和功能的调控作用以及基于代谢的NK 细胞疗法进行综述,阐述代谢对NK 细胞生物合成、体内稳定及效应功能的重要作用,以及不同慢性疾病模型中NK 细胞失活的代谢相关因素,为NK 细胞治疗的临床应用提供坚实的研究依据。
[关键词] NK 细胞;免疫失活;代谢;细胞治疗Metabolism and function of NK cellsYU Yating , ZHANG Jian. Institute of Immunopharmaceutical Sciences , School of Pharmaceutical Sciences , Shan⁃dong University , Jinan 250012, China[Abstract ] NK cells are important components of innate immune system and play a key role in immune responses. Activation of NK cells mainly depends on dynamic balance between activatory and inhibitory receptors expressed on surface. However , in many chronic diseases , balance between these receptors of NK cells is disorder , resulting in reduced cytolysis activity and cytokine produc‐tion , which is in a state of immune inactivation. In recent years , many studies have shown that intracellular metabolism is crucial for immune cells such as NK cells , and changes of metabolism will regulate functions of immune cells by affecting cell development , pro‐liferation and activity. In view of powerful anti -tumor and anti -viral effects of NK cells and their important clinical application value , it is important to study their metabolic characteristics and mechanisms. This review mainly introduces metabolic patterns of NK cell ,related regulatory pathways , regulatory effects of metabolism on NK cell development , memory and functions , and metabolism -based NK cell therapy , also expounds important role of metabolism on NK cell biosynthesis , stability and effector function in vivo , as well as metabolism -related factors involved in NK cell inactivation in different chronic diseases , providing a solid research basis for clinical application of NK cell therapy.[Key words ] NK cells ;Immune inactivation ;Metabolism ;Cell therapydoi :10.3969/j.issn.1000-484X.2024.01.003基金项目:国家重点研发计划(2021YFC2300603)。
中医药治疗慢性疲劳综合征的作用机制研究进展*马菲1,张建宾2,马永利3,王晓宇3,李华南4**(1.天津市中医药研究院附属医院科教科,天津300120;2.天津市中医药研究院附属医院针灸科,天津300120;3.天津中医药大学研究生院,天津300193;4.天津中医药大学第一附属医院推拿科,天津300193)摘要慢性疲劳综合征(Chronic fatigue syndrome,CFS)是一种以多种因素刺激引起的持续性躯体和精神双重疲劳为主要表现的一组症候群。
作为临床常见病,该病严重影响着患者的身心健康和生活质量,给家庭和社会造成了沉重的经济负担。
近年来,随着科学技术的进步,人们对CFS的发病机制认识逐渐加深,其治疗手段也得到了极大丰富。
特别是中医药疗法的运用,弥补了现代医学治疗手段的不足。
目前,已知的CFS发生与人体多系统功能异常相关,特别是与神经-内分泌-免疫系统功能及能量代谢等密切相关。
本文综述近年来发表的中医药治疗CFS机制研究相关文章,拟为学界了解目前研究进展提供便利。
同时,对今后学者研究给予一定的建议,希望为未来研究提供新的借鉴与参考,以飨学者。
关键词:慢性疲劳综合征;中医药疗法;作用机制;研究进展中图分类号:R255.5文章标识码:A文章编号:1006-978X(2020)05-0073-04CFS是以患者出现不明原因的严重倦怠感为主要特征,同时伴有抑郁、焦虑、体重下降等症状的疾病,影响患者正常工作[1]。
流行病学显示,目前在全世界范围内,CFS患病率是0.1% 5%,其中多以20岁 40岁女性为主[2]。
近年随着生活节奏加快、工作压力增大,其患病率逐年上升。
本病若得不到积极和及时的治疗,易引发免疫、心血管、神经及内分泌等多系统疾病,严重影响患者生活质量,给患者家庭和社会带来沉重的负担。
目前,现代医学对CFS的病因和发病机制尚未完全阐明,医学界普遍认为,CFS的发生与慢性应激、心理、病毒感染、免疫功能失调、遗传等因素有关[3]。
NK细胞活性检测的原理及应用引言自然杀伤细胞(NK细胞)作为一种重要的免疫细胞,在机体的免疫防御中扮演着重要的角色。
NK细胞不仅可以杀死肿瘤细胞和感染病原体的细胞,还可以调节和激活其他免疫细胞的功能。
因此,研究NK细胞的活性对于预防和治疗肿瘤、感染疾病等免疫相关疾病具有重要的意义。
本文将详细介绍NK细胞活性检测的原理及其在临床和科研中的应用。
原理NK细胞的活性可以通过多种方法进行检测,其中最常用的方法是使用细胞毒性检测。
细胞毒性检测主要分为两种方法:靶细胞直接杀伤法和溶血/变性法。
靶细胞直接杀伤法靶细胞直接杀伤法是通过将靶细胞与NK细胞一起培养,观察并计算靶细胞的存活率来评估NK细胞的活性。
具体步骤如下: 1. 将靶细胞和NK细胞分别培养在细胞培养基中。
2. 将培养好的NK细胞与靶细胞按照不同的比例混合。
3. 经过一定时间的培养后,观察并计算靶细胞的存活率,即可评估NK细胞的杀伤活性。
溶血/变性法溶血/变性法是通过观察和测量NK细胞对溶血红细胞的溶血能力来评估NK细胞的活性。
具体步骤如下: 1. 准备一定浓度的溶血红细胞悬液。
2. 将溶血红细胞悬液与NK细胞按照不同的比例混合。
3. 经过一定时间的孵育,离心沉淀红细胞。
4. 通过测量上清液的吸光度来计算溶血率,即可评估NK细胞的杀伤活性。
应用NK细胞活性检测在临床和科研中都具有广泛的应用。
临床应用在临床中,检测患者的NK细胞活性可以帮助医生评估患者的免疫状态和疾病进展情况,从而制定更合理的治疗方案。
常见的临床应用包括: - 评估抗肿瘤免疫治疗的疗效:通过监测患者的NK细胞活性,可以评估抗肿瘤免疫治疗的疗效,指导治疗方案的调整。
- 检测传染病的免疫性:通过检测患者的NK细胞活性,可以评估患者对于传染病的免疫性,指导预防和治疗。
- 评估移植排斥反应:通过监测移植患者的NK细胞活性,可以评估移植排斥反应的发生和程度,指导治疗和预防。
科研应用在科研领域,NK细胞活性检测可以帮助研究人员深入了解NK细胞的免疫功能和机制,从而为免疫治疗的研发提供理论依据和实验数据。