基于修正荷载传递法的嵌岩灌注桩轴向承载有限元模拟方法
- 格式:pdf
- 大小:2.63 MB
- 文档页数:7
嵌岩桩单桩承载力计算嵌岩桩是一种常用的基础工程结构,用于承受建筑物或其他结构的荷载和抵抗下沉。
嵌岩桩的承载力计算是评估桩基承载性能和确定合适桩基尺寸的关键步骤。
本文将介绍嵌岩桩单桩承载力计算的方法和步骤。
嵌岩桩的承载力计算可以使用多种方法,其中包括静力法、动力法和经验法。
在计算之前,需要对桩基所处的地层和岩层进行详细的地质勘探和岩石力学性质测试,以获取必要的参数和数据。
静力法是最常用的一种计算嵌岩桩承载力的方法。
其基本原理是根据桩身埋入岩层的深度和桩侧摩阻力的大小来计算承载力。
具体步骤如下:1.静负荷试验:根据设计要求,在嵌岩桩处施加静力载荷,记录不同载荷下的桩沉降和桩身竖向和水平方向的应变。
这些数据将用于计算桩的侧摩阻力的大小。
2.摩阻力计算:静负荷试验结果可以用来确定桩侧摩阻力的大小。
常用的方法有半经验公式法、皮尔森法和阿伯特法等。
这些方法根据桩侧摩阻力和桩身埋入深度之间的关系,以及侧摩阻力潜在产生的机制,进行参数拟合,并计算出摩阻力的大小。
3.桩端阻力计算:桩端的承载力是嵌岩桩的另一个重要参数。
常用的计算方法有桩尖阻力计算法、桥梁法和弯曲截面法等。
这些方法要考虑桩端的摩擦力和桩尖的抗剪强度,以及桩的侧面积分效应,计算出桩端的承载力。
4.承载力计算:综合考虑桩侧摩阻力和桩端阻力的大小,可以计算出嵌岩桩的承载力。
常用的计算公式有楼氏公式、安藤公式和岩石承载力公式等。
这些公式根据桩的几何形状和土木结构特性,以及地层和岩体的物理力学性质,进行参数拟合,并计算出桩的承载力。
静力法计算嵌岩桩承载力的过程较为复杂,需要根据具体条件和要求进行细致的设计和计算。
为了提高计算的准确性和可靠性,可以使用数值模拟方法和有限元分析等辅助手段。
除了静力法,动力法也是一种常用的计算嵌岩桩承载力的方法。
动力法通过分析桩周土体与桩基之间的相互作用,以及振动信号的传播和衰减规律,计算桩的受力状态和承载能力。
动力法包括动力触探法、动力试验法和地震波反射法等,适用于复杂地层和高岩石承载力的情况。
大直径嵌岩桩竖向承载性状理论研究中基本假定的合理性探讨【摘要】大直径嵌岩灌注桩竖向承载性状理论研究一直沿用的基本假定之一是”位移假定”,即假定桩与桩侧相邻土之间的位移协调一致。
通过本文的嵌岩桩竖向抗压静载试验实例研究,发现桩-岩之间产生微小的相对位移,便可得到较大的桩侧摩阻力,表明位移假定只适用于桩-土体系,而不适用于桩-岩体系;同时也表明对长期以来基于位移假定的嵌岩桩设计,在理论的合理性和方案的安全性方面需要重新进行评估。
【关键词】嵌岩桩;承载性状;基本假定;合理性;桩侧摩阻力;桩-岩体系引言大直径嵌岩灌注桩承载性状的研究是桩基础研究的热点问题之一,目前相关的研究仍比较少。
单桩竖向承载性状的理论研究分析方法主要有以下4种[1]:⑴按半无限弹性体理论计算,采用以明特林(mindlin)课题(1936)为基础的多种分析方法;⑵荷载传递分析计算法;⑶剪切变形传递计算法;⑷有限单元分析法。
这些方法均是以弹性理论计算的基本假定之一为基础——假定桩与桩侧相邻土之间的位移协调一致,即桩土之间不产生滑动,桩身某点的位移(桩身截面位移)即为与之相邻点土体的位移(以下简称“位移假定”)。
我国大直径嵌岩灌注桩承载性状的试验研究多基于以上4种方法,基本上可归纳为以下5个方面:⑴嵌岩桩竖向承载力设计计算方法的研究。
如认为承载力实测值与理论设计值经常不符甚或相差较大[2,3],或指出我国近十几年以来常用的嵌岩桩计算方法[4-6]存在的问题,认为规范中的公式不完全适合软岩嵌岩桩,并提出了一些修改建议[7-13];⑵嵌岩桩竖向抗压静载试验荷载确定方法的研究。
如认为单桩竖向抗压静载试验方法[4]存在若干不妥之处,并建议予以修改[14];⑶采用不同的双折线荷载传递函数[15-16]研究嵌岩桩沉降的计算方法;⑷采用有限元分析法研究单桩竖向荷载作用下的嵌岩深度效应。
如指出当嵌岩超过一定深度之后,桩承载力的提高已不明显[17],或当嵌入软质岩石时,嵌岩深度可适当加深[18];⑸嵌岩桩承载性状的研究。
第60卷第1期2024年1月地质与勘探GEOLOGY AND EXPLORATIONVol. 60 No. 1January,2024基于扰动理论修正的桩-土接触面荷载传递模型及其应用王友涛1,谢康2,陈晓斌2,张飞2,郝哲睿2(1.中铁一局,陕西西安200082;2.中南大学土木工程学院,湖南长沙410083)[摘要]利用硬化模型、双曲线模型、指数模型以及软化模型模拟的桩-土接触关系存在参数取值困难、误差大的问题。
为深入研究土-结构接触面的强度与变形机理,基于扰动理论,假定完整状态接触单元的抗剪强度服从线弹性模型,而扰动部位则服从塑性模型,建立修正的桩-土接触面荷载传递模型。
该模型参数分析表明,参数k、η对模型τ-s曲线形态影响大,而参数τf、ζ对模型τ-s曲线形态影响很小;并通过大型桩-土接触面室内直剪试验,量化接触面上剪切应力与剪切位移的关联性,进一步确定修正桩-土接触模型内部计算参数。
结果表明模型τ-s曲线与试验曲线吻合较好,验证了模型的合理性。
扰动桩-土接触模型既能描述桩侧应变软化也能描述硬化特性,有助于理解复杂应力条件下桩-土接触面的强度计算与变形机理。
[关键词]桩-土接触面扰动状态直剪试验荷载传递本构模型[中图分类号]TU473 [文献标识码]A[文章编号]0495-5331(2024)01-0140-08Wang Youtao, Xie Kang, Chen Xiaobin, Zhang Fei, Hao Zherui. Investigation into a modified load transfer model of pile-soil interface based on disturbance theory and its application[J]. Geologyand Exploration, 2024, 60(1): 0140-0147.0 引言桩基础因其具有高承载力、高稳定性、低沉降以及施工快速便捷的特点,被广泛应用于新建构筑物基础(刘睦峰等,2006;秦鹏飞,2017;何忠明等,2019)。
桩基础检测常见问题解答,很详细!常用的桩基检测的主要方法有静载试验、钻芯法、低应变法、高应变法、声波透射法等。
在桩基检测中,各个检测手段需要配合使用,利用各自的特点和优势,按照实际情况,灵活运用各种方法,才能够对桩基进行全面准确的评价。
在检测中我们常会遇到各种问题,以下列出常见30个问题。
1.什么情况下,施工前应采用静载试验确定单桩竖向抗压承载力特征值?检测数量有什么要求?答:当设计有要求或满足下列条件之一时,施工前应采用静载试验确定单桩竖向抗压承载力特征值:(1)设计等级为甲级、乙级的桩基;(2)地质条件复杂、桩施工质量可靠性低;(3)本地区采用的新桩型或新工艺。
检测数量在同一条件下不应少于3 根,且不宜少于总桩数的1%;当工程桩总数在50 根以内时,不应少于2 根。
2.什么情况下,施工前应采用静载试验确定单桩竖向抗压承载力特征值?检测数量有什么要求?答:单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:(1)施工质量有疑问的桩;(2)设计方认为重要的桩;(3)局部地质条件出现异常的桩;(4)施工工艺不同的桩;(5)承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;(6)除上述规定外,同类型桩宜均匀随机分布。
3.混凝土桩的桩身完整性检测的抽检数量应符合那些规定?答:混凝土桩的桩身完整性检测的抽检数量应符合下列规定:(1)柱下三桩或三桩以下的承台抽检桩数不得少于1 根。
(2)设计等级为甲级,或地质条件复杂。
成桩质量可靠性较低的灌注桩,抽检数量不应少于总桩数的30%,且不得少于20 根;其他桩基工程的抽检数量不应少于总桩数的20%,且不得少于10 根。
注:a.对端承型大直径灌注桩,应在上述两款规定的抽检桩数范围内,选用钻芯法或声波透射法对部分受检桩进行桩身完整性检测。
抽检数量不应少于总桩数的10%。
b.地下水位以上且终孔后桩端持力层已通过核验的人工挖孔桩,以及单节混凝土预制桩,抽检数量可适当减少,但不应少于总桩数的10%,且不应少于10 根。
嵌岩桩、端承桩、摩擦桩区别基桩按照《建筑桩基技术规范》JGJ94-2008规定分类1 按承载性状分类:1)摩擦型桩:(广中江-泥岩、碳质页岩等软质岩中的桩均定为摩擦桩,母岩强度小于20MPa较软中风化(如泥质粉砂岩)中的桩也定为摩擦桩)摩擦桩:在承载能力极限状态下,桩顶竖向荷载由桩侧阻力承受,桩端阻力小到可忽略不计;端承摩擦桩:在承载能力极限状态下,桩顶竖向荷载主要由桩侧阻力承受。
2)端承型桩:(广中江-母岩强度不小于20MPa较硬中风化岩(如变粉质砂岩、砾岩、花岗岩)中的桩定为嵌岩桩)端承桩:在承载能力极限状态下,桩顶竖向荷载由桩端阻力承受,桩侧阻力小到可忽略不计;摩擦端承桩:在承载能力极限状态下,桩顶竖向荷载主要由桩端阻力承受。
2 按成桩方法分类:1)非挤土桩:干作业法钻(挖)孔灌注桩、泥浆护壁法钻(挖)孔灌注桩、套管护壁法钻(挖)孔灌注桩;2)部分挤土桩:长螺旋压灌灌注桩、冲孔灌注桩、钻孔挤扩灌注桩、搅拌劲芯桩、预钻孔打入(静压)预制桩、打入(静压)式敞口钢管桩、敞口预应力混凝土空心桩和H 型钢桩;3)挤土桩:沉管灌注桩、沉管夯(挤)扩灌注桩、打入(静压)预制桩、闭口预应力混凝土空心桩和闭口钢管桩。
3 按桩径(设计直径d)大小分类:1)小直径桩:d ≤250mm;2)中等直径桩:250mm< d <800mm;3)大直径桩: d ≥800mm。
桩基础根据其在土中受力情况不同,可分为端承桩和摩擦桩。
端承桩是穿过软弱土层而达到深层坚实土的一种桩,上部结构荷载主要由桩尖阻力来承担; 摩擦桩是完全设置在软弱土层一定深度的一种桩,上部结构荷载要由桩尖阻力和桩身侧面与土之间的摩擦力共同来承担。
建筑基桩穿过覆盖层嵌入基岩中(嵌固于未风化岩中不小于0.5m)称为嵌岩桩。
由于基岩强度较高,压缩性极小,嵌岩桩能提供很高的承载力。
同时嵌岩桩沉降也很小,建筑物沉降在施工过程中便可完成。
由于嵌岩桩具有这些优点,因而在工程设计,尤其是高层建筑及大型构筑物中被广泛采用。
嵌岩桩承载力的影响因素分析及嵌岩深度的探究【摘要】嵌岩桩所处的土层岩层复杂、桩身混凝土质量的不稳定和施工工艺的多样,导致嵌岩桩承载性能复杂,因而也使得人们对嵌岩桩的破坏机理和承载性状的认识不能达成共识和统一。
本文就简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。
【关键词】嵌岩桩承载力影响因素嵌岩深度【Abstract 】Rock-socketed pile soil strata in the complex, pile body concrete quality stability and the construction technology of diversity, cause rock-socketed pile bearing performance complex, making people of rock-socketed piles of failure mechanism and characters of bearing can be reached consensus know and unity. This paper from the simple rock-socketed pile pile length, pile diameter, the pile modulus, include the character, the pile bottom settlings, roughness and factors of rock-socketed pile bearing capacity is analyzed, and the depth of rock-socketed do simple explore and try to construction can play a certain role of theoretical support.【Key Words 】rock-socketed, pile bearing capacity factors, rock-socketed depth目前在施工方面存在以下误区,即一方面不管嵌岩桩长细比的大小、上覆土层的土性、沉渣厚度等,一律将嵌岩桩视为端承桩进行设计;另一方面盲目增加嵌岩深度不考虑基岩的力学性状而采用扩底,结果延长了工期、增加了施工难度,同时由于嵌岩桩单桩承载力高,造价也较高,因此此造成的浪费是惊人的,简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。
强风化花岗岩中嵌岩短桩承载特征原位试验与有限元分析白晓宇;张明义;朱磊;王永洪;王静静【摘要】The bearing behavior and load transfer mechanism of the rock-socketed short pile were studied by the experimental and FEM analysis of two case history of 11 single short piles in weathered rock foundation of Qingdao. The influences of aspect ratio (L/d), rock-socketed length (hr) and bedrock strength (Ep/Er) on bearing behaviors of rock-socketed short were discussed by FEM analysis of bearing characters of large-diameter rock-socketed short piles. The results show that the ultimate bearing capacity of rock-socketed short is higher, and settlement is smaller, which can be satisfied with engineering demands and has high security reserves. Moreover, the change of ultimate bearing capacity of single pile is not obvious with the increase of pile lengths, which proves that the 11 piles are of strong end bearing properties. The pile side friction peak decreases with the increase ofL/d; the pile top settlement increases with the increaseofL/d. Under different rock-socketed lengths, the attenuation law of axial force is consistent; the pile top settlement decreases with the increase ofhr, and the ratio of base resistances to the bearing capacities (Qp/Qu) decreases with the increase ofhr. The pile top settlement increases with the increase ofEp/Er,Qp/Qu increases with the increase of Ep/Er. The research results can provide references for rock-socketed short pile design in similar geological conditions.%通过对青岛地区风化岩地基2个工程11根短桩的原位测试及有限元模拟分析,研究嵌岩短桩的承载性状和荷载传递特征.对大直径嵌岩短桩的承载性状进行有限元模拟,探讨长径比、嵌岩深度及基岩强度对嵌岩短桩承载性能的影响.研究结果表明:风化岩地基中的嵌岩短桩极限承载力高,沉降小,能够满足工程需求并具有较高的安全储备;单桩极限承载力随着桩长的增加变化并不显著,表现出极强的端承性状.嵌岩段桩侧摩阻力峰值随长径比的增大逐渐减小,桩顶沉降随长径比增加而增大;不同的嵌岩深度下,桩身轴力衰减的规律基本相同,随嵌岩深度的增加,桩顶沉降逐渐减小,端阻力在承载力中所占比例(Qp/Qu)逐渐减小;桩顶沉降随桩岩刚度比(Ep/Er)的增加而逐渐增大,而端阻分担的荷载比随Ep/Er的减小逐渐增大.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2017(048)002【总页数】13页(P512-524)【关键词】强风化花岗岩;嵌岩短桩;极限承载力;承载性状;原位测试;有限元【作者】白晓宇;张明义;朱磊;王永洪;王静静【作者单位】青岛理工大学土木工程学院,山东青岛,266033;青岛理工大学蓝色经济区工程建设与安全协同创新中心,山东青岛,266033;青岛理工大学土木工程学院,山东青岛,266033;青岛理工大学蓝色经济区工程建设与安全协同创新中心,山东青岛,266033;青岛理工大学土木工程学院,山东青岛,266033;青岛理工大学土木工程学院,山东青岛,266033;中国建筑第八工程局有限公司青岛分公司,山东青岛,266000【正文语种】中文【中图分类】TU473.1花岗岩、花岗斑岩在青岛分布十分广泛,与其他地区的花岗岩相比,表现出风化程度差异大、局部起伏变化大、埋藏深度变化大、完整性好及承载力高等特性。