第二讲 判别式——二次方程根的检测器
- 格式:doc
- 大小:849.00 KB
- 文档页数:5
加强班求根公式及根的判别式 在解一元二次方程有关问题时,最好能知道根的特点:如是否有实数根,有几个实数根,根的符号特点等。
我们形象地说,判别式是一元二次方程根的“检测器”,在以下几个方面有着广泛的应用:利用判别式,判定方程实根的个数,根的特点;运用判别式,建立等式、不等式,求方程中参数的值或参数的取值范围; 通过判别式,证明与方程相关的代数问题;借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。
例题1 (1)设a,b 是整数,方程02=++b ax x 的一根是324-,则a+b 的值是(2)满足1)1(22=--+n n n 的整数n 有 个。
(全国初中数学竞赛题)例题2 已知0132=+-a a ,那么=++--2219294a a a ( ) A 、3; B 、5; C 、35; D 、65例题3 解关于x 的方程02)1(2=+--a ax x a例题4 设方程04|12|2=---x x ,求满足该方程的所有根之和。
例题 5 设关于x 的二次方程0)2()2()1(222=+++--a a x a x a ○1及0)2()2()1(222=+++--b b x b x b ○2(其中a,b 皆为正整数,且a ≠b )有一个公共根。
求ab ab b a b a --++的值。
例题6(1)关于x 的方程k x k kx 8)18(22-=++有两个不相等的实数根,则k 的取值范围是 ,(2)关于x 的方程012223=-+--a ax ax x 只有一个实数根,则a 的取值范围是例题7 把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入□2x +□x+□=0的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( )A 、不存在;B 、有一组;C 、有两组;D 、多于两组;例题8 已知关于x 的方程02)2(2=++-k x k x(1)求证:无论k 取任何实数值,方程总有实数根。
一元二次方程的根的判别式Ting Bao was revised on January 6, 20021一元二次方程的根的判别式学习指导一、基本知识点:1.根的判别式:对于任何一个一元二次方程ax2+bx+c=0(a≠0)可以用配方法将其变形为:(x+)2=因为a≠0,所以4a2>0,这样一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定。
我们把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,用希腊字母⊿来表示,即⊿=b2-4ac。
一元二次方程ax2+bx+c=0(a≠0),当⊿=b2-4ac>0时,有两个不相等的实数根;当⊿=b2-4ac=0时,有两个相等的实数根;当⊿=b2-4ac<0时,没有实数根。
上述性质反过来也成立。
2.判别式的应用(1)不解方程,判断方程的根的情况;(2)根据方程的根情况确定方程的待定系数的取值范围;(3)证明方程的根的性质;(4)运用于解综合题。
二、重点与难点一元二次方程的根的判别式的性质是初中数学中的一个重要内容,在高中数学中也有重要应用。
正确理解判别式的性质,熟练灵活地运用它,是本节的重点,同时也是难点。
三、例题解析例1不解方程,判断下列方程根的情况(1)2x2-5x+10=0(2)16x2-8x+3=0(3)(-)x2-x+=0(4)x2-2kx+4(k-1)=0(k为常数)(5)2x2-(4m-1)x+(m-1)=0(m为常数)(6)4x2+2nx+(n2-2n+5)=0(n为常数)解:(1)⊿=(-5)2-4×2×10=-55<0∴方程没有实数根(2)⊿=(-8)2-4×16×3=0∴方程有两个相等的实数根(3)⊿=(-)2-4(-)×=5-4+8>0∴方程有两个不相等实根(4)⊿=(-2k)2-4×1×4(k-1)=4k2-16k+16=4(k2-4k+4)=4(k-2)2≥0∴方程有实数根(5)⊿=〔-(4m-1)〕2-4×2×(m-1)=16m2-8m+1-8m+8=16m2-16m+9=4(2m-1)2+5>0∴方程有两个不相等实根(6)⊿=(2n)2-4×4(n2-2n+5)=4n2-16n2+32n-80=-12n2+32n-80=-12(n-)2-<0∴方程没有实数根说明:①解这类题目时,一般要先求出⊿=b2-4ac,然后对⊿=b2-4ac进行化简或变形,使⊿=b2-4ac的符号明朗化,进而说明⊿=b2-4ac的符号情况,得出结论。
一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -2a 的整数倍,则方程的根为整数根.说明: (1)用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.(2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba-<,则此方程的正根小于负根的绝对值. 当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba-<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a =.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m > ③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:①若有理系数一元二次方程有一根a +a a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根.④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =. ⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程; ④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例1】 不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=。
第二讲 一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵道:“师傅给你一件随身法宝——“Δ”,出去闯荡一下吧!”“小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程经见识见识.”守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x 2+2xy +7y 2-10x -18y +19=0,并且问道:“你能说出实数x 、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y 看成已知数,把它整理成关于x 的一元二次方程2x 2+(2y -10)x +(7y 2-18y +19)=0.好哇!因为x 是实数,上面的方程必有实数根,所以Δ≥0,即(2y -10)2-4×2(7y 2-18y +19)≥0,可得(y -1)2≤0,一下子便得到了y =1,再将y =1代人原方程就可得x =2. 小精灵这里用的法宝“Δ”是什么呢?它就是一元二次方程根的判别式.一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根,反过来也成立.知识延伸】例1 已知关于x 的二次方程x ²+p 1x +q 1=0与x 2+p 2x +q 2=0,求证:当p 1p 2=2(q 1+q 2)时,这两个方程中至少有一个方程有实根.证明 设这两个方程的判别式为Δ1,Δ2,则Δ1+Δ2=2212p p +-4(q 1+q 2).∵p 1p 2=2(q 1+q 2),∴Δ1+Δ2=2212p p +-2p 1p 2=(p 1-p 2)2≥0.∴Δ1≥0与Δ2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明Δ1+Δ2≥0;本题还可用反证法来证明,即假设Δ1<0且Δ2<0,则Δ1+Δ2<0,但Δ1+Δ2=(p 1-p 2)2≥0,两者矛盾,从而导出原题结论成立.例2 求函数y =(4-x )+解析 设u =x ,则u >0且y =4+u . ∴(u +x )2=4(x 2+9),即3x 2-2ux +36-u 2=0. ∵x ∈R ,故以上方程有解.∴Δ=(2u )2-4×3×(36-u 2)≥0,即u ≥27. 又u >0,∴u4y x =-+ 的最小值为4+x .好题妙解】佳题新题品味例 已知实数1234,,,a a a a 满足22222124213423()2()0a a a a a a a a a +-+++= ,求证:2213=a a a ⋅ 解析 把已知等式看成关于a 4的方程。
第二讲 判别式——一元二次方程的根的检测器知识纵横 在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等.我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
例题求解【例1】关于x 的方程k x k kx 8)18(22-=++有两个不相等的实数根,则k 的取值范围是 。
(广东省竞赛题)【例2】 已知关于x 的方程02)2(2=++-k x k x ,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形△ABC 的一边长a =1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长。
(荆门市中考题)【例3】关于x 的方程012223=-+--a ax ax x 只有一个实数根,则a 的取值范围是 。
(四川省竞赛题)【例4】若实数a 、b 满足02212=++-b ab a ,则a 的取值范围是( ) A 、2-≤a B 、 2-≤a 或4≥a C 、 4≥a D 、 42≤≤-a(《数学周报》杯全国初中数学竞赛题)【例5】设方程42=+ax x ,只有3个不相等的实数根,求a 的值和相应的3个根. (重庆市竞赛题)学力训练1.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是 。
(芜湖市中考题)2.等腰△AB C 中,AC ,8、AB BC =的长是关于x 的方程0102=+-m x x 的两根,则=m 。
(宁波市中考题)3.关于x 的一元二次方程(m-1)x 2-mx+1=0有两个不相等的实数根,则m 的取值范围是______.4.若关于x 的一元二次方程0132=-+x kx 有实数根,则k 的取值范围是( ) A 、49-≤k B 、0k 49≠-≥且k C 、49-≥k D 、0k 49≠->且k (扬州市中考题)5.已知一直角三角形的三边为a 、b 、c ,∠B=90,那么关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况为( )。
判别式----二次方程根的检测器
【例题求解】
【例1】 已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,那么k 的取值范围是 .
【例2】 已知三个关于y 的方程:02=+-a y y ,012)1(2=++-y y a 和012)2(2=-+-y y a ,若其中至少有两个方程有实根,则实数a 的取值范围是( )
A .2≤a
B .41≤a 或21≤≤x
C .1≥a
D .14
1
≤≤a
【例3】 已知关于x 的方程02)2(2=++-k x k x , (1)求证:无论k 取任何实数值,方程总有实数根;
(2)若等腰三角形△ABC 的一边长a =1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长. 【例4】 设方程42=+ax x ,只有3个不相等的实数根,求a 的值和相应的3个根.
【例5】已知:如图,矩形ABCD 中,AD =a ,DC =b ,在 AB 上找一点E ,使E 点与C 、D 的连线将此矩形分成的三个三角形相似,设AE =x ,问:这样的点E 是否存在?若存在, 这样的点E 有几个?请说明理由.
学力训练
1.已知014=+++b a ,若方程02=++b ax kx 有两个相等的实数根,则k = . 2.若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 . 3.已知关于x 方程0422=++-k x k x 有两个不相等的实数解,化简4422+-+--k k k = . 4.若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )
A .43<m
B .43≤m
C .43>m 且2≠m
D .4
3
<m 且2±≠m
5.已知一直角三角形的三边为a 、b 、c ,∠B =90°,那么关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况为( )
A .有两个相等的实数根
B .没有实数根
C .有两个不相等的实数根
D .无法确定
6.如果关于x 的方程0)1(2)2(2=+---m x m x m 只有一个实数根,那么方程0)4()2(2=-++-m x m mx 的根的情况是( )
A .没有实数根
B .有两个不相等的实数根
C .有两个相等的实数根
D .只有一个实数根
7.在等腰三角形ABC 中,∠ A 、∠B 、∠C 的对边分别为a 、b 、c ,已知3=a ,b 和c 是 关于x
的方程02
1
22=-++m mx x 的两个实数根,求△ABC 的周长.
8.已知关于x 的方程063)2(22=-+-+m x m x (1)求证:无论m 取什么实数,方程总有实数根;
(2)如果方程的两实根分别为1x 、2x ,满足1x =32x ,求实数m 的值.
9.a 、b 为实数,关于x 的方程22=++b ax x 有三个不等的实数根.
(1)求证:0842=--b a ;
(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°; (3)若该方程的三个不等实根恰为一直角三角形的三条边,求a 和b 的值.
10.关于的两个方程03242
=+++m mx x ,0)12(2
2=+++m x m x 中至少有一个方程有实根,则m 的取值范围是 .
11.当a = ,b = 时,方程0)2443()1(2222=++++++b ab a x a x 有实数根.
12.若方程a x x =-52有且只有相异二实根,则a 的取值范围是 .
13.如果关于x 的方程05)2(22=+++-m x m mx 没有实数根,那么关于x 的方程0)2(2)5(2=++--m x m x m 的实根的个数( )
A .2
B .1
C .0
D .不能确定
14.已知一元二次方程02=++c bx x ,且b 、c 可在1、2、3、4、5中取值,则在这些方程中有实数根的方程共有( )
A12个 B .10个 C . 7个 D .5个 15.已知△ABC 的三边长为a 、b 、c ,且满足方程0)(22222=+---b x b a c ax ,则方程根的情况是( ) A .有两相等实根 B .有两相异实根 C .无实根 D .不能确定
16.若a 、b 、c 、d>0,证明:在方程
02212=+++cd x b a x ①;022
1
2=+++ad x c b x ②;02212=+++ab x d c x ③;022
1
2=+++bc x a d x ④中,至少有两个方程有两个不相等的实数根.
17.已知三个实数a 、b 、c 满足0=++c b a ,abc =1,求证:a 、b 、c 中至少有一个大于2
3
·
18.关于x 的方程01)1(2=+--x k kx 有有理根,求整数是的值.
19.考虑方程b a x x =+-22)10(①
(1)若a =24,求一个实数b ,使得恰有3个不同的实数x 满足①式.
(2)若a ≥25,是否存在实数b ,使得恰有3个不同的实数x 满足①式?说明你的结论.
20.如图,已知边长为a 的正方形ABCD 内接于边长为b 的正方形EFGH ,试求a b
的取值范围.
参考答案。