快速成型技术在铸造领域的应用概况(精)
- 格式:ppt
- 大小:477.00 KB
- 文档页数:5
快速成形技术在铸造模具制造中的应用本文的主要研究目的是详细分析了RP(快速形成技术)的相关工艺原理,并简要介绍了RP技术在铸造模具(casting mold)中的相关应用,铸造模具中主要包括的是以下几个方面的磨具:其一,铸造金属模;其二,消失模;其三,木模;其四,蜡模。
笔者将结合相关实践经验,将RP技术在铸造模具中的相关应用进行科学的分析与总结。
标签:快速形成技术;铸造模具;工艺原理随着社会的发展以及经济技术的进步,现代企业需要在最短的时间内把自己的产品投放到市场中去,从而增强市场的竞争力,提高自己的经济效益。
而相关模具的开发时间比较长,制约了产品投放市场的时间,所以必须加强对相关模具的研发力度。
1 快速形成技术(RP)的基本概念快速形成技术(Rapid Prototyping ,RP)也被称为是快速原型制造技术,是一种在材料堆积法的基础上发展出来的一种高新技术,能够最大限度的满足现代企业的相关要求。
RPM集CAD以及机械类的工程技术于一身,可以非常精确以及快速的将设计的思想转变成零件,为零件的制造提供低成本、高效率的保证。
RP技术可以将更多的时间用于相关产品的设计以及完善上面,从而能够在设计的过程中及时的发现相关问题,解决问题,尤其能够解决模具生产的脚步跟不上产品的开发需要等问题。
RP模具在制造的过程中被分为以下例中方法:其一,直接法;其二,间接法。
直接法主要运用的是将快速成型之后的零部件进行有效的处理,举例来说,喷涂原料,制作消失模以及木模等。
间接法主要指的是利用快速成型的母模具或者过渡模具来得到铸件,举例来说,石膏模。
2 快速形成技术(RP)的基本特点RP技术的出现改变了比较传统的模具加工方法,RP有着以下几个方面的特点:其一,制造速度比较快;其二,性能比较稳定;其三,适应市场的速度比较快。
另外,RP技术的相关形成方式与复杂的零件没有直接的关系,可以用于比较复杂的零件制造中。
另外,铸造的工艺本身有着制造成本比较低,工艺活比较繁多,另外不受逐渐的大小以及形状的限制[1]。
快速成型技术在机械铸造中的应用研究发布时间:2021-08-11T16:49:47.813Z 来源:《科学与技术》2021年第29卷3月第9期作者:张斌[导读] 文章先分析了快速成型技术,随后介绍了快速成型技术原理,最后分析了快速张斌纽威工业材料(大丰)有限公司摘要:文章先分析了快速成型技术,随后介绍了快速成型技术原理,最后分析了快速成型技术在机械制造领域中的有效应用,包括直接铸造法、一次转制法、二次转制法,希望能给相关人士提供有效参考。
关键词:快速成型技术;机械铸造;具体应用引言:随着近几年技术发展,科技进步,为快速成型技术进一步发展提供了坚实基础,而快速成型技术作为某种新兴技术,随着技术优化,应用范围变广,受到的关注也越来越多。
通过合理应用此项技术能够有效弥补传统工艺缺陷,减少生产成本,提升整体生产效率,对于我国制造领域发展具有重要作用。
一、快速成型技术分析快速成型技术简称RP技术,融入了计算机辅助技术、CAM技术、CAD技术、网络技术、激光技术和计算机控制技术,进一步突破了传统制造工艺。
其核心技术为材料技术和计算机技术。
快速成型技术转变传统机械加工模式,联系CAD所形成的几何零件新,对三维数控成型系统进行合理控制,利用激光束以及其他方法将各种零件堆积形成。
通过该种方法进行制造,无需额外进行工具、模具设计和机械加工,导致耗时耗力,有效提高了制造柔性和生产效率。
二、快速成型技术原理快速成型技术属于科学制造技术中的主要分支,其在制造方法和制造思想等方面得到了明显突破,同时也使得零件制作性能、质量、大小型号和制作速度等方面取得了明显进步,该技术的基础原理为任意三维零件都可以直接当成多个二维平面顺着某种坐标方向反复叠加形成,为此可以率先对CAD系统中三维实体模型实施离散处理,转化为平面几何信息,通过化学反应、聚合作用、熔结、粘接等方法手段,有选择地逐层固化液体材料,进而通过快速堆积,制作相应零部件。
快速成型技术在铸造中的应用(DOC 10页)快速成型技术在铸造中的应用快速成形制造技术是目前国际上成型工艺中备受关注的焦点。
铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。
充分发挥两者的特点和优势,可以在新产品试制中取得客观的经济效益。
快速成形制造技术是目前国际上成型工艺中备受关注的焦点。
铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。
充分发挥两者的特点和优势,可以在新产品试制中取得客观的经济效益。
快速成形制造技术又称为快速原型制造技术(Rapid Prototyping Manufacturing,简称RPM),是一项高科技成果。
它包括SLS、SLA、SLM等成型方法,集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
与传统制造方法不同,快速RPM技术的特点快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成特定的文件格式,再用相应的软件从文件中“切”出设定厚度的一系列片层,或者直接从CAD文件切出一系列的片层。
这些片层按次序累积起来仍是所设计零件的形状。
然后,将上述每一片层的资料传到快速自动成型机中去,用材料添加法并以激光为加热源,依次将每一层烧结或熔结并同时连结各层,直到完成整个零件。
成型材料为各种可烧结粉末,如石蜡、塑料、低熔点金属粉末或它们的混合粉末。
快速成型技术与传统方法相比具有独特的优越性,其特点如下:1. 方便了设计过程和制造过程的集成,整个生产过程数字化,与CAD模型具有直接的关联性,零件所见即所得,可随时修改、随时制造,缓解了复杂结构零件CAD/CAM过程中CAPP的瓶颈问题。
2. 可加工传统方法难以制造的零件材质,如梯度材质零件、多材质零件等,有利于新材料的设计。
3. 制造复杂零件毛坯模具的周期和成本大大降低,用工程材料直接成形机械零件时,不再需要设计制造毛坯成形模具。
快速成形技术在铸造上的最新发展和应用1.基于快速成形技术的玻璃模具毛坯的快速铸造玻璃器皿是日常生活中广泛使用的生活及装饰用品,玻璃器皿传统的生产方法离不开玻璃模具。
目前我国的玻璃器皿生产厂家很多,玻璃模具的需求量很大,由于玻璃器皿造型日趋个性化的需要,将具有更大的模具市场。
以往在生产玻璃模具毛坯时,多是利用木模或是客户提供的样品来造型,对于复杂曲面形状的玻璃模具来说,生产周期较长,而且不便于铸造生产。
针对这种情况,在西安交通大学生产的快速成型机的基础上,开发了一种基于快速成型的玻璃模具毛坯的快速制造工艺,该工艺利用Pro/E软件进行空间三维造型,可以快速得到玻璃器皿的树脂原型,还可以方便地进行玻璃器皿外形尺寸的修改,在此基础上可以快速铸造玻璃模具的毛坯,而且可使模具毛坯的内腔尺寸精确到零点几毫米级,便于选用电火花加工方法加工模具,缩短模具的加工周期,降低模具的制造成本,尤其适于复杂曲面形状的玻璃模具的制造。
该技术的开发可以满足玻璃器皿生产厂家对玻璃模具的需求,解决长期困扰玻璃器皿生产企业的模具制造问题,有着广泛的应用前景。
用激光快速成形技术制成一个零件的具体步骤包括原型设计、原型分层、数据准备、原型制作和后处理。
2.玻璃器皿原型的制作玻璃模具一般的制作过程是由用户提供玻璃器皿的样品,或是提供设计尺寸开始的,玻璃杯的外观如图1-22所示。
将玻璃杯在ARES10-7-5型三坐标测量/扫描机上测量出CAD的造型尺寸,利用Pro/E软件根据测得的造型尺寸进行三维造型,在造型过程中将测得的造型尺寸中的玻璃杯的高度沿杯口方向延长15 mm,尺寸取与杯口尺寸相同的圆柱型,这是生产工艺要求的,以备玻璃成形以后将其切除。
造型后所得到的三维CAD图像如图1-23所示。
将得到的三维CAD图像模型传送到激光快速成形机的控制计算机中,由分层软件把模型分割成一层层的薄层,然后由快速成形机制得树脂原型如图1-24所示。
3.模具毛坯型芯及木模的制作(1) 利用石膏模制备模具毛坯的型芯选取一长方形的砂箱,将制得的树脂原型横着放入砂箱的型砂中,并使树脂原型的中轴面位于砂箱的分型面的上方2mm处,为的是留下加工余量,如图1-25所示。
第2章快速成型技术及其在铸造中的应用2.1 引言快速成型(Rapid Prototyping-RP)技术是国际上新开发的一项高科技成果,简称快速成型技术。
它的核心技术是计算机技术和材料技术。
快速成型技术摒弃了传统的机械加工方法,根据CAD生成的零件几何信息,控制三维数控成型系统,通过激光束或其它方法将材料堆积而形成零件的。
用这种方法成型,无需进行费时、耗资的模具或专用工具的设计和机械加工,极大地提高了生产效率和制造柔性。
从制造原理上讲,快速成型(RP)技术一改“去除”为“堆积”的加工原理,给制造技术带来了革命性的飞跃式发展。
基于RP原理的快速制造技术经十几年的发展,在创新设计、反求工程、快速制模各方面都有了长足的进步。
RP技术的应用可大大加快产品开发速度,缩短制造周期,降低开发成本。
现代市场竞争的特点是多品种、小批量、短周期,要求企业对市场能快速响应并不断推出新产品占领市场,如新型电话机的市场寿命仅6个月,又如台湾和日本摩托车行业,每三个月就推出一种新型摩托车投入市场,摩托车几万辆就需改型。
二十世纪九十年代以来,在信息互联网支持下,由快速设计、反求工程、快速成形、快速制模等构成的快速制造技术取得很大进展。
快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的Alan J. Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W. Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。
Charles W. Hull 在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。
同年,Charles W. Hull和UVP的股东们一起建立了3D System公司。
快速成型与快速模具技术在汽车试制中的应用赵毅上海联泰科技有限公司引言制造产业是人类社会赖以生存和发展的基础,是社会物质财富的主要来源。
据统计,美国68%的财富来源于制造业,日本国民总产值中49%(1990年)是由制造业提供的,英国在20世纪70年代制造业对于国民总产值的贡献约为35%,我国制造业在国民总产值中所占的比例接近40%,并正在以强劲势头增长。
制造业的水平反映了一个国家或地区的经济实力、科技水平、人民的生活质量及国防能力。
从20世纪90年代开始,市场环境发生了巨大变化。
一方面表现为消费者需求日益主体化、个性化和多样化;另一方面则是产品制造商们都着眼于全球市场的激烈竞争。
面对市场,不但要迅速地设计出符合人们消费需求的产品,而且还必须很快地生产制造出来,抢占市场。
快速响应市场需求,已成为制造业发展的重要走向。
快速成型(也称快速原型)制造技术(Rapid Prototyping & Manufacturing, RP & M )就是在这种背景下逐步形成并得以发展的。
实践证明借助于RP&M技术,企业不但可以优化设计,而且可大大缩短新产品开发周期,降低开发成本,从而提高企业的竞争力,因而RP&M技术的应用迅速推广。
据2001年Wohlers Associates Inc. 对14家RP系统制造商和43家RP服务机构的统计,对RP模型需求的行业中,日用消费品和汽车两大行业对RP的需求占整体需求50%以上,而医学领域的需求增长迅速,其他的学术机构、宇航和军事领域对RP的需求也占有一定的比例。
设计可视化、装配检验与功能模型(Fit / Form / Function)仍然占据着RP模型的主要需求,约占60%,而另一主要应用领域就是快速模具母模的需求。
汽车工业是我国的支柱产业,上海正成为我国汽车制造的重要基地。
中国加入WTO后,国内汽车制造的压力越来越大,汽车的研发变得越来越重要,而试制是汽车研制中的重要一环。
新时期快速成型技术的研究及其在机械铸造中的应用摘要:在目前的国际成型工艺中,快速成型技术已发展为一项专业的技术,成为了人们关注的焦点。
在传统的工艺中,机械铸造以其成本较低、制造灵活性较大的特点被广泛使用。
使用机械铸造可以获得形状较复杂和形状较大的铸件。
因此,结合快速成型和机械铸造能够保证产品生产的经济性和实用性。
关键词:快速成型;机械铸造;应用随着机械制造业的发展,铸造行业面临着新的快速制造问题。
例如:在进行生产单件、小批量零件的制造时要保证制造的柔性和生产成本的使用限度。
在传统的制造工艺中,由于受到技术的限制,很难满足现代化生产的要求,因此,在进行铸造的过程中必须要积极采用先进技术,保证在市场中的占有率和产品质量,提高整体的竞争力。
快速成型技术能够将原有的设计进行进一步的加工和形成实体,在不采用模具的情况下进行形状的塑造。
采用快速成型技术制造出的模型能够使用到产品设计验证和使用功能验证等方面,为产品的设计优化提供更多的参考依据。
保证产品的研制成功率,有效的缩短产品的研发周期,减少研发成本的投入。
一、快速成型技术的原理及方法快速成型技术是高科技研发的新成果,其核心技术在于采用计算机技术和材料技术进行产品生产和加工。
快速成型技术是在原有的机械加工的基础上进行的,利用CAD生成的零件几何信息,对三维数控成型系统进行控制,采用激光等零件形成方法进行零件的加工。
采用快速成型技术能够有效地缩短生产时间,降低模具的生产费用,提高产品的生产效率和质量。
快速成型技术是先进制造技术中的重要组成部分,在制造方法和制造工艺中有着重要的突破,并且在很大程度上提升了产品的质量和性能,加快了产品的生产速度,整体推动了制造工艺的发展。
快速成型的基本原理是依据三维零件是由二维平面沿着同一的坐标方向逐渐叠加而成的,因此在进行分析时,可将三维实体进行分离,在平面中进行信息的分析,综合采用粘连、熔结的方法进行材料的连接。
其采用的主要制造方式是在工件中加入新的材料,至零件成型。
PCM快速成型工艺在铸造中的应用一、PCM快速成型工艺法的成型原理PCM(Patternless Casting Modeling)工艺,是将RP理论扩展到树脂砂造型工艺中,采用轮廓扫描喷射固化工艺,实现了无模型铸型的快速制造。
它的具体实施过程是将所设计零件的三维计算机图像进行处理,抽取出实体三维砂芯模型,将实体三维砂芯模型转换为一系列很薄的模样截面轮廓数据,生成控制信息。
然后在PCM快速成型机上控制树脂喷头向芯砂表面均匀施洒树脂,完成一层后预热加速模型固化。
i二、PCM工艺法制作S2000气缸盖工艺方案1. 前处理过程首先规划和设计铸型,即确定工艺参数、选取最优加工方向、设计浇注系统等。
对设计的S2000气缸盖产品进行适当余量补正,并将产品的三维模型转换成铸型的三维模型,然后由铸型三维数据得到分层截面轮廓数据,再以层面信息产生控制信息。
2.成型过程1)辊制芯砂,按照辊砂工艺,在辊砂机内加入原砂和自硬固化剂,树脂加入1.6%~2.2%,固化剂按树脂的30%~50%,原砂与固化剂预辊约20s,辊制后加入PCM快速成型机砂斗内待用。
2)如图1所示,需要成型时,用铺砂机构将辊制好的芯砂均匀铺撒在砂箱表面,每层厚度约0.2mm~0.5mm。
制作过程中发现,0.2mm~0.5mm的层厚,在气道上会产生台阶效应,所以气道制作完成后需修光滑。
图1 将辊制好的砂均匀铺撒在表面3)如图2所示,树脂喷头由线性导轨数码电机控制在平面上移动,先扫描模型边界,再扫描行腔部位,喷头可以按照0°,30°,90°等不同的角度进行喷射树脂。
树脂与催化剂发生胶联反应,树脂和催化剂共同作用的地方芯砂被固化在一起,其他地方芯砂仍为颗粒态干砂,从而构成零件的一个薄层,完成一层后预热加速模型固化(由线性导轨数码电机控制,中间安放电热管,一趟来回10s左右)。
图2 线性导轨数码树脂喷头4)固化完一层后重复工艺再黏接下一层,所有层面黏接完之后就可以得到一个三维实体铸型,清理出铸型中间未固化的干砂就可以得到一个有一定壁厚的铸型,如图3所示。