2018年北京市大兴区初三一模数学试卷(有答案)
- 格式:doc
- 大小:3.47 MB
- 文档页数:14
一、选择题(每题4分,共20分)1. 若方程 \(2x + 3 = 7\) 的解为 \(x = 2\),则方程 \(4x + 6 = \) 的解为()A. 1B. 2C. 3D. 4答案:B解析:由原方程可知 \(2x = 7 - 3\),即 \(2x = 4\),所以 \(x = 2\)。
将\(x = 2\) 代入 \(4x + 6\) 得 \(4 \times 2 + 6 = 8 + 6 = 14\),因此 \(4x + 6 = 14\)。
2. 下列数中,不是有理数的是()A. \( \frac{1}{3} \)B. \( \sqrt{2} \)C. -2D. 0.25答案:B解析:有理数包括整数和分数,而 \( \sqrt{2} \) 是无理数,不属于有理数。
3. 下列图形中,对称轴为直线 \(y = x\) 的是()A. 正方形B. 等腰三角形C. 矩形D. 圆答案:B解析:等腰三角形的对称轴是连接底边中点和顶点的直线,这条直线与底边垂直,因此其方程为 \(y = x\)。
4. 若 \(a > b\),则下列不等式中正确的是()A. \(a - b > 0\)B. \(a + b > 0\)C. \(a - b < 0\)D. \(a + b < 0\)答案:A解析:由 \(a > b\),可知 \(a - b > 0\),因此选项A正确。
5. 若 \(x^2 - 5x + 6 = 0\),则 \(x^2 - 2x - 1 = \) 的值为()A. 3B. 4C. 5D. 6答案:B解析:由 \(x^2 - 5x + 6 = 0\),可得 \(x^2 = 5x - 6\)。
将 \(x^2\) 的表达式代入 \(x^2 - 2x - 1\) 得 \(5x - 6 - 2x - 1 = 3x - 7\)。
当 \(x = 2\) 时,\(3x - 7 = 3 \times 2 - 7 = 6 - 7 = -1\),因此 \(x^2 - 2x - 1 = -1\)。
北京市各区2018届九年级中考一模数学试卷精选汇编压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O 在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O 的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,22M⎛⎝⎭,,22N⎛-⎝⎭.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N122⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线2y x=+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线2y x =+交 y 轴于点K (0,2),交x 轴于点()T 0.∴2OK =,OT =∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1. ∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒.又OG =1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤,∴F x 分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的附点”,直接写出b 的取值范围.x【解析】(1.②是.(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =, ∴MQ =, 此时2MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k DQ =此时1CD =, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤.(3)b <.海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为2-.同理可求得点E ,F ,G 的横坐标分别为 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x 的取值范围是22≤x --,或22≤x .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28.解:(2分(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... xy xy(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限.过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,). ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ;②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB 的伴随点是: 23,P P . …………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值.……………………………………………5分∴b的取值范围是3≤b≤5. ……………………………………6分(2)t的取值范围是-12.2t≤≤…………………………………………8分燕山区28.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).(1)如果∠A=30°①如图1,∠DCB= °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;( 2 )如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP, 将线段DP绕点逆时针旋转α2得到线段DF,连结BF, 请直接写出DE、BF、BP三者的数量关系(不需证明).图1图228.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图...直接..写出半径r 的取值范围.备用图1 备用图228.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k 2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y (2)当点F 在点E 左侧时:大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),∠DPE 则称为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图1 图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r , 29<∴m . 又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=. 当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时,线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴.…………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴 ∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为245m ≤≤. …………………………………8分平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O ,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ·························································································· 1 (2)∵以CD 为边的“坐标菱形”为正方形,∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ........................................ 3 ∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. (7)怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分 (2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”. 例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3图2所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.。
北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
/21D.点纠错+试题篮Ha 5=+4a 2b 2D.倍,那么这个多边形的边数是( ).51/21D.62√年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了年我国发明专年我国发明专利申请量占世界发明专利申请量的比重的情况上升至年的年我国发明专利申请量占世界发明专利申请量的比重逐年增长年我国专利申请量占世界发明专利申请量的比重为.2010−2013201332.1%24.6%运动.设点运动的路程为,→D →A P x △ABP018/11/21D.答 案解 析B当在边上时,,即随的增大而增大.当在边上时,,即随的变化不发生改变.当在边上时,,即随的增大而减小.P BC x y x P CD =3y x P AD +2+3−x )=8−x y x 答 案解 析某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满元就能获得一次转动转盘的机会.当转盘停止时.指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品.指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:落在“一袋苹果”区域的次数落在“一袋苹果”区域的频率下列说法不正确的是( ).当很大时,估计指针落在“一袋苹果”区域的频率大约是假如你去转动转盘一次.获得“一袋苹果”的概率大约是如果转动转盘次.指针落在“一盒樱桃”区域的次数大约有次转动转盘次,一定有次获得“一盒樱桃”D.频率稳定在左右,故用频率估计概率,指针落在“一袋苹果”区域的频率大约是,故选项正确,2001502005008001000108140355560690072070071070069n 0702000600103A 0.70.70A 编辑在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多人,甲班学生读书.求甲、乙两班各有多少人?设乙班有3480x目录选择题填空题解答题解答题j i ao s h i.i zh ik an g .c om2018/11/21答 案解 析所以射线就是所求作的的角平分线.请回答:该尺规作图的依据是 .公理,全等三角形的对应角相等公理,全等三角形的对应角相等SSS SSS 17.答 案解 析解不等式组:并写出它的所有整数解.,它的所有整数解为,.,由①,得,由②,得,∴原不等式组的解集为,它的所有整数解为,.{2(x +3)⩽4x +7>x x +22−⩽x <21201{2(x +3)⩽4x +7①>x ②x +22x ⩾−12x <2−⩽x <2120118.1.2.3.答 案我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图).图是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形.正方形.正方形的面积分别为,,,若.求的值.以下是求的值的解题过程.请你根据图形补充完整.解:设每个直角三角形的面积为 (用含的代数式表示)① (用含的代数式表示)②由①,②得, .因为,所以.所以.12ABCD EFGH MNKT S 1S 2S 3++=10S 1S 2S 3S 2S 2S−=S 1S 2S −=S 2S 3S +=S 1S 3++=10S 1S 2S 32+=10S 2S 2=S 21034S 4S 2S 2学生版 教师版答案版编辑.交反比例函数,结合函数的图象,直接写出B OB =2y =m −1x的延长线交于点,连接,E EC CD编辑13712结合画出的函数图象,解决问题:当时,.(结果保留一位小数)P A=P CG AG18/11/21上存在不同的两点、,使相应的点、,使相应的点、都与点重合,也就是使以为直径,OC M 1M 2K 1K 2K 1K 2F FNj i ao sh i .i zh ik an g.co 设抛物线的顶点为点,连接与交于点.设抛物线的表达式为:又∵抛物线过点,∵.∴.∴过点做轴与交于点,轴,∴.∵,∴,又,∴,∴当时,可求出当时,可求出∴的取值范围为2Q BQ FN H ⩽m ⩽2452453√y =a (x +F (0,m )m =−36a a =−m 136y =−m (x +3)(x −12)=136136Q QG ⊥x FN R FN //x ∠QRH =90∘tan ∠BQG =BG QG QG =m 2516tan ∠BQG =245m 45⩽∠QHN ⩽60∘∘30⩽∠BQG ⩽45∘∘∠BQG =30∘m =∠BQG =45∘m =245m ⩽m ⩽2452453√。
北京市大兴区2018年初三检测试题数学参考答案及评分标准一、 选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9. 322-10. ()()+-a a b a b11.答案不唯一,如221y x x =-+-; 12. a 2-b 2=(a +b )(a -b ) 13.480436035x x⨯=+ 14. 3 15.2-16. SSS 公理,全等三角形的对应角相等.三、解答题(本题共68分,第17题5分,第18题4分,第19~23题每小题5分,第24,25题每小题6分,第26,27题每小题7分,第28题8分.解答应写出文字说明、演算步骤或证明过程) 17. 解:⎪⎩⎪⎨⎧>++≤+xx x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分它的所有整数解为0,1. …………………………………………………5分18. 4S ; ……………………………………………………………………………… 1分 4S ; ……………………………………………………………………………… 2分 2S 2 . …………………………………………………………………………………4分19.解:∵AB =AC ,① ②∴∠B =∠C . ∵∠B=50°,∴∠C =50°.…………………… 1分∴∠BAC=180°-50°-50°=80°.………………………………………………… 2分 ∵∠BAD=55°,∴∠DAE=25°.………………………………………………………………… 3分 ∵DE ⊥AD ,∴∠ADE=90°.………………………………………………………………… 4分 ∴∠DEC=∠DAE +∠ADE=115°.………………………………………………5分20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分 ∵k 为负整数,∴k =-1,-2.……………………………………… 2分 (2)当1=-k 时,不符合题意,舍去; ………………………………… 3分当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分21.(1)证明:∵DE =OC ,CE =OD ,∴四边形OCED 是平行四边形 ………………………………1分∵矩形ABCD , ∴AC =BD ,OC =12AC ,OD =12BD . ∴OC =OD .∴平行四边形OCED 是菱形 ………………………………2分(2)解:在矩形ABCD 中,∠ABC =90°,∠BAC =30°,AC =4,∴BC =2.∴AB =DC =…………………………………………………3分 连接OE ,交CD 于点F . ∵四边形OCED 为菱形, ∴F 为CD 中点. ∵O 为BD 中点,∴OF =12BC =1.∴OE =2OF =2 …………………………………………………4分∴S 菱形OCED =12OE ·CD =12×2×=5分22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分ABCDEO(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分23. (1)AB 与⊙O 的位置关系是相切 ····························································· 1分证明:如图,连接OC . OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ··········································································· 2分 (2)ED 是直径,90ECD ∴∠=.∴90E ODC ∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠. 又CBD EBC ∠=∠, ∴BCD BEC △∽△.BC BDBE BC∴=. ∴2BC BD BE =⋅. ··············································································· 3分1tan 2E ∠=,∴12CD EC =. BCD BEC △∽△, ∴12BD CD BC EC ==. ················································································ 4分 设BD x =,则2BC x =.又2BC BD BE =⋅, ∴2(2)(6)x x x =+. 解得10x =,22x =.0BD x =>, ∴2BD =.235OA OB BD OD ∴==+=+=. ·························································· 5分24. (1)乙组成绩更好一些 …………………………………………………………………2分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分 (说明:评价中只要说对2条即可,每条给2分,共4分)25.(1)4.6 ……………………………………………………………………………………1分 (答案不唯一) (2)………………………………………………………………4分(3) 4.4 ………………………………………………………………6分 (答案不唯一)26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分27.(1)证明 :∵ ∠CAB=90°.∵ BG ⊥CF 于点G , ∴ ∠BGF =∠CAB =90°.∵∠GFB =∠CF A . ………………………………………………1分 ∴ ∠ABG =∠ACF . ………………………………………………2分(2)CG +BG . …………………………………………………3分证明:在CG 上截取CH =BG ,连接AH , …………………………4分∵ △ABC 是等腰直角三角形, ∴ ∠CAB =90°,AB =AC .∵ ∠ABG =∠ACH .∴ △ABG ≌△ACH . …………………………………………………… 5分∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°. ∴ 222AG AH GH +=.∴ GH =2AG . ………………………………………………………6分 ∴ CG =CH +GH =2AG +BG . ………………………………………7分28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r , 29<∴m .又0>m ,290<<∴m . ………………………………………………4分方法二: 0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=.当m y =时, 219m x x m m=-+,化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,……………………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………………… 7分m ∴的取值范围为245m ≤≤. ………………………………………………… 8分。
北京市大兴区2018年初三检测试题数学一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1. 若=a a 在数轴上对应的点的大致位置是A. 点EB. 点FC.点GD.点H2. 下列运算正确的是 A. 236(2)6=a a B. 325⋅=a a aC. 224246+=a a aD. 222(2)4+=+a b a b3.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是A. 3B. 4 C .5 D . 6 4.如图,AD BC ∥,点E 在BD 的延长线上,若∠ADE=150°,则DBC ∠的度数为 A.30° B.50°C.60°D.150°5.如图,⊙O 的直径AB垂直于弦CD ,垂足是E , ∠A=22.5°,OC=6,则CD 的长为A.3 B.C.6D.6.自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是A.统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况B.我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%C.2011年我国发明专利申请量占世界发明专利申请量的比重是28%D.2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长7. 如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是8.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动. 顾客购买商品满200元就能获得一次转动转盘的机会, 当转盘停止时, 指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品. 下表是该活动的一组统计数据:下列说法不正确...的是A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B.假如你去转动转盘一次, 获得“一袋苹果”的概率大约是0.70C.如果转动转盘2 000次, 指针落在“一盒樱桃”区域的次数大约有600次D.转动转盘10次,一定有3次获得“一盒樱桃”二、填空题(本题共16分,每题2分)9.计算:013172-⎛⎫⎛⎫----=⎪ ⎪⎝⎭⎝⎭.10.分解因式:32a ab-=.11.请写出一个开口向下,并且对称轴为直线x=1的抛物线的表达式y=.12.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,根据图形的面积写出一个含字母a,b的等式:...13.在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45.求甲、乙两班各有多少人?设乙班有x人,则甲班有(3)x+人,依题意,可列方程为...14.23=yx,则222569222y x xy yx yx y x y⎛⎫-+--÷⎪--⎝⎭的值是.15.如图, 在Rt △ABC 中,∠C =90°,AC= BC ,将Rt △ABC 绕点A 逆时针旋转15°得到Rt △''AB C ,''B C 交AB 于E ,若 图中阴影部分面积为'B E 的长为 . .. 16请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17题5分,第18题4分,第19-23题每小题5分,第24、25题每小题6分,第26,27题每小题7分,第28题8分.解答应写出文字说明、演算步骤或证明过程)17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解.18.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1). 图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH, 正方形MNKT 的面积分别为,,,321S S S 若10321=++S S S ,求2S 的值.以下是求2S 的值的解题过程,请你根据图形补充完整.解:设每个直角三角形的面积为S=21-S S (用含S 的代数式表示)①=32-S S (用含S 的代数式表示)②由①,②得,13S S +=123因为10S S S ++=,所以10222=+S S .所以3102=S .19.如图,在△ABC 中,AB =AC ,点D ,点E分别是BC ,AC 上一点,且DE ⊥AD . 若∠BAD=55°, ∠B=50°,求∠DEC 的度数.20. 已知关于x 的一元二次方程01632=-+-k x x 有实数根,k 为负整数. (1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.21. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE=O C ,CE=O D .(1)求证:四边形OCED 是菱形;(2)若∠BAC =30°,AC =4,求菱形OCED 的面积.22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2.(1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y ,若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.23.已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D,且与BO 的延长线交于点E ,连接EC CD ,.(1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若1tan 2E =,⊙O 的半径为3,求OA 的长.24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).25.如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为x cm,P,A两点间的距离为y cm.(当点P与点C重合时,x的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出 该函数的图象;(3)结合画出的函数图象,解决问题:当PA=PC 时,PC 的长度 约为 cm .(结果保留一位小数)26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).27.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;(2)用等式表示线段C G ,AG ,BG 之间 的等量关系,并证明.28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图图1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;图2 (2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点 1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.北京市大兴区2018年初三检测试题数学参考答案及评分标准一、 选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9. 322-10. ()()+-a a b a b11.答案不唯一,如221y x x =-+-; 12. a 2-b 2=(a +b )(a -b ) 13.480436035x x⨯=+ 14. 3 15.216. SSS 公理,全等三角形的对应角相等.三、解答题(本题共68分,第17题5分,第18题4分,第19~23题每小题5分,第24,25题每小题6分,第26,27题每小题7分,第28题8分.解答应写出文字说明、演算步骤或证明过程)17. 解:⎪⎩⎪⎨⎧>++≤+xx x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分它的所有整数解为0,1. …………………………………………………5分① ②E C B A18. 4S ; ……………………………………………………………………………… 1分 4S ; ……………………………………………………………………………… 2分 2S 2 . …………………………………………………………………………………4分19.解:∵AB =AC ,∴∠B =∠C .∵∠B=50°,∴∠C =50°.…………………… 1分 ∴∠BAC=180°-50°-50°=80°.………………………………………………… 2分∵∠BAD=55°,∴∠DAE=25°.………………………………………………………………… 3分∵DE ⊥AD ,∴∠ADE=90°.………………………………………………………………… 4分∴∠DEC=∠DAE +∠ADE=115°.………………………………………………5分20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分∵k 为负整数,∴k =-1,-2.……………………………………… 2分(2)当1=-k 时,不符合题意,舍去; ………………………………… 3分当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分21.(1)证明:∵DE =OC ,CE =OD ,∴四边形OCED 是平行四边形 ………………………………1分∵矩形ABCD ,∴AC =BD ,OC =12AC ,OD =12BD . ∴OC =OD .∴平行四边形OCED 是菱形 ………………………………2分(2)解:在矩形ABCD 中,∠ABC =90°,∠BAC =30°,AC =4,∴BC=2.A B C DEO∴AB =DC=…………………………………………………3分连接OE ,交CD 于点F .∵四边形OCED 为菱形,∴F 为CD 中点.∵O 为BD 中点,∴OF =12BC =1. ∴OE =2OF =2 …………………………………………………4分 ∴S 菱形OCED =12OE ·CD =12×2×=5分22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分 又点A 在反比例函数1m y x -=的图象上, 142m -∴=,即9m =.……………………………………… 3分 (2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分23. (1)AB 与⊙O 的位置关系是相切 ······························································ 1分证明:如图,连接OC .OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ·············································································· 2分 (2)ED 是直径, 90ECD ∴∠=. ∴90E ODC ∠+∠=. 又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠.又CBD EBC ∠=∠,∴BCD BEC △∽△.BC BD BEBC ∴=.∴2BC BD BE =⋅. ················································································· 3分1tan 2E ∠=, ∴12CD EC =. BCD BEC △∽△, ∴12BD CD BC EC ==. ·················································································· 4分 设BD x =,则2BC x =.又2BC BD BE =⋅,∴2(2)(6)x x x =+.解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ··························································· 5分24. (1)乙组成绩更好一些 …………………………………………………………………2分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分 (说明:评价中只要说对2条即可,每条给2分,共4分)25.(1)4.6 ……………………………………………………………………………………1分 (答案不唯一)(2)………………………………………………………………4分(3) 4.4 ………………………………………………………………6分 (答案不唯一)26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分 2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分27.(1)证明 :∵ ∠CAB=90°.∵ BG ⊥CF 于点G ,∴ ∠BGF =∠CAB =90°.∵∠GFB =∠CF A . ………………………………………………1分 ∴ ∠ABG =∠ACF . ………………………………………………2分(2)CG +BG . …………………………………………………3分证明:在CG 上截取CH =BG ,连接AH , …………………………4分∵ △ABC 是等腰直角三角形,∴ ∠CAB =90°,AB =AC .∵ ∠ABG =∠ACH .∴ △ABG ≌△ACH . …………………………………………………… 5分 ∴ AG =AH ,∠GAB =∠HAC .∴ ∠GAH =90°.∴ 222AG AH GH +=.∴ GH AG . ………………………………………………………6分∴ CG =CH +GH AG +BG . ………………………………………7分28.(1)9 ………………………………………………………………… 1分(2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r , 29<∴m . 又0>m ,290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =,则 CW =OC -OW =3,WM =9x -.由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=. 当m y =时,219m x x m m=-+, 化为0922=+-m x x .当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴. m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90° tan BG BQG QG ∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,……………………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………………… 7分 m ∴的取值范围为245m ≤≤. ………………………………………………… 8分。
2018年大兴区中考数学综合练习(一)学校 姓名 准考证号 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的相反数是A .12 B . 12- C .2 D .2- 2.截止到2018年4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1. 将491671用科学记数法表示应为A .4101671.49⨯ B .51091671.4⨯ C .61091671.4⨯ D .710491671.0⨯ 3.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE , 若AD =5,CD =3,DE =4,则AB 的长为 A .332 B .316 C .310D .384.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为A .150人B .300人C .600人D .900人5.布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是A .271B .91C .92D .136.下列图形中,阴影部分面积为1的是7.如图3,四边形OABC 为菱形,点A 、B 在以点O 为圆心的弧DE 上,若OA=3,∠1=∠2,则扇形ODE 的面积为A.3π2 B. 2π C.5π2D. 3π 8. 如图,已知点F 的坐标为(3,0),点A 、B 分别是某函数图像与x 轴、y 轴的交点,点P 是此图像上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:d=5-35x(0≤x≤5),则结论:① AF= 2 ② BF=4 ③ OA=5 ④ OB=3,正确结论O A . x y 1 1(1,2) O B . x y 1 3(0)2y x x =≥ O C . xy 1 1(0)y x x => O D . x y21y x =- 1- y PBD21E DCB AO E的序号是A .①②③B ①③C .①②④D .③④ 二、填空题(本题共16分,每小题4分) 9.函数1-=x y 中,自变量x 的取值范围是 .10.分解因式: 22ay ax -= .11.如图,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠ACE +∠BDE = .12..将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13. 计算:21)2011(60tan 3201-+-+--π. 14.解不等式组1(4)223(1) 5.x x x ⎧+<⎪⎨⎪-->⎩,15.已知,在△ABC 中,D E ∥AB ,F G ∥AC ,BE=GC.求证:DE=FB.16.已知直线b x k y 1+=与双曲线xk y 2=相交于点A (2,4),且与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,求直线和双曲线的解析式。
北京市大兴区2018年初三检测试题数学一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1. 若=a ,则实数a 在数轴上对应的点的大致位置是A. 点EB. 点FC.点GD.点H2. 下列运算正确的是 A. 236(2)6=a a B. 325⋅=a a aC. 224246+=a a aD. 222(2)4+=+a b a b3.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是A. 3B. 4 C .5 D . 6 4.如图,AD BC ∥,点E 在BD 的延长线上,若∠ADE=150°,则DBC ∠的度数为A.30° B.50°C.60°D.150°5.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E , ∠A=22.5°,OC=6,则CD 的长为 A.3B.C.6D.6.自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是A.统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况B.我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1% C.2011年我国发明专利申请量占世界发明专利申请量的比重是28%D.2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长7. 如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是会, 当转品;指针下列说法不正确...的是A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B.假如你去转动转盘一次, 获得“一袋苹果”的概率大约是0.70C.如果转动转盘2 000次, 指针落在“一盒樱桃”区域的次数大约有600次D.转动转盘10次,一定有3次获得“一盒樱桃”二、填空题(本题共16分,每题2分)9.计算:013172-⎛⎫⎛⎫----=⎪ ⎪⎝⎭⎝⎭.10.分解因式:32a ab-=.11.请写出一个开口向下,并且对称轴为直线x=1的抛物线的表达式y=.12.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,根据图形的面积写出一个含字母a,b的等式:...13.在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45.求甲、乙两班各有多少人?设乙班有x人,则甲班有(3)x+人,依题意,可列方程为...14.23=yx,则222569222y x xy yx yx y x y⎛⎫-+--÷⎪--⎝⎭的值是.15.如图, 在Rt△ABC中,∠C=90°,AC= BC,将Rt△ABC绕点A逆时针旋转15°得到Rt△''AB C,''B C交AB于E,若图中阴影部分面积为'B E的长为...16.下面是“求作∠AOB的角平分线”的尺规作图过程.作法:①在OA 和OB 上,分别截取OD 、OE ,使OD =OE ;②分别以D 、E 为圆心,大于12DE的长为半径作弧, 在∠AOB 内,两弧交于点C ;③作射线OC.所以射线OC 就是所求作的∠AOB 的角平分线.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17题5分,第18题4分,第19-23题每小题5分,第24、25题每小题6分,第26,27题每小题7分,第28题8分.解答应写出文字说明、演算步骤或证明过程)17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解.18.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1). 图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH, 正方形MNKT 的面积分别为,,,321S S S 若10321=++S S S ,求2S 的值. 以下是求2S 的值的解题过程,请你根据图形补充完整.解:设每个直角三角形的面积为S=21-S S (用含S 的代数式表示)①=32-S S (用含S 的代数式表示)②由①,②得,13S S +=123因为10S S S ++=,所以10222=+S S .所以3102=S .19.如图,在△ABC 中,AB =AC ,点D ,点E分别是BC ,AC 上一点,且DE ⊥AD . 若∠BAD=55°, ∠B=50°,求∠DEC 的度数.20. 已知关于x 的一元二次方程01632=-+-k x x(1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.21. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE=O C ,CE=O D . (1)求证:四边形OCED 是菱形;(2)若∠BAC =30°,AC =4,求菱形OCED 的面积.22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2. (1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y ,若231x x x ,结合函数的图象,直接写出123++x x x 的取值范围.23.已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D,且与BO 的延长线交于点E ,连接EC CD ,.(1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若1tan 2E =,⊙O 的半径为3,求OA 的长.24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).25.如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为x cm,P,A两点间的距离为y cm.(当点P与点C重合时,x的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当PA=PC 时,PC 的长度约为 cm .(结果保留一位小数)26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)=-+++y x m x m m m ,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x .(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).27.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;(2)用等式表示线段C G ,AG ,BG 之间的等量关系,并证明.28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图. 图 1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;图2 (2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤∠≤︒时,求m 的取值范围.北京市大兴区2018年初三检测试题数学参考答案及评分标准一、 选择题(本题共16分,每小题2分)ECB A二、填空题(本题共16分,每小题2分) 9. 322- 10. ()()+-a a b a b11.答案不唯一,如221y x x =-+-; 12. a 2-b 2=(a +b )(a -b ) 13.480436035x x⨯=+ 14. 3 15.216. SSS 公理,全等三角形的对应角相等.三、解答题(本题共68分,第17题5分,第18题4分,第19~23题每小题5分,第24,25题每小题6分,第26,27题每小题7分,第28题8分.解答应写出文字说明、演算步骤或证明过程) 17. 解:⎪⎩⎪⎨⎧>++≤+xx x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分它的所有整数解为0,1. …………………………………………………5分18. 4S ; ……………………………………………………………………………… 1分 4S ; ……………………………………………………………………………… 2分 2S 2 . …………………………………………………………………………………4分19.解:∵AB =AC ,∴∠B =∠C . ∵∠B=50°,∴∠C =50°.…………………… 1分 ∴∠BAC=180°-50°-50°=80° 2 ∵∠BAD=55°,∴∠DAE=25°.………………………………………………………………… 3分 ∵DE ⊥AD ,∴∠ADE=90°.………………………………………………………………… 4分 ∴∠DEC=∠DAE +∠ADE=115°.………………………………………………5分20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分 ∵k 为负整数,∴k =-1,-2.……………………………………… 2分 (2)当1=-k 时,不符合题意,舍去; ………………………………… 3分① ②ABCDEO当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分21.(1)证明:∵DE =OC ,CE =OD ,∴四边形OCED 是平行四边形 ………………………………1分 ∵矩形ABCD , ∴AC =BD ,OC =12AC ,OD =12BD . ∴OC =OD .∴平行四边形OCED 是菱形 ………………………………2分(2)解:在矩形ABCD 中,∠ABC =90°,∠BAC =30°,AC =4,∴BC =2.∴AB =DC=…………………………………………………3分 连接OE ,交CD 于点F . ∵四边形OCED 为菱形, ∴F 为CD 中点. ∵O 为BD 中点,∴OF =12BC =1.∴OE =2OF =2 …………………………………………………4分∴S 菱形OCED =12OE ·CD =12×2×=…………………………………………………5分22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分23. (1)AB 与⊙O 的位置关系是相切 ····························································· 1分证明:如图,连接OC . OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ··········································································· 2分 (2)ED 是直径,90ECD ∴∠=.∴90E ODC ∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠. 又CBD EBC ∠=∠,∴BCD BEC △∽△.BC BD BE BC∴=. ∴2BC BD BE =⋅. ··············································································· 3分1tan 2E ∠=, ∴12CD EC =. BCD BEC △∽△, ∴12BD CD BC EC ==. ················································································ 4分 设BD x =,则2BC x =.又2BC BD BE =⋅,∴2(2)(6)x x x =+.解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ·························································· 5分24. (1)乙组成绩更好一些 …………………………………………………………………2分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分(说明:评价中只要说对2条即可,每条给2分,共4分)25.(1)4.6 ……………………………………………………………………………………1分(答案不唯一)(2)………………………………………………………………4分(3) 4.4 ………………………………………………………………6分(答案不唯一)26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是错误!未找到引用源。