多元函数的极限
- 格式:ppt
- 大小:628.50 KB
- 文档页数:24
多元函数求极值摘要:本文总结了多元函数求极限的各类方法,以及证明多元函数极限不存在的取各种花式路劲的例题。
一、多元函数极限的定义存在的问题:有两种定义方式分别以聚点/去心领域去定义重极限,不同的定义方式可能导致结果不同例1.1:求极限: \lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy} .解:法I(聚点定义).\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}=\lim_{{x\to0}\atop{y\to0}}\frac{xy}{xy(\sqrt{xy+1}+1)}=\l im_{{x\to0}\atop{y\to0}}\frac{1}{\sqrt{xy+1}+1}=\frac{1}{2}或者利用等价无穷小.\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}=\lim_{{x\to0}\atop{y\to0}}\frac{\frac{1}{2}xy}{xy}=\frac{ 1}{2}法II(去心领域定义).由于函数 f(x,y)=\frac{\sqrt{xy+1}-1}{xy} 在原点的领域内的坐标轴上处处无定义, 因此\lim_{{x\to0}\atop{y\to0}}\frac{\sqrt{xy+1}-1}{xy}\text{不存在}用 \varepsilon-\delta 定义证明的例题选解例1.2:用 \varepsilon-\delta 定义证明: \lim_{x\to0\atopy\to0}\frac{xy^2}{x^2+y^2}=0解:因为当 (x,y)\neq(0,0) 时\left,\frac{xy^2}{x^2+y^2}\right,=,y,\cdot\frac{,xy,}{x^2+y^2}\leqslant,y,\leqslant\sqrt{x^2+y^2}\\从而,对 \forall \varepsilon>0 , 取 \delta=\varepsilon , 则当 0<\sqrt{x^2+y^2}<\delta 时,\left,\frac{xy^2}{x^2+y^2}-0\right,<\varepsilon \\所以 \lim_{x\to0\atop y\to0}\frac{xy^2}{x^2+y^2}=0 .例1.3:求证:\lim_{{x\to0}\atop{y\to0}}(x^2+y^2)\sin\frac{1}{x^2+y^2}=0证明: \forall \,\varepsilon>0 , 要使得\left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right,\leqslant\varepsilon\\即 \left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right, =\biggl,x^2+y^2\biggl,\cdot\biggl,\sin\frac{1}{x^2+y^2}-0\biggl,\leqslant x^2+y^2\leqslant\varepsilon\\ 只要\sqrt{x^2+y^2}<\sqrt{\varepsilon} , 取\delta=\sqrt{\varepsilon} , 则当0<\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}<\delta 时, 有\left,(x^2+y^2)\sin\frac{1}{x^2+y^2}-0\right,\leqslant x^2+y^2\leqslant\varepsilon\\原结论成立.二、多元函数求极限的方法直接代入:先代入看看是不是未定式!如果不是那就是答案略有理化:略有界函数x无穷小量=0略两个重要极限:略夹逼准则:多是夹为0。
多元函数的极限与连续性判定在数学分析中,多元函数的极限与连续性是重要的概念,在研究函数的性质和求解问题时起着关键作用。
本文将介绍多元函数的极限和连续性的概念、判定条件以及相关性质。
一、多元函数的极限1. 极限的定义对于二元函数$f(x,y)$,当自变量$(x,y)$无限接近于某一点$(a,b)$时,函数值$f(x,y)$是否趋近于某一确定的值$L$,即$\lim_{(x,y) \to(a,b)}f(x,y)=L$。
2. 多元函数的极限存在判定条件(1) 二元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x-a)^2+(y-b)^2} < \delta$时,有$|f(x,y)−L| < \epsilon$成立,则称函数$f(x,y)$在点$(a,b)$处的二重极限存在,记作$\lim_{(x,y) \to (a,b)}f(x,y)=L$。
(2) 多元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x_1−a_1)^2+...+(x_n−a_n)^2} < \delta$时,有$|f(x_1,...,x_n)−L| < \epsilon$成立,则称函数$f(x_1,...,x_n)$在点$(a_1,...,a_n)$处的$n$重极限存在,记作$\lim_{(x_1,...,x_n) \to(a_1,...,a_n)}f(x_1,...,x_n)=L$。
二、多元函数的连续性判定1. 连续性的定义对于二元函数$f(x,y)$,若在点$(a,b)$的某个邻域内,函数$f(x,y)$在该点处的极限存在且等于函数在该点处的函数值,即$\lim_{(x,y) \to (a,b)}f(x,y)=f(a,b)$,则称函数$f(x,y)$在点$(a,b)$处连续。
多元函数求极限例题多元函数求极限是微积分学中一个重要的概念,也是应用数学和科学工程中经常遇到的问题。
在本文中,我们将讲解多元函数求极限的概念和例题。
一、概念解析多元函数可以看做是具有多个自变量的函数,例如f(x,y)。
多元函数的求极限可以看做是在自变量逐渐逼近一个确定值的情况下,函数值的趋势。
即当(x,y)趋近于点(x0,y0)时,f(x,y)可能无限逼近某个值,这个值就是(x0,y0)点的极限。
二、例题解析1. 例题一:求f(x, y) = x ^ 2 + y ^ 2 + x * y在点(1, -1)处的极限。
解:对于多元函数f(x, y),我们可以采用依次逼近法来求解极限。
即将自变量沿着曲线或直线从不同方向逐渐逼近给定的点。
首先,我们可以以(1, -1)为中心,沿着x轴方向逼近,此时f(x, y) = (x - 1) ^ 2 + y ^ 2 - 2,当x趋近于1时,f(x, y)趋近于-2。
然后,我们以(1, -1)为中心,沿着y轴方向逼近,此时f(x, y) = x ^ 2 + (y + 1) ^ 2 - 1,当y趋近于-1时,f(x, y)趋近于1。
综上所述,极限不存在。
2. 例题二: 求f(x, y) = sin(xy) / xy 的极限。
解:对于这道例题,我们可以将其转化为一元函数,令u = xy,则函数变为f(x, y) = sin u / u。
然后,我们可以以(0, 0)为中心,沿着某个代码逼近。
比如,以x = 0的直线为例,此时f(x, y) = sin y / y,当y趋近于0时,f(x, y)趋近于1。
根据夹逼定理,当x^2+y^2趋近于0时,f(x,y)也趋近于1。
因此,原函数在(0,0)点极限为1。
三、总结在求解多元函数极限时,可以采用依次逼近法,将自变量沿着曲线或直线从不同方向逐渐逼近给定的点。
同时,我们要掌握夹逼定理的应用,通过夹逼来判断函数的极限是否存在。
多元函数的极限和连续性在高等数学中,多元函数的极限和连续性是比较基础的概念,对于学习后续的微积分、偏微分方程等内容都有重要的意义,因此本文将从多元函数极限和连续性的定义、求解及其应用等方面进行探讨和阐述。
一、多元函数的极限和连续性的定义在一元函数中,极限的概念是比较容易理解和推广的,而在多元函数中,由于独立变量的个数增加,问题变得更加复杂。
因此,我们需要重新定义多元函数的极限。
1. 多元函数的极限定义设$f(\boldsymbol{x})$是定义在某点$\boldsymbol{x_0}=(x_0,y_0, z_0, ...)$的某一邻域内的多元函数,$\boldsymbol{\alpha}=(\alpha_1, \alpha_2, ..., \alpha_n)$是任一常数向量,那么当对于任意$\epsilon>0$,都存在$\delta>0$,使得当$0<\Vert \boldsymbol{x}-\boldsymbol{x_0}\Vert<\delta$时,都有$\vert f(\boldsymbol{x})-f(\boldsymbol{x_0}+\boldsymbol{\alpha})\vert<\epsilon$成立,则称$\boldsymbol{x_0}$是$f(\boldsymbol{x})$的一个极限点,记作$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})=f(\boldsymbol{x_0}+\boldsym bol{\alpha})$。
可以看出,多元函数的极限与一元函数的极限相似,但是需要考虑的变量更多。
在多元函数中,只有当$\boldsymbol{x}$从任意方向趋近于$\boldsymbol{x_0}$时,$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})$才存在。
多元函数的极限与连续性在数学中,多元函数的极限与连续性是重要的概念。
本文将介绍多元函数的极限和连续性的定义,并探讨它们的性质和应用。
一、多元函数的极限多元函数的极限可以类比于一元函数的极限,但其定义稍有不同。
对于一个二元函数,我们将自变量表示为(x,y),则当自变量趋近于某个点(a,b)时,函数值f(x,y)的极限记为:lim (x,y)→(a,b) f(x,y) = L其中,L为实数。
我们称函数f(x,y)在点(a,b)处具有极限L,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0< √((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-L|<ε 成立。
类似地,对于一个三元函数,自变量表示为(x,y,z),其极限定义与二元函数类似。
多元函数的极限有以下性质:1. 极限存在且唯一:如果一个多元函数在某点具有极限,那么它的极限是唯一的。
2. 有界性:如果一个多元函数在某点具有极限,则它在该点附近是有界的。
但需要注意,多元函数在整个定义域内有界不一定代表在每个点处都具有极限。
3. 加法性、乘法性:如果两个多元函数在某点都具有极限,则它们的和、差、积仍在该点处具有极限。
4. 复合函数的极限性质:多元函数的复合函数在某点处具有极限的条件是,内部函数在该点处具有极限,且外部函数在内部函数极限处连续。
二、多元函数的连续性多元函数的连续性是指函数在整个定义域内的连续性。
对于一个二元函数,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0<√((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-f(a,b)|<ε 成立,那么我们称函数f(x,y)在点(a,b)处连续。
类似地,对于一个三元函数,连续性的定义也类似。
多元函数的连续性具有以下性质:1. 极限与连续性的关系:如果一个多元函数在某点处具有极限L,则它在该点处连续。
多元函数微积分知识点
1.多元函数的极限:多元函数的极限是在多个自变量趋于一些点时函
数的极限。
多元函数的极限可以通过分量法、夹逼法等方法计算。
2.多元函数的连续性:多元函数的连续性是指函数在定义域内的任意
一点上都存在极限并与函数值相等。
可以利用多元函数的分量函数连续来
判断多元函数的连续性。
3.多元函数的偏导数:多元函数的偏导数是指多元函数对自变量的偏
导数。
求多元函数的偏导数时,只对一个自变量求导,把其他自变量视为
常数。
4.多元函数的全微分:多元函数的全微分是指函数在特定点的微分。
全微分可以理解为函数在该点的线性逼近。
5.多元函数的方向导数:方向导数是指多元函数在其中一点沿着给定
方向的变化速率。
方向导数的计算可以通过梯度来进行。
6.多元函数的梯度:梯度是多元函数在其中一点的导数,其方向与函
数在该点取得最大值的方向相同,数值上等于方向导数的最大值。
7.多元函数的积分:多元函数的积分是指对多元函数进行求和或求定
积分。
与一元函数积分类似,多元函数积分需要确定积分区域和积分方法。
8.曲线积分:曲线积分是指沿着曲线进行的积分,曲线积分可以对向
量场和标量场进行。
9.曲面积分:曲面积分是指对曲面上的函数进行积分。
曲面积分可以
对向量场和标量场进行。
10.格林定理:格林定理是指曲线与曲面积分之间的关系,即把曲面积分转化为曲线积分的定理。
11.斯托克斯定理:斯托克斯定理是格林定理的推广,是把曲线积分转化为曲面积分的定理。