综合法和分析法学案
- 格式:doc
- 大小:59.00 KB
- 文档页数:2
三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
第二讲讲明不等式的基本方法复习课学习目标 1.系统梳理证明不等式的基本方法.2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法.3.进一步熟练掌握不同方法的解题步骤及规范.1.比较法作差比较法是证明不等式的基本方法,其依据是:不等式的意义及实数大小比较的充要条件.证明的步骤大致是:作差——恒等变形——判断结果的符号.2.综合法综合法证明不等式的依据是:已知的不等式以及逻辑推理的基本理论.证明时要注意的是作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.3.分析法分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.4.反证法反证法是一种“正难则反”的方法,反证法适用的范围:①直接证明困难;②需要分成很多类进行讨论;③“唯一性”“存在性”的命题;④结论中含有“至少”“至多”否定性词语的命题.5.放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③用基本不等式放缩.类型一 比较法证明不等式例1 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ). 证明 ∵b +c a x 2+c +a b y 2+a +b cz 2-2(xy +yz +zx ) =⎝ ⎛⎭⎪⎫bax 2+a by 2-2xy +⎝ ⎛⎭⎪⎫c by 2+b cz 2-2yz +⎝ ⎛⎭⎪⎫a c z 2+c a x 2-2zx =⎝⎛⎭⎪⎫b ax -a b y 2+⎝⎛⎭⎪⎫c by -b c z 2+⎝⎛⎭⎪⎫a cz -c a x 2≥0, ∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx )成立. 反思与感悟 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.跟踪训练1 设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n ≥(a +b )2.证明 a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn ≥0,∴a 2m +b 2n≥(a +b )2. 类型二 综合法与分析法证明不等式例2 已知a ,b ,c ∈R +,且ab +bc +ca =1,求证: (1)a +b +c ≥3; (2)a bc +b ac +cab≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c ∈R +, 因此只需证(a +b +c )2≥3,即证a 2+b 2+c 2+2(ab +bc +ca )≥3,根据条件,只需证a 2+b 2+c 2≥1=ab +bc +ca , 由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c =33时取等号)可知,原不等式成立. (2)a bc +b ac+c ab =a +b +c abc, 在(1)中已证a +b +c ≥3, ∵ab +bc +ca =1, ∴要证原不等式成立,只需证1abc≥a +b +c ,即证a bc +b ac +c ab ≤1=ab +bc +ca . ∵a ,b ,c ∈R +,a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤ac +bc2,∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时取等号)成立, ∴原不等式成立.反思与感悟 证明比较复杂的不等式时,考虑分析法与综合法的结合使用,这样使解题过程更加简洁.跟踪训练2 已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明 方法一 要证1a -b +1b -c +1c -a>0, 只需证1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c>0,∴1a -b +1b -c >1a -c成立, ∴1a -b +1b -c +1c -a>0成立. 方法二 ∵a >b >c , ∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c >0, ∴1a -b +1b -c >1a -c , ∴1a -b +1b -c +1c -a>0. 类型三 反证法证明不等式例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+yx<2中至少有一个成立.证明 假设1+x y <2和1+y x<2都不成立,则1+x y ≥2和1+yx≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2或1+y x<2中至少有一个成立.反思与感悟 反证法的“三步曲”:(1)否定结论.(2)推出矛盾.(3)肯定结论.其核心是在否定结论的前提下推出矛盾.跟踪训练3 已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b .证明 假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ), 于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性,可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立. ∴a <b .类型四 放缩法证明不等式例4 已知n ∈N +,求证:2(n +1-1)<1+12+13+…+1n<2n .证明 ∵对k ∈N +,1≤k ≤n ,有 1k =22k>2k +k +1=2(k +1-k ),∴1k>2(k +1-k ). ∴1+12+13+…+1n>2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1).又∵对于k ∈N +,2≤k ≤n ,有 1k =22k<2k +k -1=2(k -k -1),∴1+12+13+…+1n<1+2(2-1)+2(3-2)+…+2(n -n -1)=2n -1<2n . ∴原不等式成立.反思与感悟 放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.跟踪训练4 设f (x )=x 2-x +13,a ,b ∈[0,1], 求证:|f (a )-f (b )|≤|a -b |. 证明 |f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1|, ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.1.已知p: ab >0,q :b a +a b≥2,则p 与q 的关系是( ) A .p 是q 的充分不必要条件 B .p 是q 的必要不充分条件C .p 是q 的充要条件D .以上答案都不对 答案 C解析 由ab >0,得b a >0,a b>0,∴b a +a b ≥2b a ·ab =2, 又b a +a b≥2,则b a ,a b必为正数, ∴ab >0.2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12答案 D解析 假设a ,b ,c 都小于12,则a +2b +c <2与a +2b +c =2矛盾. 3.若a =lg22,b =lg33,c =lg55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 C解析 a =3lg 26=lg 86,b =2lg 36=lg 96,∵9>8,∴b >a .b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315,∵35>53,∴b >c .a 与c 比较:a =lg 2510=lg 3210,c =lg 2510,∵32>25,∴a >c .∴b >a >c ,故选C.4.已知a,b∈R+,n∈N+,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明∵(a+b)(a n+b n)-2(a n+1+b n+1)=a n+1+ab n+ba n+b n+1-2a n+1-2b n+1=a(b n-a n)+b(a n-b n)=(a-b)(b n-a n).(1)若a>b>0,则b n-a n<0,a-b>0,∴(a-b)(b n-a n)<0.(2)若b>a>0,则b n-a n>0,a-b<0,∴(a-b)(b n-a n)<0.(3)若a=b>0,(b n-a n)(a-b)=0.综上(1)(2)(3)可知,对于a,b∈R+,n∈N+,都有(a+b)(a n+b n)≤2(a n+1+b n+1).1.比较法证明不等式一般有两种方法:作差法和作商法,作商法应用的前提条件是已知不等式两端的代数式同号.2.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,两者是对立统一的两种方法.3.证明不等式的基本方法及一题多证:证明不等式的基本方法主要有比较法、综合法、分析法、反证法、放缩法等.证明不等式时既可探索新的证明方法,培养创新意识,也可一题多证,开阔思路,活跃思维,目的是通过证明不等式发展逻辑思维能力,提高数学素养.一、选择题1.a,b∈R+,那么下列不等式中不正确的是( )A.ab+ba≥2 B.b2a+a2b≥a+bC.ba2+ab2≤a+babD.1a2+1b2≥2ab答案 C解析A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0正确;B选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab 得到的,D正确.2.设0<x<1,则a=2x,b=x+1,c=11-x中最大的是( )A.c B.bC.a D.随x取值不同而不同答案 A解析∵0<x<1,∴b=x+1>2x>2x=a,∵11-x-(x+1)=1-(1-x2)1-x=x21-x>0,∴c>b>a.3.若P=a+a+7,Q=a+3+a+4 (a≥0),则P与Q的大小关系为( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析 ∵P 2=2a +7+2a 2+7a ,Q 2=2a +7+2a 2+7a +12,∴P 2<Q 2,即P <Q .4.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤b D .a ≥b答案 D解析 ∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0, ∴a ≥b .5.已知a ,b ,c ,d 为实数,ab >0,-c a <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >ad C.a c >b d D.a c <b d答案 B解析 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 6.若A ,B 为△ABC 的内角,则A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由正弦定理知a sin A =bsin B =2R ,又A ,B 为三角形的内角, ∴sin A >0,sin B >0,∴sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 二、填空题7.lg9·lg11与1的大小关系是________.答案 lg9·lg11<1 解析 ∵lg9>0,lg11>0,∴lg9·lg11<lg9+lg112<lg992<lg1002=1.∴lg9·lg11<1.8.当x >1时,x 3与x 2-x +1的大小关系是________. 答案 x 3>x 2-x +1解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1)=(x -1)(x 2+1),且x >1, ∴(x -1)(x 2+1)>0. ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.9.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 是锐角”时,应假设________. 答案 ∠B 不是锐角解析 “∠B 是锐角”的否定是“∠B 不是锐角”.10.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元. 答案 1760解析 设水池底长为x (x >0)m , 则宽为82x =4x(m).水池造价y =82×120+⎝ ⎛⎭⎪⎫2x ×2+8x ×2×80=480+320⎝ ⎛⎭⎪⎫x +4x ≥480+1 280=1 760(元), 当且仅当x =2时取等号. 三、解答题11.求证:112+122+132+…+1n 2<2.证明 因为1n2<1n (n -1)=1n -1-1n(n ∈N +,n ≥2),所以112+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)·n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n<2. 所以原不等式得证.12.已知a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <(n +1)22. 证明 ∵n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+…+n =n (n +1)2. 又n (n +1)<(n +1)+n 2=2n +12, ∴a n =1×2+2×3+…+n (n +1)<32+52+…+2n +12=n 2+2n 2<(n +1)22. ∴n (n +1)2<a n <(n +1)22. 四、探究与拓展13.已知a ,b 是正数,a ≠b ,x ,y ∈(0,+∞),若a 2x +b 2y ≥(a +b )2x +y,则等号成立的条件为________. 答案 ay =bx解析 a 2x +b 2y -(a +b )2x +y=a 2y (x +y )+b 2x (x +y )-xy (a +b )2xy (x +y )=(ay -bx )2xy (x +y )≥0, 当且仅当ay =bx 时等号成立.14.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13. (1)解 令n =1,得S 21-(-1)S 1-3×2=0,即S 21+S 1-6=0,所以(S 1+3)(S 1-2)=0,因为S 1>0,所以S 1=2,即a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,得(S n +3)[S n -(n 2+n )]=0,因为a n >0(n ∈N +),S n >0,从而S n +3>0,所以S n =n 2+n ,所以当n ≥2时, a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n ,又a 1=2=2×1,所以a n =2n (n ∈N +).(3)证明 设k ≥2,则1a k (a k +1)=12k (2k +1)<1(2k -1)(2k +1)=12⎝ ⎛⎭⎪⎫12k -1-12k +1, 所以1a 1(a 1+1)+1a 2(a 2+1)+1a 3(a 3+1)+…+1a n (a n +1)<12×3+12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n -1-12n +1=16+16-12(2n +1)<13. 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。
第四讲综合--分析法学案A综合法从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。
以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题……一直到解出应用题所求解的未知数量。
运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。
这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。
☆1一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。
剩下的要3天做完,问平均每天要做多少套?分析:☆例2 一个服装厂计划加工2480套服装,每天加工100套,工作20天后,每天多加工20套。
提高工作效率后,还要加工多少天才能完成任务?刚开始学习以综合法解应用题时,一定要画思路图,当对综合法的解题方法已经很熟悉时,就可以不再画思路图,而直接解答应用题了。
巩固与拓展☆☆☆有三桶油,第一桶重50千克,第二桶比第一桶重1/10,第三桶比第一桶轻1/10,第三桶重多少千克?☆☆☆在甲、乙、丙三块地种高粱,乙块地比甲块地多产高粱2/13,丙块地产高粱450千克,比乙块地少产高粱2/7,甲块地产高粱多少千克?B 分析法从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法叫分析法。
用分析法解应用题时,如果解题所需要的两个条件,(或其中的一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。
分析法适于解答数量关系比较复杂的应用题。
☆例题1王明买了24本笔记本和6支铅笔,共花了9.60元钱。
已知每支铅笔0.08元,每本笔记本多少钱?分析:要算出每本笔记本多少钱,必须具备两个条件(图5-4):①买笔记本用了多少钱;②买了多少本笔记本。
从题中已知买了24本笔记本,买笔记本用的钱数未知。
新教材适用高中政治学案部编版选择性必修3:第二框分析与综合及其辩证关系课标要求1.了解分析和综合方法的含义及必要性。
2.理解分析与综合的辩证关系,提高认识问题、把握事物整体联系的能力。
3.掌握各种分析和综合方法,树立整体观念;培养辩证分析、看待问题的能力。
素养目标1.科学精神:辩证把握分析与综合的关系。
2.公共参与:掌握分析与综合的方法,正确地进行分析与综合。
自主梳理知识点一分析与综合的含义1.分析(1)必要性:复杂多样的客观事物是以_有机整体__的方式存在和发展的。
为了把握事物的本质和规律,人们需要把认识对象的各个部分、要素暂时地分割开来,把被考察的部分、要素从对象整体中_抽取__出来。
只有这样才能逐步“解剖”认识对象。
(2)含义:分析就是把认识对象分解为各个_部分__、各个要素、各个层次,或者把认识对象的复杂的发展过程分解为若干_阶段__,分别加以认识的一种思维方法。
(3)方法①实践的需要不同,人们进行分析的具体内容和方法也不相同。
在科学研究中,人们常常运用_定性__分析和_定量__分析等多种方法,认识被研究的对象。
②辩证唯物主义阐明了事物矛盾的_普遍性和特殊性__的关系、主要矛盾和次要矛盾的关系、矛盾的_主要方面和次要方面__的关系,有利于人们在实践中抓住重点问题,认清事物性质。
这是最高层次、最具概括性的分析。
(4)优点与缺点:①分析方法将注意力集中在问题的“点”上,力图把具体的“点”认识透彻,其优点是_精确__。
②如果认识只局限在问题的“点”上,就难免产生“只见树木,不见森林”的_片面__认识。
2.综合(1)必要性:要形成对事物_整体__的认识,必须把通过分析得到的对事物的各个部分、各个要素、各个层次,以及事物发展过程中的若干阶段的认识,按照对象所_固有的联系__重新_组合__起来,这就需要运用综合方法。
(2)含义:综合是一种把认识对象的各个部分、各个要素、各个层次和不同发展阶段,按照其固有的联系_联结和统一__起来进行考察的思维方法。
7.4综合法、分析法、反证法必备知识预案自诊知识梳理1.综合法与分析法2.反证法(1)反证法的定义:在假定命题结论的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.考点自诊1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(5)证明不等式√2+√7<√3+√6最合适的方法是分析法.()2.命题:“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明过程“cos4θ-sin4θ=(cos2θ-sin2θ)·(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”应用了()A.分析法B.综合法C.综合法与分析法结合使用D.反证法3.用反证法证明“凸四边形的四个内角中至少有一个不小于90°”时,首先要作出的假设是( )A.四个内角都大于90°B.四个内角中有一个大于90°C.四个内角都小于90°D.四个内角中有一个小于90°4.(2020四川树德中学期中)欲证√2−√3<√5−√6成立,只需证( ) A.(√2-√3)2<(√5-√6)2B.(√2-√5)2<(√3-√6)2C.(√2+√6)2<(√3+√5)2D.(√2-√3-√5)2<(-√6)25.(2020吉林油田十一中月考)比较大小:3-2√2 √10−√7(填“>”“<”或“=”).关键能力学案突破考点综合法的应用【例1】若x ,y ,z 是互不相等的实数,且x+1y=y+1z=z+1x,求证:x 2y 2z 2=1.?综合法证明问题是怎样实现的?解题心得1.综合法的适用范围:(1)定义明确的问题,如证明函数的单调性、奇偶性等,求证没有限制条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.2.综合法是一种由因索果的证明方法,其逻辑依据也是三段论式的演绎推理方法,因此要保证前提条件正确,推理合乎规律,这样才能保证结论的正确性.其过程一般是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.对点训练1已知a,b,c>0,a+b+c=1.求证:(1)√a+√b+√c≤√3;(2)13a+1+13b+1+13c+1≥32.考点分析法的应用【例2】已知非零向量a,b,且a⊥b,用分析法证明:|a|+|b||a+b|≤√2.,适用于何种题型?解题心得1.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.2.证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个结论等价(或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证.3.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.对点训练2(2020陕西临潼期末)证明:(1)√6+√10>√2+√14;(2)如果a,b>0,则lg a+b2≥lga+lgb2.考点反证法的应用【例3】设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;q≠1,证明:数列{a n+1}不是等比数列.?解题心得对于含有否定概念的命题,直接证明不好证,但问题的反面比较具体易证,一般利用补集法或反证法解答证明.先假设肯定结论成立,然后根据有关的概念、定理、定义、推出与已知、公理、定理等有矛盾,从而说明原命题成立.对点训练3(2020河南新安一高月考)(1)已知x>0,y>0,且x+y>2,求证:1+2yx 与1+2xy中至少有一个小于3.(2)当a+b>0时,求证:√a2+b2≥√22(a+b).1.分析法是从结论出发,逆向思维,寻找使结论成立的充分条件.应用分析法要严格按分析法的语言表达,下一步是上一步的充分条件.2.证明问题的常用思路:在解题时,常常把分析法和综合法结合起来运用,先以分析法寻求解题思路,再用综合法表述解答或证明过程.3.用反证法证明问题要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推理;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但推导出的矛盾必须是明显的.7.4综合法、分析法、反证法必备知识·预案自诊知识梳理1.条件定义、公理、定理及运算法则结论求证的结论充分条件2.(1)反面成立考点自诊1.(1)×(2)×(3)×(4)√(5)√2.B在证明的过程中使用了平方差公式,以及同角的三角函数的关系式,符合综合法的定义,故证明过程使用了综合法.故选B.3.C首先要作出的假设是“凸四边形的四个内角中没有一个不小于90°”,即为“凸四边形的四个内角都小于90°”.故选C.4.C 根据题意,欲证√2−√3<√5−√6,则需证√2+√6<√3+√5,即只需证(√2+√6)2<(√3+√5)2.故选C.5.< 平方后再比较.然后用综合法写出过程即可.∵72>70,∴2√72>2√70,即12√2>2√70,∴17-12√2<17-2√70,即(3-2√2)2<(√10-√7)2,∴3-2√2<√10−√7.关键能力·学案突破例1证明∵x+1y =y+1z ,∴x-y=1z −1y ,∴x-y=y -zyz ,即yz=y -zx -y .∵x+1y =z+1x ,∴x-z=1x −1y , ∴x-z=y -x xy ,即xy=y -xx -z.同理可得xz=z -x y -z .∴x 2y 2z 2=(xy )(xz )(yz )=y -x x -z ×z -x y -z ×y -z x -y=1. 对点训练1证明(1)∵√13a≤13+a 2,√13b ≤13+b 2,√13c ≤13+c2,∴√3√a +√b +√c )≤3×13+a+b+c2=1,∴√a +√b +√c ≤√3,当且仅当a=b=c=13时取等号.(2)∵3b+13a+1+3a+13b+1≥2,3c+13a+1+3a+13c+1≥2,3c+13b+1+3b+13c+1≥2, ∴3b+3c+23a+1+3a+3c+23b+1+3a+3b+23c+1≥6, ∴3(a+b+c )+33a+1+3(a+b+c )+33b+1+3(a+b+c )+33c+1≥9, 即63a+1+63b+1+63c+1≥9, ∴13a+1+13b+1+13c+1≥96=32. 当且仅当a=b=c=13时等号成立. 例2证明若证原不等式|a |+|b ||a+b |≤√2.只需证|a |+|b |≤√2|a +b |, 只需证(|a|+|b|)2≤(√2|a+b|)2,即证a 2+b 2+2|a ||b |≤2a 2+2b 2+4a ·b . 因为非零向量a ,b ,且a ⊥b ,所以a ·b =0,即证2|a ||b |≤a 2+b 2, 即证(|a |-|b |)2≥0,显然成立. 所以原不等式成立.对点训练2证明(1)要证√6+√10>√2+√14,只要证(√6+√10)2>(√2+√14)2,即2√60>2√28,显然成立的,所以,原不等式成立. (2)当a>0,b>0时,要证lg a+b 2≥lga+lgb2,只要证lga+b2≥lg √ab ,因为函数y=lg x 在(0,+∞)上递增,即证a+b 2≥√ab >0,此不等式显然成立,当且仅当a=b 时等号成立.所以lg a+b2≥lga+lgb2. 例3(1)解设{a n }的前n 项和为S n ,则当q=1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q+a 1q 2+…+a 1q n-1, ① qS n =a 1q+a 1q 2+…+a 1q n , ②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n ={na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明假设{a n +1}是等比数列,则对任意的k ∈N *,(a k+1+1)2=(a k +1)(a k+2+1), a k+12+2a k+1+1=a k a k+2+a k +a k+2+1, a 12q 2k +2a 1q k =a 1q k-1·a 1q k+1+a 1q k-1+a 1q k+1, ∵a 1≠0,∴2q k =q k-1+q k+1.∵q ≠0,∴q 2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 对点训练3证明(1)(反证法)假设结论不成立,即有1+2y x ≥3,且1+2xy≥3,由已知x>0,y>0,所以有1+2y ≥3x ,且1+2x ≥3y ,故2+2x+2y ≥3x+3y ,化简得2≥x+y ,与已知x+y>2矛盾,假设不成立.所以1+2y x 与1+2xy中至少有一个小于3成立.(2)(分析法)要证√a 2+b 2≥√22(a+b ),只需证(√a 2+b 2)2≥[√22(a +b )]2,即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab.因为a 2+b 2≥2ab 对一切实数恒成立,所以√a 2+b 2≥√22(a+b )成立.。
第2节综合法与分析法创新应用[核心必知]1.综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,又叫顺推证法或由因导果法.2.分析法证明命题时,我们还常常从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.[问题思考]1.如何理解分析法寻找的是充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A只需证B”表示,说明只要B 成立,就一定有A成立,所以B必须是A的充分条件才行,当然B是A的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A⇒B1⇒B2⇒…⇒B n⇒B(逐步推演不等式成立的必要条件),即由条件出发推导出所要证明的不等式成立.分析法:B⇐B1⇐B2⇐…⇐B n⇐A(步步寻求不等式成立的充分条件),总之,综合法与分析法是对立统一的两种方法.已知a ,b ,c ∈R +,且互不相等,又abc =1.求证:a +b +c <1a +1b +1c.[精讲详析] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c2实现;也可以由右到左证明,按上述思路逆向证明即可.法一:∵a ,b ,c 是不等正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c.法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c=a +b +c ——————————————————(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,⎝ ⎛⎭⎪⎫a +b 22≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +a b≥2.④a 2+b 2+c 2≥ab +bc +ca .1.已知x ,y ,z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z. 证明:因为x ,y ,z 均为正数.所以x yz +y zx =1z (x y +y x)≥2z,同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y, 当且仅当x =y =z 时, 以上三式等号都成立.将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .[精讲详析] 本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c 2-ab <a -c <c 2-ab ,然后再证明.要证c -c 2-ab <a <c +c 2-ab , 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,两边平方得a 2-2ac +c 2<c 2-ab , 也即证a 2+ab <2ac ,即a (a +b )<2ac .∵a ,b ∈R +,且a +b <2c ,∴a (a +b )<2ac 显然成立. ∴原不等式成立.——————————————————(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过乘方将 其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x >0,y >0,求证:(x 2+y 2)12>(x 3+y 3)13.证明:要证明(x 2+y 2)12>(x 3+y 3)13,只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 即证3x 4y 2+3x 2y 4>2x 3y 3. ∵x >0,y >0,∴x 2y 2>0, 即证3x 2+3y 2>2xy . ∵3x 2+3y 2>x 2+y 2≥2xy ,∴3x 2+3y 2>2xy 成立,∴(x 2+y 2)12>(x 3+y 3)13.已知a ,b ,c 为不全相等的正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [精讲详析] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0.∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立. ——————————————————(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.若a ,b ,c 是不全相等的正数,求证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),即证a +b 2·b +c 2·c +a2>a ·b ·c .又∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,以上三式中由于a ,b ,c 不全相等, 故等号不同时成立. ∴a +b 2·b +c 2·c +a2>a ·b ·c .∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .数学证明是数学高考的核心问题,有时单独考查,有时以解答题的一问出现,综合法是解决数学证明问题的基本方法,而分析法又为综合法的使用提供了思路,因此,综合法与分析法是解决数学证明问题的重要工具.[考题印证]设a,b为非负实数,求证:a3+b3≥ab(a2+b2).[命题立意] 本题考查综合法的应用,考查学生分类讨论的思想和转化化归思想的应用.[证明] 由a,b是非负实数,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)((a)5-(b)5).当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)·((a)5-(b)5)≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)·((a)5-(b)5)>0.所以a3+b3≥ab(a2+b2).一、选择题1.设a,b∈R+,A=a+b,B=a+b,则A、B的大小关系是( )A.A≥B B.A≤BC.A>B D.A<B解析:选C 用综合法(a+b)2=a+2ab+b,所以A2-B2>0.又A >0,B >0, ∴A >B .2.已知a ,b ,c 满足c <b <a 且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .b 2<ab 2D .ac (a -c )>0解析:选A ⎩⎪⎨⎪⎧ac <0,c <a ⇒⎩⎪⎨⎪⎧a >0,c <0. 又b >c ,∴ab >ac ,故A 正确. ∵b -a <0,c <0,∴c (b -a )>0, 故B 错误.由b 2=0,可验证C 不正确, 而ac <0,a -c >0, ∴ac (a -c )<0,故D 错误.3.设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a解析:选A 构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得b <c ;又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x,故⎝ ⎛⎭⎪⎫3525>⎝ ⎛⎭⎪⎫2525,所以a >c ,故a >c >b .4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >P D .P ≤S <2P解析:选D ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2, 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ),即S <2P . 二、填空题5.设a >2,x ∈R ,M =a +1a -2,N =⎝ ⎛⎭⎪⎫12x 2-2,则M ,N 的大小关系是________.解析:∵a >2, ∴M =a +1a -2=(a -2)+1a -2+2≥2+2=4. ∵x 2-2≥-2,∴N =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4, ∴M ≥N . 答案:M ≥N6.设a ,b ,c 都是正实数,且a +b +c =1,若M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1,则M 的取值范围是________.解析:∵a +b +c =1,∴M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1=⎝⎛⎭⎪⎫a +b +c a -1·⎝ ⎛⎭⎪⎫a +b +c b -1·⎝ ⎛⎭⎪⎫a +b +c c -1=⎝ ⎛⎭⎪⎫b a +c a ·⎝ ⎛⎭⎪⎫a b +c b ·⎝ ⎛⎭⎪⎫a c +b c≥2bca 2·2ac b 2·2ab c 2=8.即M 的取值范围是[8,+∞). 答案:[8,+∞)7.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b2ab,即R =2aba +b,显然P ≥Q , 又2ab a +b ≤2ab2ab=ab , ∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R 8.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,则λ的取值范围是________. 解析:不等式可化为1a -b +1b -c >λa -c. ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -c a -b +a -cb -c恒成立. ∵a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -bb -c≥2+2=4.∴λ<4. 答案:(-∞,4) 三、解答题9.(新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 10.已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b .证明:要证(a -b )28a <a +b 2-ab <(a -b )28b ,只要证(a -b )24a <a +b -2ab <(a -b )24b,即证⎝ ⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b 2b ,即证a +b a <2<a +bb , 即证1+b a <2<1+ab,即证 b a<1< ab成立. 因为a >b >0,所以ab>1,b a<1,故b a <1, a b>1成立, 所以有(a -b )28a <a +b 2-ab <(a -b )28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有 ab =(a +b )2-(a 2+b 2)2=(1-c )2-(1-c 2)2=c 2-c .①又a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等精心制作仅供参考 鼎尚出品鼎尚出品 实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1. ∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab=c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍). ∴-13<c <0,即1<a +b <43.。
第2讲 证明不等式的基本方法[自我校对] ①作差法 ②综合法 ③执果索因 ④放缩法 ⑤间接证明作差——恒等变形——判断差值的符号——结论.其中,变形是证明推理中的关键,变形的目的在于判断差的符号.【例1】 设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2. [自主解答] 3a 3+2b 3-(3a 2b +2ab 2) =3a 2(a -b )+2b 2(b -a )=(a -b )(3a 2-2b 2). ∵a ≥b >0,∴a -b ≥0,3a 2-2b 2≥2a 2-2b 2≥0,从而(3a 2-2b 2)(a -b )≥0,故3a 3+2b 3≥3a 2b +2ab 2成立.1.若a =lg 22,b =lg 33,c =lg 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <cC [a 与b 比较:a =3lg 26=lg 86,b =2lg 36=lg 96.∵9>8,∴b >a ,b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315.∵35>53,∴b >c ,a 与c 比较:a =lg 2510=lg 3210,c =lg 2510.∵32>25,a >c ,∴b >a >c ,故选C.]步推导出不等式成立的必要条件,两者是对立统一的两种方法,一般来说,对于较复杂的不等式,直接用综合法往往不易入手.因此通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.【例2】 已知实数x ,y ,z 不全为零,求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).[自主解答] 因为x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2 ≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2,同理可证:y 2+yz +z 2≥y +z2,x 2+xz +z 2≥z +x2.由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号, 所以三式累加得:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ), 所以有x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).2.设a ,b ,c 均为大于1的正数,且ab =10. 求证:log a c +log b c ≥4lg c .[证明] 由于a >1,b >1,故要证明log a c +log b c ≥4lg c , 只要证明lg c lg a +lg clg b ≥4lg c .又c >1,故lg c >0,所以只要证1lg a +1lg b ≥4,即lg a +lg blg a ·lg b ≥4.因ab =10,故lg a +lg b =1, 只要证明1lg a ·lg b≥4.(*)由a >1,b >1,故lg a >0,lg b >0,所以0<lg a ·lg b ≤⎝ ⎛⎭⎪⎫lg a +lg b 22=⎝ ⎛⎭⎪⎫122=14,即(*)式成立.所以,原不等式log a c +log b c ≥4lg c 得证.差异较大时,可考虑用放缩法进行过渡从而达到证明目的.【例3】 若a ,b ,c ,x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.[自主解答] 设a ,b ,c 都不大于0, 则a ≤0,b ≤0,c ≤0, ∴a +b +c ≤0, 由题设知,a +b +c=⎝⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3, ∴a +b +c >0,这与a +b +c ≤0矛盾, 故a ,b ,c 中至少有一个大于0.3.如图,已知在△ABC 中,∠CAB >90°,D 是BC 的中点,求证:AD <12BC .[证明] 假设AD ≥12BC .(1)若AD =12BC ,由平面几何定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,知∠A =90°,与题设矛盾,所以AD ≠12BC .(2)若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD , 从而∠B >∠BAD . 同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD , 即∠B +∠C >∠A .因为∠B +∠C =180°-∠A ,所以180°-∠A >∠A ,即∠A <90°,与已知矛盾, 故AD >12BC 不成立.由(1)(2)知AD <12BC 成立.不等式的传递性,达到证明的目的.运用放缩法证明的关键是放缩要适当,既不能太大,也不能太小.【例4】 已知a ,b ,c 为三角形的三条边,求证:a 1+a ,b 1+b ,c1+c 也可以构成一个三角形.[自主解答] 设f (x )=x1+x ,x ∈(0,+∞).设0<x 1<x 2,则f (x 2)-f (x 1)=x 21+x 2-x 11+x 1=x 2-x 1(1+x 1)(1+x 2)>0,∴f (x )在(0,+∞)上为增函数.∵a ,b ,c 为三角形的三条边,于是a +b >c , ∴c1+c <a +b 1+(a +b )=a 1+a +b +b 1+a +b <a 1+a +b 1+b ,即c 1+c <a 1+a +b 1+b, 同理b 1+b <a1+a +c1+c ,a1+a <b1+b +c1+c , ∴以a1+a ,b 1+b ,c1+c 为边可以构成一个三角形.4.已知|x |<ε3,|y |<ε6,|z |<ε9,求证:|x +2y -3z |<ε.[证明] ∵|x |<ε3,|y |<ε6,|z |<ε9,∴|x +2y -3z |=|1+2y +(-3z )|≤|x |+|2y |+|-3z |=|x |+2|y |+3|z |<ε3+2×ε6+3×ε9=ε.∴原不等式成立.1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4C [由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.]2.设a ,b >0,a +b =5,则a +1+b +3的最大值为________.[解析] 令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. [答案] 3 23.设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k4依次构成等比数列?并说明理由.[解] (1)证明:因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)不存在,理由如下:令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0). 假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =da,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,得t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)不存在,理由如下:假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列,则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k(a 1+3d )n +3k=(a 1+2d )2(n +2k ),分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得 (n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ). 化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )], 且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t ) =4ln(1+3t )ln(1+t ).(**)令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+ 3(1+t )2ln(1+t ),则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ′1(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ′1(t ),则φ′2(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列.4.已知a >0,函数f (x )=e axsin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明:(1)数列{f (x n )}是等比数列; (2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.[证明] (1)f ′(x )=a e ax sin x +e axcos x =e ax (a sin x +cos x )=a 2+1e axsin(x +φ). 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π, 即x =m π-φ,m ∈N *.对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0; 若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反.于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *). 此时,f (x n )=ea (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)·sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数, 故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *,x n <|f (x n )|恒成立,即n π-φ<1a 2+1ea (n π-φ)恒成立,等价于a 2+1a <e a (n π-φ)a (n π-φ)(*)恒成立(因为a >0).设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e ,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2.于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g(ax n)>g(1)=e=a2+1 a.故(*)式亦恒成立.综上所述,若a≥1e2-1,则对一切n∈N*,x n<|f(x n)|恒成立.。
2.2.1综合法和分析法
学习目标:(1)知识与能力:了解直接证明的两种基本方法:分析法和综合法;(2)过程与方
法:了解分析法和综合法的思考过程、特点。
(3)情感与价值观:充分体会逻辑性的严谨、周密。
学习重点:会用综合法证明问题;了解综合法的思考过程.
学习难点:根据问题的特点,结合综合法的思考过程、特点,选择适当证明方法.
学生探究过程:
合情推理分__________和__________,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------__________与__________。
例1. 已知:c b a ,,是不全相等的正数,
求证: ()()()abc b a c a c b c b a 6222222>+++++
证明:
1、综合法的定义:
一般的,利用________和某些数学______,_______,_______等经过一系列的推理论证,最后导出所要证明的结论成立。
(1)综合法证明逻辑关系是:
P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论
()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒
(2)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
练习:1.在锐角三角形中,求证:.cos cos cos sin sin sin C B A C B A ++>++
分析:锐角三角形的各角均为锐角,即两角之和大于︒90,于是想到构造角的不等式,联想三角函数的单调性,进而转化为三角函数不等式。
例2、在△ABC 中,三个内角A,B,C 的对边分别为,,a b c ,且A,B,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.
分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是2
b a
c =.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.
证明:由 A, B, C 成等差数列,有___________. (1)
因为A,B,C 为△ABC 的内角,所以A + B + C=π. (2)
由(1)(2),得B=_______.
由a, b ,c 成等比数列,有_______________. (3)
由余弦定理及(3),可得
_______________________________________. (4)
再由(4),得____________________.
即, ________________
因此_________. 从而__________.
所以__________________________
2、分析法定义:一般的,从_______________出发,逐步寻求是它成立的____________,直到最后,把要证明的结论归结为判定一个明显成立的条件,这个条件可以是:__________, ________,________,________,__________。
(1)用分析法证明不等式的逻辑关系是:
()()1121().....()n n n Q P P P P P P P -⇐←⇐←⇐←⇐
(2)分析法的思维特点是:执果索因,即从结论出发,步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法
例3、求证5273<+ 证明:因为5273和+都是正数,所以为了证明5273<+
只需证明____________________________
展开得 _____________________________
即 ______________________
因为______________成立,
所以_____________________________成立 即证明了5273<+
练习:1、已知233=+n m ,求证2≤+n m 。
分析:观察条件和结论,不具备使用基本不等式的特点,用综合法证比较困难,可以考虑用分析法,探究思路推正结论。
证明:
2、若a 、b 、c 是不全相等的正数, 求证:c b a a
c c
b b
a lg lg lg 2lg 2lg 2lg ++>+++++
巩固练习:P42—练习1、2
课堂小结:
作业:P44—A 组1、2。