北京大学高等代数7
- 格式:doc
- 大小:77.00 KB
- 文档页数:2
《高等代数》是北京大学数学科学学院(由数学、概率统计、科学与工程计算、信息科学、金融数学五个系组成)本科一年级的三门最重要的基础课之一,为期一学年,教学时间30周,复习、考试4周,总共10学分(每学期5学分)。
每年学生约260人(包括本院学生、元培班学生和重修的学生),分成两个大班,由两个主讲教师依照同样的教学计划(包括进度、内容、习题和作业的的安排)同步授课(每周4学时),同时配备有四位助教上习题课(每周2学时)和批改作业。
主讲教师负责安排习题课内容以及指导助教的工作。
每学期期中、期末考试各一次,采用统一的考题和统一的评分标准。
考试分数为百分制。
期末总成绩为期中成绩的40%加上期末成绩的60%再减去学生未交作业的次数。
课程目前采用的教材是蓝以中编著的《高等代数简明教程》(上、下册)(北京大学出版社2002年出版,北京大学数学教学系列丛书,该书为普通高等教育“十五”国家级规划教材及2002年北京市教育精品教材重点项目)。
主要教学参考书是北大几何与代数教研室代数小组编《高等代数》(高等教育出版社,1991年,第二版,曾获国家优秀教材一等奖);丘维声编著的《高等代数》(上、下册)(高等教育出版社1996年出版,国家“九五”重点教材)。
本课程的内容包括:线性方程组,矩阵,行列式,双线性型与二次型,线性空间,线性变换,具有度量的线性空间(欧氏空间、酉空间、四维时空空间、辛空间),Jordan标准形,有理整数环,一元和多元多项式环,多线性代数(张量积、张量、外代数)的初步理论等。
本课程不仅注重讲授代数学的基本知识,更强调对于学生的“三个基本训练”和“一个初步训练”,即、代数学基本思想的训练、代数学基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
北京⼤学数学系课程设置本科⽣1)公共与基础课程:44-50学分⼤学英语系列课程(2-8学分),政治系列课程、军事理论以及军训等课程(18学分)、计算机系列课程(6学分),体育系列课程(4学分),数学分析(14学分)2)核⼼课程:29学分⾼等代数Ⅰ(5学分),⾼等代数Ⅱ(4学分),⼏何学(5学分),抽象代数(3学分),复变函数(3学分),常微分⽅程(3学分),数学模型(3学分),概率论(3分)3)数学系限选课程32学分a) 21学分选⾃下⾯9门课: 数论基础(3学分),群与表⽰(3学分),基础代数⼏何(3学分),拓扑学(3学分),微分⼏何(3学分),微分流形(3学分),实变函数(3学分),泛函分析(3学分),偏微分⽅程(3学分)。
b) 理学部的⾮数学学院课程8学分(其中4学分物理).c) 毕业论⽂3学分4) 数学系通识与⾃主选修课程:27学分A.理学部课程:12学分,可以选⾃理学部中的任何院系,包括数学学院。
B. 通选课:12学分,其中社会科学类⾄少2学分;哲学与⼼理学类⾄少2学分;历史学类⾄少2学分;语⾔学、⽂学、艺术与美育类⾄少4学分,其中⼤学国⽂必选,另⼀门是艺术与教育类课程;数学与⾃然科学类和社会可持续发展类⾄少2学分。
C. 在全校课程中选择其余3学分。
研究⽣中级课程分析学与偏微分⽅程中级课程《实分析》(包含初步的⼏何测度论知识)+《调和分析》:上下学期开设,作为整体⼀年的课程。
《复分析》:与复⼏何课程衔接。
《泛函分析II》。
《⼆阶椭圆型⽅程》+《双曲⽅程》:上下学期轮流开设。
每两年开设⼀次《⾮线性分析基础》;《变分学》:轮流开设,有区分度。
《多复变函数论》。
资格考试课程:分析类:1) 泛函分析II, 2) 调和分析, 3)复分析; 偏微类:4) ⼆阶椭圆型⽅程,5)双曲⽅程另:偏微分⽅程概论(各类偏微分⽅程,拟微分算⼦)列为初级课程,在本科⽣开设。
常微分⽅程与动⼒系统类课程《常微分⽅程定性理论》。
一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则, 则称这样的一个体系为定义(数域) 设K 是某些复数所组成的集合。
如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、四则运算是封闭的,即对K 内任两个数a 、 b ( a 可 以等于b ), 必有b K , abK ,且当b 0时,a/b K ,则称K 为一个数域。
1.1典型的数域举例:复数域C ;实数域R ;有理数域Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = •.1命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素K ,且 a 0。
于是进而最后,m, n Z巴K 。
这就证明了nK 。
证毕。
1.1.3集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为A 与B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩定义(集合的映射) 设A 、B 为集合。
如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定若a a'代都有f (a)第一章代数学的经典课题§ 1若干准备知识1.1.1代数系统的概念个代数系统。
1.1.2数域的定义定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作A B ;把A下的元素组成的集合成为A 与B 的差集,记做A B 。
的元素(记做f(a)),则称f 是A 到B 的一个映射,记为B, f (a).如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。
A 的所有元素在f 下的像构成的 B 的子集称为A 在f 下的像,记做f (A),即 f (A) f(a)| a A 。
f(a'),则称f 为单射。
若 b B,都存在a A ,使得f(a) b ,则称f 为满射。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数(北大高等代数(北大**第三版)答案第一章多项式1.用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+−=−−−=x x x g x x x x f ;2)2)(,52)(24+−=+−=x x x g x x x f 。
解1)由带余除法,可得92926)(,9731)(−−=−=x x r x x q ;2)同理可得75)(,1)(2+−=−+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++−+32|1,2)q px x mx x ++++242|1。
解1)由假设,所得余式为0,即0)()1(2=−+++m q x m p ,所以当⎩⎨⎧=−=++012m q m p 时有q px x mx x ++−+32|1。
2)类似可得⎩⎨⎧=−−+=−−010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=−−m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==1q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =−−=+;2)32(),()12f x x x x g x x i =−−=−+。
解1)432()261339109()327q x x x x x r x =−+−+=−;2)2()2(52)()98q x x ix i r x i=−−+=−+。
4.把()f x 表示成0x x −的方幂和,即表成2010200()()...()n n c c x x c x x c x x +−+−++−+⋯的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =−+=−;3)4320()2(1)37,f x x ix i x x i x i =+−+−++=−。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。
北京大学数学学院期中试题
考试科目 高等代数I 考试时间 2012年11月8日 姓 名 学 号
一.(30分)填空题.
1.设
当λ = 时, α1 , α2 , α3不能表出β ; 当λ = 时, 表出方式不唯一.
2. 设α1 , α2是矩阵A = 的行向量, 则 α1 α1T + α2 α2 T = __ , α1T α1 + α2T α2 = ___ ;
A T A =__ , A T A 的秩 =__ , A A T = __ .
3.设 若矩阵 能写成 k 1 α1 α1T + k 2 α1 α2T + k 3 α2 α1T + k 4 α2 α2T , 则 [ k 1 , k 2 , k 3 , k 4 ] =__.
4. 已知 B 是3⨯4矩阵, [ 2 0 1 3 ] T 是齐次线性方程组B X = 0
的一个解. 设A 是将行向量 [ 2 0 1 3 ] 添加到B 下面
得到的方阵. 若A 的 (4,1) 元的余子式为6, 则 | A | =___.
5. 对矩阵做初等行变换, 矩阵的_____ 不变(多选).
A 秩
B 行空间
C 列空间
D 解空间
6. 设α = [ 1 1 2 ] T 与 β = [ 3 0 2 ] T 是3维几何空间里的向量. 则
α , β之间夹角的余弦值是__, α , β张成的三角形的面积是__, 与α , β都正交的单位向量是___.
二.(12分)已知 .11α,11α21⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦
⎤⎢⎣⎡31021121.,,2320202
1211010===b b a a t b b a a b b a a ⎥⎦
⎤⎢⎣⎡d c b a ,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=1λ21β,5λ42α,45λ2α,222λα321
求行列式
.
三.(24分)已知 是K 4的子空间V 的一组生成元.
1) 求V 的基, 使得每个基底向量至少有 dim V – 1个分量为0 .
2) 求V 的一组基, 使得该基底是α1 , α2 , α3 , α4 , α5的部分组;
3) 分别写出α1 , α2 , α3 , α4 , α5 在以上两组基下的坐标.
四.(24分)
1) 叙述向量空间线性子空间的定义并证明: 若V 1 与 V 2是
K n 的线性子空间, 则 V 1 ⋂ V 2 也是K n 的线性子空间.
2) 已知V 1 = < α1 , α2 , α3 , α4 > , V 2 = < β1 , β2 , β3 > , (αi , βj 为列向量)
且矩阵A = [ α1 α2 α3 α4 β1 β2 β3 ] 的简化阶梯型为
求V 1 ⋂ V 2 的维数与一组基, 用α1 , α2 , α3 , α4 的线性组合表示.
五.(10分)已知矩阵A 的前r 行构成A 行向量组的极大无关组,
A 的前 r 列构成A 列向量组的极大无关组. 问A 的前 r 行, 前 r 列交叉位置元素排成的r 阶子式是否一定非零? 如是, 请给出证明, 否则给出反例. ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=5022α1000α,7596α,2242α,3112α54321,21021
2102100000
b b b b b b a a a a a a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100000203100010201103010201J。