高等代数课件(北大版)第四章 矩阵§4-6
- 格式:ppt
- 大小:399.50 KB
- 文档页数:21
高等代数课件(北大版)第四章矩阵第一节:矩阵的概念及基本运算矩阵是现代数学的重要基础,是线性代数理论的核心概念之一。
在数学和应用领域有着重要的应用价值。
1.1 矩阵的定义定义1.1:矩阵是一个有规律的数表,其中的每一个数称为矩阵的一个元素,通常用一个大写字母表示。
例如:$$A=\begin{pmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{pmatrix}$$其中 $a_{ij}$ 称为矩阵 $A$ 的第 $i$ 行第 $j$ 列元素。
1.2 矩阵的基本运算1.2.1 矩阵的加法定义1.2:设 $A=(a_{ij})_{m \times n},B=(b_{ij})_{m \times n}$,则其和 $C=A+B$ 定义为矩阵 $C$ 的元素为 $c_{ij}=a_{ij}+b_{ij}$。
例如:$$A=\begin{pmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{pmatrix},B=\begin{pmatrix}-1 & -2 & -3 \\-4 & -5 & -6 \\-7 & -8 & -9\end{pmatrix},$$则 $C=A+B$ 得:$$C=\begin{pmatrix}0 & 0 & 0 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}$$1.2.2 矩阵的数乘定义1.3:设 $A=(a_{ij})_{m \times n}$,$k \in K$,则矩阵 $kA$ 定义为矩阵 $kA$ 的元素为 $ka_{ij}$。
§1 二次型及其矩阵表示教学目的: 使学生了解及掌握二次型及其矩阵的表示方法 重点: 矩阵的表示方法及矩阵合同关系 难点: 矩阵合同关系的性质 课时: 2学时 教学方法: 讲授法 教学内容:一、二次型及其矩阵表示设P 是一个数域,一个系数在数域P 中的n x x ,,1 的二次齐次多项式)1(222),,,(2222222112112211121nnn n n n n n x a x x a x a x x a x x a x a x x x f ++++++++= 称为数域P 上的一个n 元二次型,简称二次型.定义1 设n n y y x x ,,;,,11 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111,, (2)称为由n x x ,,1 到n y y ,,1 的一个线性替换,或简称线性替换.如果系数行列式≠ij c ,那么线性替换(2)就称为非退化的.线性替换把二次型变成二次型.令.,j i a a ji ij <=由于,i j j i x x x x =所以二次型(1)可写成)3(),,,(11222112222221221112112211121∑∑===++++++++++++=ni nj ji ij n nn n n n n nn nn n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f把(3)的系数排成一个n n ⨯矩阵,212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A (4) 它称为二次型(3)的矩阵.因为,,,2,1,,n j i a a ji ij ==所以A A ='把这样的矩阵称为对称矩阵,因此,二次型的矩阵都是对称的.令()()∑∑===⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛='ni nj ji ij n nn n n n n n n n n nn n n n n n x x a x a x a x a x a x a x a x a x a x a x x x x x x a a a a a a a a a x x x AX X 11221122221211212111212121222211121121,,,,,,或AX X x x x f n '=),,,(21应该看到二次型(1)的矩阵A 的元素,当j i ≠时ji ija a =正是它的j i x x 项的系数的一半,而ii a 是2i x 项的系数,因此二次型和它的矩阵是相互唯一决定的.由此可得,若二次型BX X AX X x x x f n '='=),,,(21且B B A A ='=',,则B A =.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n y y y Y c c c c c c c c c C21212222111211,,于是线性替换(4)可以写成⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n nn n n n n n y y y c c c c c c c c c x x x 2121222211121121 或者CY X =.经过一个非退化的线性替换,二次型还是变成二次型,替换后的二次型与原来的二次型之间有什么关系,即找出替换后的二次型的矩阵与原二次型的矩阵之间的关系.设A A AX X x x x f n '='=,),,,(21 (7)是一个二次型,作非退化线性替换CY X = (8)得到一个n y y y ,,,21 的二次型BY Y ' ,例1 试写出2211ni ji i j nxx x =≤< ≤+∑∑的矩阵解:111122211112221111222A ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭例2写出11211(,,,)n n i i i f x x x ix x -+==∑ 的矩阵解:122334123(1)n n f x x x x x x n x x -=++++-∴100212022202102102A n n ⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎪- ⎪⎝⎭例3写出222121211n n n n n x x x x x x x ---+++++ 的矩阵解:(21)(21)121211212n n n n A -⨯-→⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭行列二、矩阵的合同关系 现在来看矩阵A 与B 的关系. 把(8)代入(7),有.)()()(),,,(21BY Y Y AC C Y ACYC Y CY A CY AX X x x x f n '=''=''='='=易看出,矩阵AC C '也是对称的,由此即得AC C B '=.这是前后两个二次型的矩阵的关系。