传热的三种基本方式
- 格式:doc
- 大小:110.00 KB
- 文档页数:3
第6章传热1、传热过程有哪三种基本方式?答:(1)间接换热,(2)直接换热,(3)蓄热式换热。
2、传热按机理分为哪几种?答:(1)热传导,(2)热对流,(3)热辐射。
3、物体的导热系数与哪些主要因素有关?答:与物体材料的组成、结构、温度、湿度、压强及聚集状态等因素有关。
4、流体流动对传热的贡献主要表现在哪儿?答:流体在垂直于传热方向上的流动,可以增加传热方向上的温度梯度,尤其是湍流时,使得传热方向上的温度梯度仅存在于流动边界层内,故温度梯度数值有很大的增加,根据傅立叶热传导定律可知,在温度梯度方向上的传热速率有了很大增加。
流体在平行于传热方向上的同向流动对于传热的作用是明显的,流体的质点运动携带了热量,使得传热速率可有很大增加。
5、自然对流中的加热面与冷却面的位置应如何放才有利于充分传热?答:将加热面水平方向置于底部,加热面水平方向置于顶部,有利于自然环流。
6、液体沸腾的必要条件有哪两个?答:(1)达到一定的过热度,(2)有利于形成较多的气泡核心。
7、工业沸腾装置应在什么沸腾状态下操作?为什么?答:应在什么核状沸腾状态下操作,因为此状态下,对流传热系数大,操作状态安全稳定。
8、沸腾给热的强化可以从哪两方面着手?答:(1)加热表面,易于形成更多的汽化核心,(2)沸腾液体,在液体中加入少量的添加剂改变沸腾液体的表面张力。
9、蒸汽冷凝时为什么要定期排放不凝性气体?答:在冷凝液膜表面上的不凝性气体膜,导热系数很小,热阻值大,直接影响蒸汽冷凝传热速率,故应定期排放不凝性气体。
10、为什么低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式?答:根据斯蒂芬-波尔茨曼定律,物体对外辐射能量的总能力E与其绝对温度的4次方成正比,故在物体处于低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式。
11、影响辐射传热的主要因素有哪些?答:(1)高温物体绝对温度的4次方与低温物体绝对温度的4次方之差,(2)高温物体的黑度值及低温物体的黑度值,(3)高温物体与低温物体的位置关系。
1•传导传热是指温度不同的物体直接接触,由于自由电子的运动或分子的运动而 发生的热交换现象。
温度不同的接触物体间或一物体中各部分之间热能的传递过程,称为传导传热。
传热过程中,物体的微观粒子不发生宏观的相对移动,而在其热运动相互振动或 碰撞中发生动能的传递,宏观上表现为热量从高温部分传至低温部分。
微观粒子 热能的传递方式随物质结构而异,在气体和液体中靠分子的热运动和彼此相撞, 在金属中靠电子自由运动和原子振动。
⑴对流传热是热传递的一种基本方式。
热能在液体或气体中从一处传递到另一处的过程。
主要计算分类对于宅瘟畀捲T 特担黑举为聲疑*ao2、多层平面壁的计算1、单层平壁的计算⑴序+购珅子连嘉荐挑扯ft qg 醴円畀…是由于质点位置的移动,使温度趋于均匀。
是液体和气体中热传递的主要方式。
但也往往伴有热传导。
通常由于产生的原因不同,有自然对流和强制对流两种。
根据流动状态,又可分为层流传热和湍流传热。
化学工业中所常遇到的对流传热,是将热由流体传至固体壁面(如靠近热流体一面的容器壁或导管壁等),或由固体壁传入周围的流体(如靠近冷流体一面的导管壁等)。
这种由壁面传给流体或相反的过程,通常称作给热。
定义对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位弯管中的对流传热⑴由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。
在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。
[2]对流传热通常用牛顿冷却定律来描述,即当主体温度为tf的流体被温度为tw 的热壁加热时,单位面积上的加热量可以表示为q=a(tw-tf),当主体温度为tf的流体被温度为tw的冷壁冷却时,有q=a(tf-tw)式中q为对流传热的热通量,W/m2 a 为比例系数,称为对流传热系数,W/(m2「C)。
牛顿冷却公式表明,单位面积上的对流传热速率与温差成正比关系。
传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。
h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W6. 热辐射的特点。
a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
(w))(∞-=''t t h q w 2/)(m w t t Ah A q w ∞-=''=φ第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):dx dT k q x ∂∂-='' )(zT y T x T k T k q ∂∂+∂∂+∂∂-=∇-=''k j i T(x,y,z)为标量温度场nT k q n ∂∂-='' 圆筒壁表面的导热速率drdT rL k dr dT kA q r )2(π-=-= 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
传热学主要知识点1.热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。
6. 热辐射的特点。
a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h因素:流速、流体物性、壁面形状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程二、解答题和分析题1、热量、热流量与热流密度有何联系与区别?热能:物质所具有的内动能(广延量,物质的微观运动属性)。
传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流〔热对流〕(Convection)的概念。
流体中〔气体或液体〕温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体外表时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触〔流体与壁面〕和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。
6. 热辐射的特点。
a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 外表传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
外表传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律〔导热基本定律〕:垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
(1)空隙中充有空气,空气导热系数小,因此保温性好;(2)空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。
(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2. 导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3. 对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4 对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。
q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。
a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。
7. 导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
传热的三种基本方式
赵世强 08化工一班 0803021039
合肥学院 化学与材料工程系 合肥 230022
摘要:传热是自然界和工程技术领域中极普遍的一种传递过程。
由于物体内或系统内的两部分之间的温度差而引起,净的热流方向总是由高温处向低温处流动。
关键词:传热,温度差,热传导,对流传热,辐射传热
引言
化学工业与传热的关系尤为密切,化工生产中的很多过程与单元操作都需要进行加热获冷却,而这些传热过程往往都是通过一定的换热设备来实现的。
如何设计价格低廉、运行经济的换热设备以完成所要求的换热任务,是化学工程师经常遇到的问题。
这就要求通晓热量传递的基本原理,又要求具有能够定量计算传递速率的能力。
1 热传导
热量从物体内部温度较高的部分传递到温度较低的部分或者传递到与之相接触的、温度较低的另一物体的过程称为热传导,简称导热。
特点:物质间没有宏观位移,只发生在静止物质内的一种传热方式。
1.1 傅立叶定律
描述导热现象的物理定律为傅里叶定律,其数学表达式为 dQ t q k n dS
∂==-∂ 式中 Q ——传热速率单位时间传递的热量,/J s ; q ——热通量单位传热面积的传热速率,2/()J m s ⋅,矢量,方向为传热面的法线方向dQ q dS
=; S ——与导热方向垂直的传热面积;
负号表示q 与温度梯度方向相反;
k ——导热系数, 单位为/()W m K ⋅。
物性之一:与物质种类、热力学状态(T 、P )有关
物理含义:代表单位温度梯度下的热通量大小,故物质的k 越大,导热性能越好。
1.2 热导率(导热系数) 定义式:dQ dS k dt dn
=- 单位温度梯度的热通量, /(K)W m ⋅ k 表征物质导热能力的大小,是物质的物性之一。
k 金属非金属固体液气由实验测定,一般k k k k >>>金属非金属固体液体气体
1.2.1 气体的导热系数
a 随温度的升高而增大;
b 气体k 很小,对导热不利,但有利于保温、绝热;
c 混合物131
131n i i
i i m n i
i
i k y M k y M ===∑∑ 1.2.2 液体的导热系数
液态金属的k 比一般液体的要高大多数液态金属的k 随T 升高而减小。
在非金属液体中,水的最大。
除水和甘油外,绝大多数液体的k 随T 升高而略有减少,k k >纯液体溶液溶液。
溶液的k :0.9m i i k a k =∑ 或 m i i k a k =∑
1.2.3 固体的导热系数
纯金属:k 随T 升高而减小,随纯度升高而增大
非金属:k 随ρ升高而增大,随T 升高而增大
对大多数匀质的固体,k 值与温度大致成线性关系,即
0(1)k k t β=+
2 热对流(又称对流)
对流传热是指由于流体的宏观运动,流体各部分之间发生相对位移、冷热流体相互掺混所引起的热量传递过程。
流体中质点发生相对位移而引起热交换。
对流传热仅发生在流体中,因此它与流体的流动状态密切相关。
在对流传热时,必然伴随着流体质点间的热传导。
流体中产生对流的原因:
自然对流(natural convection )由于流体各部分温度的不均匀分布,形成
密度的差异,在浮升力的作用下,流体发
生对流而传热
强制对流(forced convection ) 用机械能(泵、风机、搅拌等)使流体发
生对流而传热。
流动的原因不同,对流传热的规律也有所不同。
在同一种流体中,有可能同时发生自然对流和强制对流。
牛顿冷却定律——对流传热基本方程式 dQ h t dS = 式中 h ——对流传热系数,单位2/()W m K ⋅;
t ——固体壁面与流体主体之间的温度差。
物理意义:表示当流体截面平均温度与壁面温度的值为1℃时,单位时间通过单位传热面积的热量。
3. 热辐射(又称辐射)
由于温度差而产生的电磁波在空间的传递过程称为辐射传热,简称热辐射。
斯蒂芬(Stefan )—玻尔兹曼(Boltzmann )定律——描述热辐射的基本定律:
40dQ T dS
σ= 式中 0σ——黑体的辐射系数,称为斯蒂芬—玻尔兹曼常数,其值为
8245.6710/()W m K -⨯⋅;
T ——黑体表面的绝对温度;
S ——黑体的表面积。
该式只适用于绝对黑体,且只能应用于热辐射,而不适用于其他形式的电磁波辐射。
参考文献
陈涛,张国亮.化工传递过程基础[M],第三版.北京:化学工业出版社,2010. 122-125。