张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](差异量数)
- 格式:pdf
- 大小:440.37 KB
- 文档页数:5
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
第13章多变量统计分析简介1.探索性因素分析与验证性因素分析有什么区别?答:(1)探索性因素分析(exploratory factor analysis,简写为EFA)就是指传统的因素分析。
这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。
对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。
在典型的EFA中,研究者通过共变关系的分解,找出最低限度的主要成分(principal component)或共同因子(common factor),然后进一步探讨这些主成分或共同因子与个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值(factor loading),以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量(explained variance)两者间寻找平衡点。
因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。
因而在EFA中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即R square)。
(2)验证性因素分析(confirmatory factor analysis,简写为CFA)是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。
这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。
这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。
第2章统计图表一、单项选择题1.统计图中的y轴一般代表()。
A.因变量B.自变量C.数据D.被试变量【答案】A【解析】统计图一般采用直角坐标系,通常横坐标或横轴表示事物的组别或自变量X,称为分类轴;纵坐标或纵轴表示事物出现的次数或因变量Y,称为数值轴。
2.上限与下限之差为()。
A.组限B.组距C.组数D.全距【答案】B【解析】A项,组限是一个组的起点值和终点值之间的距离,起点值称组下限,终点值称组上限,包括表述组限和精确组限两种。
B项,组距是指任意一组的起点和终点之间的距离,用符号i表示。
C项,组数(分组数目)的多少要根据数据的多少来定。
如果数据个数在100以上,习惯上一般分10~20组,经常取12~16组;数据个数较少时,一般分为7~9组。
D项,全距指最大数与最小数两个数据值之间的差距。
3.直方图一般适用于自变量的是()。
A.称名变量B.顺序变量C.等距变量D.等比变量【答案】C【解析】直方图,又称等距直方图,是以矩形的面积表示连续性随机变量次数分布的图形。
一般用纵轴表示数据的频数,横轴表示数据的等距分组点,即各分组区间的上下限,有时用组中值表示。
直方图适用于等距变量。
4.小李认为实验获得的数据有一定的偏斜,他想通过一种迅速有效的方式描述这种偏斜。
下列各种统计图中能描述这种偏斜的是()。
A.直条图B.直方图C.圆形图D.线形图【答案】C【解析】A项,直条图主要用于表示离散型数据资料,即计数资料。
它是以条形的长短表示各事物间数量的大小与数量之间的差异情况。
B项,直方图,又称等距直方图,是以矩形的面积表示连续性随机变量次数分布的图形。
C项,圆形图,又称饼图,主要用于描述间断性资料,目的是为显示各部分在整体中所占的比重大小,以及各部分之间的比较。
D项,线形图更多用于连续性资料,凡欲表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情形,用线形图表示是较好的方法。
第一章绪论1.描述统计(descriptive statistics)主要研究如何将实验或调查得到的大量数据进行图表整理或简缩成有代表性的数字(即统计量数),使其能客观、全面地反映这组数据的全貌,将其所提供的信息充分显现出来,为进一步统计分析和推论提供可能。
2.描述统计只限于对试验样本所得观测数据的统计分析,不考察其总体的特性。
3.推论统计(inferential statistics)是以描述统计为基础,从而解决由局部到全体的推论问题,即通过对一组统计量的计算分析,推论该组数据所代表的总体特性。
4.变量(variables):一个可以取不同数值的物体属性/事件。
5.事前无法预期结果的变量——随机变量6.观测值(原始取值):事后测定的某一结果。
7.概念理解:[涉及“实验”] 自变量(及其各水平)& 因变量(及相应的反应指标);[涉及“调查”,粗略对应于] 属性变量& 反应变量8.计数资料(count data):计算个数的数据,(如人口数,学校数,男女数等)9.计量资料(measurement data):借助于一定的测量工具或一定的测量标准而获得的数据(如分数,身高,体重,IQ)10.称名数据(nominal data):只区分属性或类别上的不同,只可计数,不能排序(性别,学科,职业)11.等级/顺序数据(ordinal data):可排序,但无相等单位,不能加减。
(等级评定,受教育程度,职称)12.等距数据(interval data):具有相等单位,无绝对零的数据,能加减不能乘除。
13.比率数据(ratio data):既表明量的大小,又具有相等单位,可以加减乘除,具有绝对零点。
14.称名数据和顺序数据合称为离散数据。
15.等距数据和比率数据合称为连续数据。
16.离散数据(discrete data)又称为不连续数据,这类数据在任何两个数据点之间所取的数据的个数是有限的。
17.连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。
第一部分考研真题一、单项选择题1.已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是()。
[统考2019年研] A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。
由此可知体重离散程度更大。
2.已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为()。
[统考2019年研]A.0.16B.1.6C.4D.25【答案】B【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr (n)=16/10=1.6。
3.如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为()。
[统考2019年研]A.34%B.48%C.50%D.68%【答案】B【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。
4.对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。
如果用相同数据计算总体均值的置信区间,下列描述正确的是()。
[统考2019年研] A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。
5.一元线性回归分析中对回归方程是否有效进行检验,H0∶β=0,t=7.20,b=1.80,则斜率抽样分布的标准误SE b为()。
[统考2019年研]A .0.25B .1.48C .2.68D .4.00【答案】A 【解析】斜率即回归系数,回归系数的显著性检验t =(b -β)/SE b =7.20,已知β=0,b =1.80,则可计算得到标准误SE b =0.25。
第14章抽样原理及方法1.什么是抽样误差?什么是最大允许抽样误差?答:任何一个抽样调查都可能产生误差。
调查的总误差可以分为两部分:非抽样误差和抽样误差。
非抽样误差指漏报、错报、测量误差以及在调查结果的登录、汇总等环节上产生的误差,其误差大小很大程度上取决于调查的组织工作是否完善;抽样误差则是根据样本信息来推断总体信息时产生的随机误差。
确定样本容量时应该考虑的因子(1)参数估计在样本平均数的分布中当或0.01时,或2.58。
此时而因此(公式14.14)可以看到,进行平均数的估计时,当α确定后(0.05或0.01),总体标准差σ和最大允许误差d是决定样本容量的两个因子。
2.什么情况下要进行分层抽样,举例说明或以公式证明分层抽样的优点。
答:1.方法(1)分层随机抽样简称分层抽样(stratified sampling或hierarchical sampling)。
具体做法是按照总体已有的某些特征,将总体分成几个不同的部分(每一部分叫一个层),再分别在每一部分中随机抽样。
它充分利用了总体的已有信息,因而是一种非常实用的抽样方法。
(2)对于一个总体究竟应该如何分层,分几层,要视具体情况而定。
总的一个原则是,各层内的变异要小,而层与层之间的变异越大越好,否则将失去了分层的意义。
(3)设总体为N,所需样本容量为n,则如何合理地将n分配在各层,是分层抽样的一个重要问题。
具体施行过程中有两种方式:①按各层人数比例分配这是在各层内的标准差不知道的情况下常用的分配方式,基本思想是人数多的层多分配,人数少的层少分配。
设各层的人数分别为N1,N2,N3…N k每层应分配的人数为n1,n2,n3…n k。
则如果按人数比例分配,则或任意一层应分配的人数应当为:(公式14.5)②最佳分配(最优配置法)这种分配不但根据各层人数比例,还考虑到了各层标准差。
如果各层内的标准差已知,就应该考虑到标准差大的层要多分配,标准差小的层要少分配。
第三部分章节题库第1章绪论一、单项选择题1.三位研究者评价人们对四种速食面品牌的喜好程度。
研究者甲让评定者先挑出最喜欢的品牌,然后挑出剩下三种品牌中最喜欢的,最后再挑出剩下两种品牌中比较喜欢的。
研究者乙让评定者将四种品牌分别给予1~5的等级评定,(1表示非常不喜欢,5表示非常喜欢),研究者丙只是让评定者挑出自己最喜欢的品牌。
研究者甲,乙,丙所使用的数据类型分别是()。
A.类目型-顺序型-计数型B.顺序型-等距型-类目型C.顺序型-等距型-顺序型D.顺序型-等比型-计数型【答案】B【解析】研究者甲使用的是顺序型数据。
顺序数据是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。
研究者乙使用的是等距型数据。
等距数据是有相等单位,但无绝对零的数据,如温度、各种能力分数、智商等。
研究者丙使用的是类目型数据。
称名数据只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小。
2.调查了n=200个不同年龄组的被试对手表显示偏好程度:该题自变量与因变量的数据类型分别是()。
A.类目型-顺序型B.计数型-等比型C.顺序型-等距型D.顺序型-命名型【答案】D【解析】自变量是年龄(30岁或以下/30岁以上)和手表显示(数字显示/钟面显示/不确定),因变量是偏好程度。
自变量属于顺序型数据。
顺序数据是指既无相等单位,也无绝对零的数据,是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。
因变量属于命名型数据。
称名数据只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小。
3.随机现象的数量化表示称为()。
A.自变量B.随机变量C.因变量D.相关变量【答案】B【解析】随机变量是指由于变量在测查之前,不能准确地预料会获得什么样的值。
第3章 集中量数一、单项选择题1.假设60名学生的总平均数为75分,其中40名女生的平均数为79分,则剩下的20名男生的平均数为( )。
A .67B .71C .75D .77【答案】A【解析】算术平均数是所有观察值的总和除以总频数所得之商,简称为平均数或均数。
计算公式:iX X N =∑756079406720X ⨯-⨯==2.如果从一个正态分布中,将上端的少数极端值去掉,下列统计量不会受到影响的是( )。
A .平均数B .中数C .众数D.标准差【答案】C【解析】A项,平均数所有观察值的总和除以总频数所得之商,易受极端值的影响。
B 项,中数是按顺序排列在一起的一组数据中居于中间位置的数,因此,数据减少会影响中数。
C项,众数是指在次数分布中出现次数最多的那个数的数值,少数极端值对其没有影响。
D 项,在求解标准差时,要应用平均数,因此标准差也会被极端值影响。
3.中数在一个分布中的百分等级是()。
A.50B.75C.25D.50~51【答案】A【解析】百分等级是一种相对位置量数,中数处于一组数据的中间位置,因此其百分等级为50。
4.6,8,10,12,26,这一组数据的集中趋势宜用()。
A.平均数B.中数C.众数D.平均差【答案】B【解析】A项,算术平均数易受极端值影响,这组数据存在极端值。
B项,若出现两极端的数目,又不能确定这些极端数目是否由错误观测造成,因而不能随意舍去,在这种情况下,只能用中数作为该被试的代表值,这样做,并不影响进一步的统计分析。
C项,这一组数据中不存在重复数据,因此不能用众数。
D项,平均差是差异量数,反映的是一组数据的离中趋势。
5.六名考生在作文题上的得分为12,8,9,10,13,15其中数为()。
A.12B.11C.10D.9【答案】B【解析】针对未分组且个数为偶数的数据,中数为居于中间位置两个数的平均数,即第N/2与第(N/2+1)位置的两个数据相加除以2。
将这组数据排列:8,9,10,12,13,15,中间位置的两个数为10和12,因此中数为11。
张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题详解第1章绪论一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现2.心理与教育科学研究数据具有随机性和变异性3.心理与教育科学研究数据具有规律性4.心理与教育科学研究的目标是通过部分数据来推测总体特征(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
二、心理与教育统计学的内容心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别。
(一)依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。
第4章差异量数一、单选题1.测得某班学生的物理成绩(平均分78分)和英语成绩(平均分70分),若的比较两者的离中趋势,应计算()。
A.方差B.标准差C.四分差D.差异系数【答案】D2.研究者决定通过每一个分数除以10来对原始分数进行转换。
原始分数分布的平均数为40,标准差为15。
那么转换以后的平均数和标准差将会是()。
A.4,1.5B.0.4,0.15C.40,1.5D.0.4,1.5【答案】A3.已知平均数=4.0,S=1.2,当X=6.4 时,其相应的标准分数为()。
A.2.4B.2.0C.5.2D.1.3【答案】B4.求数据16,18,20,22,17的平均差()。
A.18.6B.1.92C.2.41D.5【答案】B5.测得某班学生的物理成绩(平均78分)和英语成绩(平均70分),若要比较两者的离中趋势,应计算()。
A.方差B.标准差C.四分差D.差异系数【答案】D6.某学生某次数学测验的标准分为2.58,这说明全班同学中成绩在他以下的人数百分比是(),如果是-2.58,则全班同学中成绩在他以上的人数百分比是()。
()A.99%,99%B.99%,1%C.95%,99%D.95%,95%【答案】A7.已知一组数据6,5,7,4,6,8的标准差是1.29,把这组中的每一个数据都加上5,然后再乘以2,那么得到的新数据组的标准差是()。
A.1.29B.6.29C.2.58D.12.58【答案】C8.标准分数是以()为单位表示一个分数在团体中所处位置的相对位置量数。
A.方差B.标准差C.百分位差D.平均差【答案】B9.在一组原始数据中,各个Z分数的标准差为()。
A.1B.0C.根据具体数据而定D.无法确定【答案】A10.已知某小学一年级学生的平均体重为26千克,体重的标准差是3.2千克,平均身高110厘米,标准差为6.0厘米,问体重与身高的离散程度哪个大()?A.体重离散程度大B.身高离散程度大C.离散程度一样D.无法比较【答案】A11.已知一组数据服从正态分布,平均数为80,标准差为10。
第3章集中量数1.应用算术平均数表示集中趋势要注意什么问题?答:在应用算术平均数表示几种趋势时,要注意:①算术平均数易受两极端数值(极大或极小)的影响。
②一组数据中某个数值的大小不够确切时就无法计算其算术平均数。
如果不处理好这两个问题,那么算术平均数将无法表示集中趋势。
2.中数,众数,几何平均数,调和平均数各适用于心理与教育研究中的哪些资料?答:中数的适用条件:①当一组观测结果中出现两个极端数目时;②当次数分布的两端数据或个别数据不清楚时,只能取中数作为集中趋势的代表值;③当需要快速估计一组数据的代表值时,也常用中数。
众数的适用条件:①当需要快速而粗略地寻求一组数现代心理与教育统计学据的代表值时;②当一组数据出现不同质的情况时,可用众数表示典型情况,如工资收入、学生成绩等常以次数最多者为代表值;③当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;④当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标;⑤当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。
几何平均数的适用资料:当要计算教育经费增加率、学习方面的进步率和学生或人口增加率的估计时,可使用几何平均数。
调和平均数的适用资料:在心理与教育研究方面的应用,主要是用来描述学习速度方面的问题。
调和平均数作为一种集中量数,在描述速度方面的集中趋势时,优于其他集中量数。
在有关研究学习速度的实验设计中,反应指标一般常取两种形式:一是工作量固定,记录各被试完成相同工作所用的时间。
二是学习时间一定,记录一定时间内各被试完成的工作量。
由于反应指标不同,在计算学习速度时也不一样,这是应用调和平均数要特别注意的地方。
3.对于下列数据,使用何种集中量数表示集中趋势其代表性更好?并计算它们的值。
(1)4 5 6 6 7 29(2)3 4 5 5 7 5(3)2 3 5 6 7 8 9答:(1)中数6,因为题目中有极端数据,不适合用算术平均数。
第11章 非参数检验1.什么是非参数检验?与参数方法比较,它有哪些特点?答:非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。
常见的非参数检验有符号检验、秩和检验、中数检验等。
非参数检验相对参数检验不需要严格的前提假设,特别是关于分布正态性假设,所以也称为自由分布检验;特别适用于等级/名义型资料,对这类数据参数方法无法直接检验;特别适用于小样本的探索性/预备研究;其优点是计算简便,直观,易于掌握,检验速度较快;缺点是对资料的信息利用少,方法的效能和完善性都不及参数检验2.符号检验法的基本思想是什么?答:符号检验(sign test )以正负符号作为资料的一种非参数检验程序。
它是一种简单的非参数检验方法,适用于检验两个配对样本分布的差异,与参数检验中配对样本差异显著性t 检验相对应。
符号检验法也是将中数作为集中趋势的量度,虚无假设是配对资料差值来自中位数为零的总体。
具体而言,它是将两样本每对数据之差(i i X Y )用正负号表示,若两样本没有显著性差异,则正差值与负差值应大致各占一半。
在实际中,当碰到无法用数字去描述的问题时,符号检验法就是一种简单而有效的检验方法。
3.秩和检验的基本思想是什么?答:“秩和”(the sum of ranks)即秩次的和或者等级之和。
这一方法首先由维尔克松(Wilcoxon )提出,叫维尔克松两样本检验法,后来曼—惠特尼(Mann —Whitney )将其应用到两样本容量不等(12n n ≠)的情况,因而又称做曼—惠特尼维尔克松秩和检验(Mann-Whitney —Wilcoxon rank sum test ),曼—惠特尼U 检验。
(1)秩统计量(rank statistics )的统计定义是:如果将样本数据记为1X ,…,n X ,相应的顺序统计量记为,若j ,则称i R j =为i X 在样本中的“秩”(rank ),就是秩统计量,又称为“秩次统计量”(rank orderstatistics )。
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
第4章差异量数
1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?
答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性
在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?
答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使
用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。
相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。
3.标准差在心理与教育研究中除度量数据的离散程度外还有哪些用途?
答:可以应用于差异系数和标准分数中。
4.应用标准分数求不同质的数据总和时应注意什么问题?
答:应用标准分数求不同质的数据总和时应注意这些不同质的观测值的次数分布应该是正态的。
因为标准分是线形变化,不改变原分布的形态,只有原分布是正态时,转化后的标准分才是正态的。
5.计算下列数据的标准差与平均差。
11.0,13.0,10.0,9.0,11.5,12.2,13.1,9.7,10.5。
解:(1)把数据代入公式4.10,s = 1.37s ≈
把数据代入公式4.5,..i x x
A D n -∑=求平均差,得
..A D ≈1.19
答:标准差约为1.37,平均差约为1.19。
6.计算第2章习题4
所列次数分布表的标准差、四分位差Q 。
解:(1)应用公式4.11 s == 26.3s ≈
(2)应用公式 114b b N F Q L i f
⨯-=+⨯ 334b b N F Q L i f ⨯-=+⨯求得 1165124150.2512.56
Q ⨯-=+⨯=159.10 3365454187.2512.59
Q ⨯-=+⨯=192.45 312
Q Q Q -==16.68 答:标准差为26.3,四分位差Q 为16.68。
7.今有一画线实验,标准线分别为5厘米及10厘米,实验结果5厘米组的误差平均数为1.3厘米,标准差为0.7厘米,10厘米组的误差平均数为4.3厘米,标准差为1.2厘米,请问用什么方法比较其离散程度的大小?并具体比较之。
解:由于两组得平均数和标准差都有很大差异,因此应该用差异系数比较两组数据的
离散程度。
将数据代入公式4.15,100%s CV X
=⨯,得 10.7100%1.3
CV =⨯=53.85% 2 1.2100%4.3
CV =⨯=27.91% 1
2CV CV >
答:5厘米组的差异比10厘米组的离散程度大。
8.求下表所列各班成绩的总标准差
解:应用公式4.14,T s ,求解 (1)计算i N ∑、T X 40514843i N =+++∑=182
i i T i N X X N =
∑∑=90.80 (2)计算2i i N s ∑、2
i i N d ∑、
2i i N s =∑6469.79
2
i i N d ∑=147.43
(3)把数据代入公式4.14,得
T s
答:各班成绩的总标准差是6.03。
9.求下表数据分布的标准差和四分位差。
解:应用分组数据求标准差和四分位差的公式求解。
(1)应用公式4.11 s = 11.82s ≈
(2)应用公式 114b b N F Q L i f
⨯-=+⨯ 334b b N F Q L i f ⨯-=+⨯求得 11559439.557
Q ⨯-=+⨯=42.89 335535
454.558
Q ⨯-=+⨯=58.41 312
Q Q Q -==7.76。