数字调制实验
- 格式:doc
- 大小:1.92 MB
- 文档页数:4
数字调制实验报告数字调制实验报告一、引言数字调制是一种将模拟信号转换为数字信号的技术,广泛应用于通信系统中。
本实验旨在通过实际操作,了解数字调制的原理和实现方法,并通过实验结果验证理论知识的正确性。
二、实验目的1. 掌握数字调制的基本原理和常见调制方式;2. 熟悉数字调制实验仪器的使用方法;3. 通过实验验证理论知识的正确性。
三、实验仪器和材料1. 信号发生器;2. 示波器;3. 数字调制实验箱;4. 电缆和连接线。
四、实验步骤1. 连接信号发生器和示波器,并调节合适的频率和幅度;2. 将信号发生器输出信号连接至数字调制实验箱的输入端口;3. 选择合适的调制方式,并设置相应的参数;4. 观察示波器上的输出波形,并记录实验结果;5. 更改调制方式和参数,重复步骤4,记录实验结果。
五、实验结果与分析在实验中,我们选择了常见的调制方式,如频移键控(FSK)、相移键控(PSK)和振幅移键控(ASK)等。
通过调节信号发生器的频率和幅度,我们可以观察到不同调制方式下的输出波形。
在FSK调制中,我们发现当信号发生器输出的频率为f1时,示波器上显示的波形为高电平;而当信号发生器输出的频率为f2时,示波器上显示的波形为低电平。
这说明在FSK调制中,不同频率对应不同的数字信号。
在PSK调制中,我们发现当信号发生器输出的相位为θ1时,示波器上显示的波形为高电平;而当信号发生器输出的相位为θ2时,示波器上显示的波形为低电平。
这说明在PSK调制中,不同相位对应不同的数字信号。
在ASK调制中,我们发现当信号发生器输出的幅度为A1时,示波器上显示的波形为高电平;而当信号发生器输出的幅度为A2时,示波器上显示的波形为低电平。
这说明在ASK调制中,不同幅度对应不同的数字信号。
通过实验结果的观察和分析,我们验证了数字调制的基本原理,即通过改变频率、相位或幅度等参数,将数字信号转换为模拟信号。
六、实验总结通过本次实验,我们深入了解了数字调制的原理和实现方法,通过实际操作,进一步巩固了理论知识。
数字调制与解调实验报告
实验目的:
1.掌握数字信号调制与解调的基本理论和方法。
2.熟悉激励、显示、调制、解调等仪器和设备操作方法。
3.理解不同调制方式的优缺点及适用场合。
实验器材:
数字信号发生器、混频器、低通滤波器、示波器、数字信号处理器、计算机、电缆等。
实验原理:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。
调制的目的是将讯息信号改为适合传输的信号;而解调则是将传输信号还原为原讯息信号。
实验步骤:
1.基带信号的调制实验
将固定频率的基带信号通过数字信号发生器产生一个频率为f1的固定载波信号,并通过混频器进行调制,产生频率为f1+f2和f1-f2的调制信号。
通过低通滤波器滤除掉高频成分,以得到目标信号。
在示波器上观察波形和频谱,并用数字信号处理器检测和还原基带信号。
2.幅度调制实验
实验数据:
输入基带信号:
载波信号:
调制信号:
实验结论:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。
通过本次实验,我们实现并了解了不同调制方式的基本原理及其优缺点。
在幅度调制和频率调制实验中,我们掌握了两种数字调制方式的原理和实现方法,通过数字信号发生器制作载波和基带信号,完成幅度调制和频率调制实验。
通过示波器观察得到了不同调制方式的调制信号波形和频谱,并用数字信号处理器检测和还原出原基带信号。
总之,数字调制解调技术在数据传输、通信等方面应用广泛,其优点是抗干扰、可靠性高、传输速度快,具有重要的意义。
硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。
(2)掌握AMI,HDB3的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
(6)掌握绝对码,相对码概念及他们之间的变换关系。
(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。
(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。
(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。
(10)掌握2DPSK相干解调原理。
(11)掌握2FSK过零检测解调原理。
三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2.接通数字信号源模块的电源。
用示波器观察熟悉信源模块上的各种信号波形。
(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI(HDB3)编译单元的各种波形。
(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。
psk调制实验报告PSK调制实验报告引言:在现代通信领域中,调制技术是一项至关重要的技术。
调制技术可以将数字信号转换为模拟信号,使其能够在传输过程中更好地适应信道环境。
而PSK调制技术是一种常用的数字调制技术之一。
本篇实验报告将详细介绍PSK调制的原理、实验过程以及实验结果。
一、实验目的本次实验的目的是通过实际操作,深入理解PSK调制的原理和实现过程,并通过实验结果验证理论分析的正确性。
二、实验原理PSK(Phase Shift Keying)调制是一种基于相位的数字调制技术。
其基本原理是通过改变载波信号的相位来传输数字信息。
在PSK调制中,常见的有二进制相移键控调制(BPSK)和四进制相移键控调制(QPSK)。
BPSK调制的原理是将二进制数字流转换为相位差为180度的两种相位,分别代表数字0和数字1。
而QPSK调制则将二进制数字流分为两组,每组两个比特,每组代表一个相位,共有四种相位差选择。
三、实验设备和材料1. 信号发生器2. 示波器3. 电缆4. BPSK/QPSK调制解调器5. 电脑四、实验过程1. 连接信号发生器和示波器,设置信号发生器的输出频率和幅度。
2. 连接信号发生器和BPSK/QPSK调制解调器,设置调制器的参数。
3. 将调制器的输出信号连接到示波器上,观察调制信号的波形。
4. 将示波器的输出信号连接到解调器上,通过电脑软件进行解调。
5. 对比解调后的数字信号与发送的原始信号,验证解调的准确性。
五、实验结果与分析通过实验,我们成功地实现了BPSK和QPSK调制。
观察示波器上的波形,可以明显看出不同相位的变化。
在解调过程中,我们发现解调后的数字信号与发送的原始信号高度一致,证明了调制和解调的正确性。
六、实验总结通过本次实验,我们深入了解了PSK调制的原理和实现过程。
实验结果验证了理论分析的正确性,加深了我们对调制技术的理解。
此外,通过实际操作,我们还加深了对信号发生器、示波器等设备的使用和操作技巧。
实验二数字调制实验一、实验目的1.掌握绝对码、相对码概念及它们之间的编译码规则。
2.掌握用键控法产生2ASK、2FSK、2PSK、2DPSK信号的方法。
3.掌握相对码与2DPSK、绝对码与2PSK信号波形之间的对应关系。
4.了解2ASK、2FSK、2PSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容1.用示波器观察绝对码波形、相对码波形。
2.用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3.用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、基本原理本实验使用数字信源模块和数字调制模块。
1.数字信源本模块是整个实验系统的发送端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:∙ CLK 晶振信号测试点∙ BS-OUT 信源位同步信号输出点/测试点∙ FS 信源帧同步信号输出点/测试点∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图,图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器74LS04∙分频器U2:计数器74LS161;U3:计数器74LS193;U4:计数器74LS160∙并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一U5、U6、U7:8位数据选择器74LS151∙三选一U8:8位数据选择器74S151∙倒相器U20:非门74LS04∙抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
一、实训目的本次实训旨在使学生了解数字调制技术的基本原理,掌握数字调制系统的组成,熟悉不同调制方式的特性,并能够进行数字调制信号的生成与接收。
二、实训内容1. 数字调制技术基本原理数字调制技术是将数字信号转换为模拟信号的过程,以便在信道中传输。
数字调制方式主要有以下几种:(1)振幅键控(ASK):通过改变载波的幅度来表示数字信号。
(2)频率键控(FSK):通过改变载波的频率来表示数字信号。
(3)相位键控(PSK):通过改变载波的相位来表示数字信号。
(4)差分相位键控(DPSK):通过比较前后两个信号的相位差来表示数字信号。
2. 数字调制系统组成数字调制系统主要由以下几部分组成:(1)数字信号源:产生待传输的数字信号。
(2)调制器:将数字信号转换为模拟信号。
(3)载波:作为调制信号的参考信号。
(4)信道:传输调制信号的信道,如光纤、无线电等。
(5)解调器:将接收到的模拟信号还原为数字信号。
(6)数字信号处理器:对解调后的数字信号进行处理,如解码、纠错等。
3. 数字调制信号生成与接收(1)数字调制信号生成以ASK调制为例,生成数字调制信号的过程如下:1)产生数字信号:设数字信号为b(t),取值为{+1, -1}。
2)载波信号:产生载波信号c(t),取值为cos(2πfct)。
3)调制过程:将数字信号与载波信号相乘,得到调制信号s(t)。
s(t) = b(t) c(t) = b(t) cos(2πfct)(2)数字调制信号接收以ASK调制为例,接收数字调制信号的过程如下:1)接收端接收到的信号:r(t) = s(t) + n(t),其中n(t)为噪声信号。
2)解调过程:对接收到的信号进行解调,得到解调信号d(t)。
d(t) = r(t) / c(t) = (s(t) + n(t)) / c(t)3)数字信号恢复:对解调信号进行滤波、解码等处理,恢复出原始数字信号b(t)。
三、实训结果与分析1. 实训结果通过本次实训,学生掌握了数字调制技术的基本原理和数字调制系统的组成,熟悉了不同调制方式的特性。
数字调制技术仿真毕业实习报告一、实习背景及目的随着现代通信技术的快速发展,数字调制技术在无线通信、有线通信以及卫星通信等领域发挥着越来越重要的作用。
作为一种将数字信号转换为适合在传输介质上传播的模拟信号的技术,数字调制技术具有抗干扰能力强、传输效率高等优点。
为了更好地理解和掌握数字调制技术,我选择了数字调制技术仿真作为毕业实习课题。
本次实习的主要目的是通过仿真实验,深入研究数字调制技术的基本原理,掌握数字调制解调过程,并分析不同数字调制方案的性能。
二、实习内容与过程在实习过程中,我使用了MATLAB软件作为主要的仿真工具。
首先,我对数字调制技术的基本原理进行了学习和研究,包括幅移键控(ASK)、频移键控(FSK)、相移键控(PSK)和正交幅度调制(QAM)等常见调制方式的原理和特点。
然后,我根据这些调制方式编写MATLAB仿真程序,实现了数字信号的调制和解调过程。
在仿真实验中,我主要关注了以下几个方面:1. 调制方式的选择与实现:根据不同的实验需求,我选择了合适的调制方式,如2ASK、4FSK、8PSK和16QAM等,并利用MATLAB编写程序实现了这些调制方式的仿真。
2. 信道模型的建立:为了分析不同信道条件下数字调制技术的性能,我建立了加性高斯白噪声(AWGN)信道、瑞利衰落信道和莱斯衰落信道等模型,并引入了相应的信道衰落参数。
3. 性能分析与评估:通过比较不同调制方式在相同信道条件下的误码率(BER)性能,我分析了调制方式对通信系统性能的影响。
同时,我还研究了信道衰落、信噪比(SNR)等因素对数字调制技术性能的影响。
三、实习成果与总结通过本次实习,我深入了解了数字调制技术的基本原理,掌握了数字调制解调过程,并分析了不同数字调制方案的性能。
仿真实验结果表明:1. 随着调制阶数的增加,数字调制技术的传输效率不断提高,但误码率也随之增加。
因此,在实际应用中需要根据具体的通信场景选择合适的调制方式。
第1篇一、实验目的1. 理解数字载波调制的基本原理和过程。
2. 掌握常见的数字调制方式,如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。
3. 学习数字调制信号的生成和解调方法。
4. 通过实验,加深对数字调制技术在实际通信系统中的应用理解。
二、实验原理数字载波调制是数字通信中一种常见的信号处理技术,它通过改变载波的某些参数(如幅度、频率或相位)来携带数字信息。
常见的数字调制方式包括:1. 振幅键控(ASK):通过改变载波的幅度来表示数字信息,通常用高电平表示“1”,低电平表示“0”。
2. 频移键控(FSK):通过改变载波的频率来表示数字信息,通常用不同的频率分别表示“1”和“0”。
3. 相移键控(PSK):通过改变载波的相位来表示数字信息,通常用不同的相位来表示不同的数字符号。
数字调制信号可以通过以下步骤生成:1. 基带信号生成:将数字信息转换成基带信号,通常为二进制序列。
2. 调制:将基带信号与载波信号相乘,得到已调信号。
3. 滤波:对已调信号进行滤波,去除不必要的频率分量。
数字调制信号的解调过程如下:1. 载波恢复:从已调信号中恢复出载波信号。
2. 解调:将恢复的载波信号与已调信号相乘,得到基带信号。
3. 判决:根据基带信号的幅度或频率,判断原始数字信息。
三、实验器材1. 数字信号发生器2. 数字示波器3. 数字信号分析仪4. 信号源5. 连接线四、实验步骤1. 实验一:ASK调制和解调- 使用数字信号发生器生成二进制序列。
- 将基带信号与载波信号相乘,得到ASK调制信号。
- 使用数字示波器观察ASK调制信号的波形。
- 将ASK调制信号与恢复的载波信号相乘,得到解调信号。
- 使用数字示波器观察解调信号的波形。
2. 实验二:FSK调制和解调- 使用数字信号发生器生成二进制序列。
- 将基带信号与两个不同频率的载波信号相乘,得到FSK调制信号。
- 使用数字示波器观察FSK调制信号的波形。
FSK调制解调原理实验FSK(频移键控)调制解调是一种常见的数字调制解调技术,其原理是通过改变载波的频率来表示数字信号。
在FSK调制中,低频信号的频率表示逻辑“0”,高频信号的频率表示逻辑“1”。
在本文中,我们将介绍FSK调制解调的原理以及如何进行实验。
实验设备和步骤:实验设备:1.函数信号发生器2.幅度调制解调器3.示波器4.模拟信号发生器5.低通滤波器6.计算机实验步骤:1.准备工作:(1)将函数信号发生器连接到幅度调制解调器的输入端口。
(2)将幅度调制解调器的输出端口连接到示波器的输入端口。
(3)将模拟信号发生器连接到低通滤波器的输入端口。
(4)将低通滤波器的输出端口连接到计算机的输入端口。
2.设置实验参数:(1)在函数信号发生器上设置两个频率,分别表示逻辑“0”和逻辑“1”。
(2)根据实验需求,调整幅度调制解调器的调制指数,以及模拟信号发生器的频率。
3.FSK调制实验:(1)使用函数信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器中。
(2)使用函数信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器中。
(3)观察示波器上的输出信号,验证FSK调制的效果。
4.FSK解调实验:(1)使用模拟信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器的解调端口。
(2)使用模拟信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器的解调端口。
(3)通过示波器观察解调器输出的信号,并通过低通滤波器对信号进行滤波。
(4)将滤波后的信号输入到计算机,并进行数字信号解调。
实验原理:FSK调制的原理是通过改变载波信号的频率来表示数字信号。
在调制过程中,将逻辑“0”映射为一个低频率信号,逻辑“1”映射为一个高频率信号。
在解调过程中,接收到的信号通过解调器解调后,通过低通滤波器滤除高频噪声,得到原始的数字信号。
实验结果:在进行FSK调制实验时,通过示波器观察可见,当输入逻辑“0”时,示波器输出的信号频率较低;当输入逻辑“1”时,示波器输出的信号频率较高。