凝血及抗凝血机制
- 格式:pdf
- 大小:310.69 KB
- 文档页数:2
凝血及抗凝血机制一.机体凝血与抗凝血的平衡止血的过程可以分为三个阶段:血管痉挛到血小板血栓形成,成为血小板凝块,最后促使纤维蛋白凝块形成机体凝血系统包括凝血和抗凝两个方面,另外还有纤溶系统,三者间的动态平衡是正常机体维持体内血液流动状态和防止血液丢失的关键。
机体的正常止凝血,主要依赖于完整的血管壁结构和功能,有效的血小板质量和数量,正常的血浆凝血因子活性。
生理止血过程小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。
生理止血过程血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。
起到初级止血作用,一期止血缺陷常用的筛检实验室BT和PLT生理止血过程局部又迅速出现血凝块,即血浆中可溶的纤维蛋白原转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。
同时血小板的突起伸入纤维蛋白网内,血小板微丝(肌动蛋白)和肌球蛋白的收缩使血凝块收缩,血栓变得更坚实,能更有效地起止血作用,这是二级止血作用。
二期止血缺陷常用的筛选实验室PT和APTT。
与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外二凝血系统凝血过程的三要素:凝血因子+血小板+Ca2+.凝血因子——血浆与组织中直接参与凝血的物质。
.通常分为:①内源性凝血途径;②外源性凝血途径;③共同凝血途径如果只是损伤血管内膜或抽出血液置于玻璃管内,完全依靠血浆内的凝血因子逐步使因子Ⅹ激活从而发生凝血的,称为内源性激活途径(intrinicroute)如果是依靠血管外组织释放的因子Ⅲ来参与因子Ⅹ的激活的,称为外源性激活途径(e某trin某icroute)学习生理学的时候,生理性凝血过程的外源性凝血和内源性凝血怎么也记不住,记了忘忘了记,其实很简单:内源途径:有8、9、11、12因子参与,可记为:婴儿(12)拿着筷子(11)去酒吧(9、8)。
血液凝固的机制血液凝固是人体生理过程中的一个重要环节,它保证了伤口能够在短时间内形成血凝块,阻止血液不断流失。
本文将从凝血过程、凝血因子、凝血与抗凝血机制等方面解析血液凝固的机制。
一、凝血过程凝血过程是指在血管损伤时,通过一系列复杂的反应来形成血凝块的过程。
它包括三个主要步骤:血小板黏附与聚集、凝血酶的生成以及纤维蛋白原的聚合。
1. 血小板黏附与聚集当血管受损时,血小板会迅速黏附于受损部位的血管内皮细胞上。
这个过程是通过血小板表面的一种叫做魏尔布兰因子的表面蛋白介导的。
黏附后,血小板会释放出一种称为血小板激活因子的物质,进而促使其他血小板聚集在一起形成初步的血栓。
2. 凝血酶的生成凝血酶的生成是通过凝血因子之间的复杂相互作用而实现的。
损伤后,血液中的凝血因子会被激活,形成一个序列反应。
这个反应涉及到多个凝血因子,如凝血酶原、凝血因子Ⅹ等等。
当凝血因子被激活后,它们会串联激活下一个凝血因子,最终形成一个复杂的酶级连反应。
最终,这一连锁反应会激活凝血酶。
3. 纤维蛋白原的聚合凝血酶的生成会导致纤维蛋白原发生聚合。
凝血酶蛋白酶活性可以剪切纤维蛋白原的一个加尾区域,使其转化为纤维蛋白,进一步加强和稳定血栓。
二、凝血因子凝血因子是参与血液凝固过程的一类蛋白质。
根据其在凝血过程中的功能,凝血因子被分为两类:浓缩因子和凝血辅助因子。
浓缩因子包括凝血酶原、纤维蛋白原等;而凝血辅助因子则有魏尔布兰因子、血小板因子等。
凝血因子是通过复杂的酶级连反应来激活的,其中每个凝血因子都是前一个因子的催化剂。
一旦某个因子出现缺陷或功能失调,都会导致凝血过程受阻。
三、凝血与抗凝血机制凝血是维持正常止血的重要过程,但过度凝血可能导致血液循环障碍,形成血栓。
为了避免过度凝血的发生,人体也制定了一系列的抗凝血机制。
1. 抗凝血蛋白人体血液中存在着一类称为抗凝血蛋白的物质,它们能够抑制凝血酶等凝血因子的活性,从而阻止凝血的过程。
常见的抗凝血蛋白包括抗凝血酶、蛋白C、蛋白S等。
凝血及抗凝血机制凝血机制是机体为了止血而发生的一系列复杂的化学反应过程。
当血管受损时,内皮细胞会释放出一种叫做细胞因子的物质。
这些细胞因子会引起凝血因子的激活。
凝血因子是一些在肝脏中合成的蛋白质,它们会依次激活,形成一个凝血酶级联反应。
这个反应会最终导致血液中的可溶性纤维蛋白原转变为不溶性的纤维蛋白,形成血栓。
凝血酶级联反应中包含很多重要的凝血因子,包括凝血酶、纤维蛋白原、纤维蛋白、血小板等。
当这些凝血因子受到激活时,它们会在血管壁上形成血栓。
血栓可以阻止出血,但如果过于严重的话,也会阻止正常的血液流动,导致血液循环障碍。
因此,机体需要有相应的机制来限制血栓的形成。
抗凝血机制主要通过以下几种途径来限制血栓的形成。
首先,机体会产生一种叫做抗凝血酶的物质,它可以抑制凝血酶的活性,从而减少凝血反应的进行。
其次,机体也会产生一种叫做组织因子途径抑制物的物质,它可以阻止凝血因子在组织因子途径上的激活。
此外,机体还会产生一种叫做抗凝血酶Ⅲ的物质,它可以通过结合凝血酶,阻止凝血过程的进行。
最后,机体还会产生一种叫做血浆抗凝素的物质,它可以阻止凝血酶的形成。
凝血和抗凝血机制之间的平衡非常重要。
如果凝血机制过于活跃或抗凝血机制过于弱化,就会导致血栓形成和血液循环障碍。
血栓形成在血管内会引起心脑血管疾病,如心脏病、中风等。
而抗凝血机制过于活跃则会导致出血倾向,如血友病等疾病。
除了上述的凝血和抗凝血机制,还有一种名为纤溶机制的机制也非常重要。
纤溶机制是机体为了溶解血栓而产生的一系列反应。
当血栓形成后,机体会产生一种叫做纤溶酶原激活物的物质,它会转变为纤溶酶,溶解血栓中的纤维蛋白。
纤溶机制的激活可以防止血栓过度生长,同时也可以防止血液循环障碍。
总之,凝血及抗凝血机制是机体为了维持血液凝固与止血平衡而发生的一系列复杂的反应。
凝血机制通过形成血栓来止血,而抗凝血机制通过抑制凝血因子的活性来限制血栓的形成。
纤溶机制则通过溶解血栓来防止血栓过度生长。
大学人民医院急诊科吴春波写在课前的话在人体的出血和止血过程中,凝血因子、抗凝血酶、纤维蛋白、血小板及其他的物质均参与了这些复杂的过程。
学员通过本课件的学习,要掌握出血和凝血过程的相关变化,掌握抗凝和纤溶机制原理。
掌握临床监测常用的三个时间的作用和意义。
一.出血机制和凝血机制(一)出血和凝血生理状态下,血管中流动的血液不凝固,破损的血管能止血是因为机体存在复杂的凝血和抗凝系统。
血管破损后,VW因子启动填补破损部位,之后血小板通过糖蛋白聚集。
在血小板上有糖蛋白2B3A受体,氯吡格雷的抗凝机制就是通过抑制该受体使血小板之间不能通过纤维蛋白结合。
凝血因子Ⅷ因子与VW因子以复合物的形式存在于血浆中。
血管性血友病之所以要补充因子是因为两者是联合起作用的,而且VW因子是Ⅷ因子的保护因子,如果VW因子作用弱,则Ⅷ因子的作用也弱。
血管破裂后,外源性和源性凝血途径启动。
但在病理情况下,外源性凝血途径是主要凝血途径。
该途径启动Ⅶ因子和Ⅲ因子,两者与钙离子结合成复合物后使凝血酶原激活,成为凝血酶原激活物。
这是到凝血酶原激活物的共同途径。
源性途径:糖蛋白激活Ⅻ因子使之成为活性Ⅻ因子,Ⅺ因子也成为活性Ⅺ因子,Ⅺ因子与Ⅸ因子、Ⅷ因子、Ⅲ因子和Ca组成的复合物把凝血酶原变成凝血酶原复合物,这是共同途径。
这个途径的凝血因子平时在血浆中以非活性质存在,通过糖蛋白和离子电荷的改变才成为有活性形式。
凝血酶原变成凝血酶原复合物是第一个途径;凝血酶原变成凝血酶是第二个途径;纤维蛋白原变成纤维蛋白是第三个途径。
(二)三个三1.三个阶段凝血活酶形成;凝血酶形成;纤维蛋白形成。
2.三个复合物Ⅳ因子,Ⅷ因子,钙和血小板Ⅲ因子;Ⅹ因子,Ⅴ因子,钙和血小板Ⅲ因子;Ⅶ因子,Ⅲ因子和钙。
3.三个自我催化Ⅷ因子,Ⅴ因子和血小板Ⅲ因子。
凝血因子有哪些?(三)凝血因子目前公认的凝血因子共14个,按罗马字命名的有12个,尚有高分子量激肽原(HMWK),激肽释放酶原(PK)。
抗凝血原理
抗凝血原理是指通过干扰或阻断凝血过程中的关键因子,使血液的凝结能力降低的一种治疗方法。
凝血是血液在出血时形成血栓以止血的过程,由血小板聚集和凝血因子的激活所引发。
然而,在某些情况下,凝血系统的过度活化会导致血栓形成,引发血栓性疾病,如深静脉血栓、肺栓塞等。
抗凝血治疗的目的就是通过干扰或抑制凝血因子的活化或功能,来预防和治疗这些血栓性疾病。
抗凝血药物的作用方式多种多样,可以分为以下几类:
1. 抑制凝血酶的形成:抗凝药物可以阻断血液凝块中的凝血酶的形成,使其无法进一步激活凝血过程,从而达到抗凝的效果。
2. 抑制血小板聚集:有些抗凝药物可以通过抑制血小板的聚集和粘附来减少血栓的形成。
这些药物一般作用于血小板表面的受体或凝血过程中的血小板聚集因子。
3. 阻断凝血因子的激活:部分抗凝药物可以阻断凝血过程中多个凝血因子之间的相互作用,从而抑制凝血级联反应的进行。
4. 提高纤溶作用:某些抗凝药物可以促进纤维蛋白降解酶(Plasmin)对纤维蛋白溶解的作用,从而增强纤溶作用,阻
止血栓形成。
总的来说,抗凝血原理的实施主要是通过调节凝血因子的活性和影响凝血系统中不同环节的功能,使血液保持适度的凝血状
态,同时防止血栓形成和血栓相关疾病的发生。
不同类型的抗凝药物具有不同的作用机制和适应症,医生会根据具体的病情选择合适的抗凝治疗方案。
抗凝血原理抗凝血是指通过药物或其他手段来延长凝血时间,防止血液凝结的过程。
抗凝血原理是指抗凝血药物如何在人体内发挥作用的机制。
抗凝血原理的研究对于预防和治疗血栓性疾病具有重要意义。
首先,我们来了解一下血液凝结的过程。
血液凝结是一种复杂的生理过程,包括血小板聚集、凝血因子激活和纤维蛋白形成等多个环节。
在正常情况下,这些环节相互配合,使得伤口能够迅速形成血凝块,止血。
然而,当这些环节出现异常时,就会导致血栓形成,甚至引发心脑血管疾病。
抗凝血药物的作用机制主要包括以下几个方面。
首先,抗凝血药物可以抑制血小板的聚集,减少血栓的形成。
其次,抗凝血药物可以抑制凝血因子的活化,阻断血栓形成的环节。
此外,抗凝血药物还可以促进纤溶系统的活化,加速血栓的溶解,从而起到抗血栓的作用。
在临床上,常用的抗凝血药物包括肝素、华法林、阿司匹林等。
它们通过不同的机制发挥抗凝血作用,适用于不同类型的血栓性疾病。
例如,肝素是一种直接抑制凝血酶活性的药物,常用于急性心肌梗死和深静脉血栓形成的治疗。
而华法林是一种维生素K拮抗剂,通过抑制凝血因子的合成来达到抗凝血的目的,常用于预防静脉血栓栓塞症的发生。
除了药物治疗外,抗凝血的原理也可以通过其他手段来实现。
例如,机械性抗凝血是指通过植入人工血管或使用血液滤过器等方式来达到抗凝血的目的。
这些方法可以在一定程度上替代药物治疗,适用于一些特殊情况下的抗凝血需求。
总的来说,抗凝血原理是指通过药物或其他手段来延长凝血时间,防止血栓形成的过程。
了解抗凝血原理对于临床医生合理使用抗凝血药物、预防和治疗血栓性疾病具有重要意义。
在未来,随着医学技术的不断进步,相信抗凝血原理的研究将会为我们带来更多的惊喜和突破。
一、机体凝血与抗凝血的平衡
止血的过程可以分为三个阶段:血管痉挛到血小板血栓形成,成为血小板凝块,最后促使纤维蛋白凝块形成。
机体凝血系统包括凝血和抗凝两个方面,另外还有纤溶系统,三者间的动态平衡是正常机体维持体内血液流动状态和防止血液丢失的关键。
机体的正常止凝血,主要依赖于完整的血管壁结构和功能,有效的血小板质量和数量,正常的血浆凝血因子活性。
生理止血过程
小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。
血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。
起到初级止血作用,一期止血缺陷常用的筛检实验室BT和PLT。
局部又迅速出现血凝块,即血浆中可溶的纤维蛋白原转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。
同时血小板的突起伸入纤维蛋白网内,血小板微丝(肌动蛋白)和肌球蛋白的收缩使血凝块收缩,血栓变得更坚实,能更有效地起止血作用,这是二级止血作用。
二期止血缺陷常用的筛选实验室PT和APTT。
与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。
二、凝血系统
凝血过程的三要素:
凝血因子+血小板+Ca2+.
凝血因子——血浆与组织中直接参与凝血的物质。
凝血因子的特性:迄今为止,参与凝血的因子共有12个。
其中用罗马数字编号的有12个(从Ⅰ-XIII,其中因子Ⅵ并不存在)。
血浆中最不稳定的凝血因子是因子是V(五),血浆中含量最高的凝血因子是因子Ⅰ(老大),在肝脏中合成且依赖维生素K的凝血因子是2,7,9,10,血友病甲(A)缺乏的是8因子,血友病乙(B)缺乏的是9因子。
内源性途径和外源性途径共同激活的因子是10因子。
.通常分为:
1.内源性凝血途径;
2.外源性凝血途径;
3.共同凝血途径
如果只是损伤血管内膜或抽出血液置于玻璃管内,完全依靠血浆内的凝血因子逐步使因子Ⅹ激活从而发生凝血的,称为内源性激活途径。
如果是依靠血管外组织释放的因子Ⅲ来参与因子Ⅹ的激活的,称为外源性激活途径。
学习生理学的时候,生理性凝血过程的外源性凝血和内源性凝血怎么也记不住,记了忘忘了记,其实很简单:
内源途径:有8、9、11、12因子参与,可记为:婴儿(12)拿着筷子(11)去酒吧(9、8)。
酒吧在室内,所以是内源。
外源途径有3、7因子参与,可记为山鸡。
山鸡一般在外面才有。
共同途径有10、5、2因子参与,可记为:十五的月亮(10、5)下有条鳄鱼(2)。
因子Ⅹ的激活可以通过两种途径。
共同凝血途径的三个阶段
1.因子FX激活成Fxa:凝血酶原激活物的形成。
2.凝血酶原(FII)激活成凝血酶(FIIa):凝血酶的形成。
3.纤维蛋白原(Fbg,FI) 转变成纤维蛋白(Fbn):纤维蛋白的形成。
三、抗凝系统
正常人1ml血浆含凝血酶原约300单位,在凝血时通常可以全部激活。
10ml血浆在凝血时生成的凝血酶就足以使全身血液凝固。
但在生理止血时,凝血只限于某一小段血管,而且1ml血浆中出现的凝血酶活性很少超出8-10单位,说明正常人血浆中有很强的抗凝血酶活性。
血浆中最重要的抗凝物质是抗凝血酶Ⅲ(antithrombinⅢ)和肝素,它们的作用约占血浆全部抗凝血酶活性的75%。
抗凝血酶Ⅲ是血浆中一种丝氨酸蛋白酶抑制物(serine protease inhibitor)。
因子Ⅱa、Ⅶ、Ⅸa、χa、Ⅻa的活性中心均含有丝氨酸残基,都属于丝氨酸蛋白酶,抗凝血酶Ⅲ分子上的精氨酸残基,可以与这些酶活性中心的丝氨酸残基结合,这样就“封闭”了这些酶的活性中心而使之失活。
肝素是一种酸性粘多糖,主要由肥大细胞和嗜碱性粒细胞产生,存在于大多数组织中,在肝、肺、心和肌组织中更为丰富。
肝素在体内和体外都具有抗凝作用,肝素抗凝的主要机制在于它能结合血浆中的一些抗凝蛋白,如抗凝血酶Ⅲ和肝素辅助因子Ⅱ(heparin cofactorⅡ)等,使这些抗凝蛋白的活性大为增强。
肝素可使抗凝血酶Ⅲ与凝血酶的亲和力增强100倍,使两者结合得更快,更稳定,使凝血酶立即失活。
天然肝素是一种分子量不均一的混合物,分子量为3000-57000不等。
一般将分子量在7000以下肝素称为低分子量肝素。
分子量较大的肝素抗凝作用的环节较多,作用较为复杂,易引起出血倾向,而低分子时肝素具有半衰期较长,抗凝效果好和引起出血倾向少等优点,因而更适于作为外源性抗凝剂。
四、体外延缓或阻止血液凝固的因素
降低温度,当反应系统的温度降低至10℃以下时,很多参与凝血过程的酶的活性下降,因些可延缓血液凝固,但不能完全阻止凝血的发生。
光滑的表面,也称不湿表面,可减少血小板的聚集和解体,减弱对凝血过程的触发,因而延缓了凝血酶的形成。
例如,将血液盛放在内表面涂有硅胶或石蜡的容器内,即可延缓血凝。
去Ca2+,由于血液凝固的多个环节中都需要Ca2+的参加,因此如在体外向血液中加入某些能与钙结合形成不易解离但可溶解的络合物,从而减少了血浆中的Ca2+,防止了血液凝固。
纤维蛋白溶解
在生理止血过程中,小血管内的血凝块常可成为血栓,填塞了这一段血管。
出血停止、血管创伤愈合后,构成血栓的血纤维可逐渐溶解,先形成一些穿过血栓的通道,最后可以达到基本畅通。
血纤维溶解的过程,称为纤维蛋白溶解(简称纤溶)。
纤维蛋白溶解(纤溶)系统
纤维蛋白溶解(纤溶)系统包括四种成分,即纤维蛋白溶解酶原(plasminogen)(纤溶酶原,血浆素原)、纤维蛋白溶解酶(plasmin)(纤溶酶,血浆素)、纤溶酶原激活物与纤溶抑制物。
纤溶的基本过程可分两个阶段,即纤溶酶原的激活与纤维蛋白(或纤维蛋白原)的降解。
纤维蛋白(与纤维蛋白原)的降解
纤溶酶是血浆中活性最强的蛋白酶,主要作用是水解纤维蛋白原和纤维蛋白。
正常情况下,血管内膜表面经常有低水平的纤溶活动,很可能血管内也经常有低水平的凝血过程,两者处于平衡状态。