2018-2019学年最新沪科版七年级数学上册例题与讲解:第4章角的比较与补(余)角-精编试题
- 格式:docx
- 大小:10.59 MB
- 文档页数:10
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计4一. 教材分析《4.5 角的比较与补(余)角》是沪科版数学七年级上册的一个重要内容。
这部分内容主要介绍了角的概念的进一步理解,角的分类,以及补角和余角的概念。
在教材中,通过丰富的实例和练习,引导学生理解和掌握角的概念,进一步培养学生的观察能力和思维能力。
二. 学情分析学生在学习这部分内容之前,已经掌握了角的基本概念,对图形的认识也有一定的基础。
但是,学生对于角的分类和补角、余角的概念可能还不是很清楚,需要通过实例和练习来进一步理解和掌握。
三. 说教学目标1.知识与技能:理解角的概念,掌握角的分类,理解补角和余角的概念,能够判断和计算补角和余角。
2.过程与方法:通过观察实例,培养学生的观察能力;通过练习,培养学生的思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.重点:理解角的概念,掌握角的分类,理解补角和余角的概念。
2.难点:能够判断和计算补角和余角。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生观察实例,发现规律,总结概念;采用练习法,让学生在实践中理解和掌握知识。
2.教学手段:利用多媒体课件,展示实例和练习,引导学生观察和思考;利用黑板,进行板书和演示。
六. 说教学过程1.引入:通过展示一些图片,如钟面、太阳帽等,引导学生观察其中的角,激发学生的兴趣。
2.讲解:讲解角的概念,角的分类,补角和余角的概念,通过实例和练习,让学生理解和掌握。
3.练习:设计一些练习题,让学生在实践中理解和掌握知识。
4.总结:对本节课的内容进行总结,强调重点和难点。
七. 说板书设计板书设计如下:•补角:两个角的和为90度•余角:两个角的和为180度八. 说教学评价通过课堂观察,学生练习和课后反馈,评价学生对角的概念,角的分类,补角和余角的理解和掌握程度。
九. 说教学反思在教学过程中,要注意观察学生的反应,根据学生的实际情况,调整教学节奏和教学方法,确保学生能够理解和掌握知识。
4.4 角1.角的有关概念(1)钟面上的时针与分针所构成的图形、四面体中任意两条相交棱所构成的图形,都给我们以角的形象.(2)角可以看作是从一点O出发的两条射线OA,OB所组成的图形.如图,其中,点O 叫做角的顶点,射线OA,OB叫做角的边.这个角可记作∠AOB,读作“角AOB”.∠AOB也可以看成是射线OA绕着点O旋转到OB的位置后形成的图形.射线OA,OB分别叫做这个角的始边和终边.(3)当角的终边是由始边旋转半周得到的(这时角的始边和终边互为反向延长线),如图,这样的角叫做平角,1平角=180°.(4)当角的终边是由始边旋转一周得到的(这时角的始边和终边重合成一条射线,但它不是一条射线),如图,这样的角叫做周角,一周角=360°.释疑点理解角的特征(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,二者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小不会因为图形的位置、图形的放大或缩小而改变;(4)平角与直线有区别,平角是一个角,它有角的内部,而直线是一条线,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”,同样不能说“一条射线是周角”;(5)没有特别说明,本书中所指的角都是指小于平角的角.【例1】下列说法:①两条射线所组成的图形叫做角;②一条射线旋转而成的图形叫做角;③角的大小与这个角的两边长短有关;④平角是一条直线.其中错误的有( ).A.1个B.2个C.3个D.4个①×没有说明两条射线是否有公共端点,缺少组成的要素,所以①错误.②×没有说明两条射线是否有公共端点,缺少组成的要素,所以②错误.③×角的两边都是射线,因此角的大小与这个角的两边长短无关,所以③错误.④×平角和一条直线的图形是一样的,但平角和直线是两个不同的概念,所以不能说平角是一条直线,所以④错误.释疑点概念是识别图形的依据角的概念是识别一个图形是否是角的主要依据,其他图形的识别也是如此,所以我们要十分重视对概念的正确理解.2.角的表示方法(1)用三个大写字母表示:如图,角的顶点为O,角的两边为射线OA,OB,该角可记为:∠AOB或∠BOA(顶点的大写字母写在中间).(2)用一个大写字母表示:当以某一点为顶点的角只有一个时,可用表示这个点的字母表示这个角,如上图,这个角又可表示为∠O.(3)用数字表示:如下图中的两个角,我们可以表示为∠1和∠2,同时在原图中,需要在顶点数加上弧线.(4)用希腊字母表示:如下图中的两个角,我们可以表示为∠α和∠β,同时在原图中,需要在顶点处加上弧线.释疑点如何准确地表示角当以某个字母为顶点的角仅有一个时,才能用表示其顶点的一个大写字母来表示该角.用阿拉伯数字或小写的希腊字母表示角时,一定要在图中该角的位置上标出字母或数字,并画上弧线.【例2】如图,下列表示∠1的方法中,正确的是( ).A.∠A B.∠ABCC.∠BAD D.∠BAC解析:根据角的四种表示方法的规定,只有∠BAC与∠1表示同一个角,因此应选D.答案:D3.角的度量(1)角的度量单位:角的度量单位是度、分、秒.度、分、秒之间的进率是60.(2)把一个周角平均分成360等份,每一份就是1度的角,1度记作1°;把1°的角60等分,每一份是1分的角,1分记作1′;把1′的角60等分,每一份是1秒的角,1秒记作1″.这种以度、分、秒为单位的角的度量制,叫做角度制.(3)角度的换算:1°=60′,1′=60″.由以上关系式可将度化为度、分、秒的形式,也可将度、分、秒化成度的形式.析规律正确进行角的换算用度、分、秒表示度时,要先把度的小数部分化成分,再把分的小数部分化成秒;用度表示度、分、秒时,要先把秒化成分,再把分化成秒;遇到乘法时,先乘再进位,遇到加法时,先加再进位,遇到减法时,先借位再减.【例3】解答下列问题:(1)用度、分、秒表示57.53°;(2)用度表示36°23′45″;(3)计算53°25′28″×5;(4)已知∠α=32.68°,∠β=18°41′55″,求∠α-∠β.解:(1)57.53°=57°+0.53×60′=57°+31.8′=57°+31′+0.8×60″=57°+31′+48″ =57°31′48″;(2)因为45″=⎝ ⎛⎭⎪⎫4560′=0.75′, 23.75′=⎝ ⎛⎭⎪⎫23.7560°≈0.396°, 所以36°23′45″≈36.396°;(3)53°25′28″×5=265°125′140″=267°7′20″;(4)因为∠α=32.68°=32°40′48″,所以∠α-∠β=32°40′48″-18°41′55″=32°39′108″-18°41′55″=31°99′108″-18°41′55″=13°58′53″.析规律 角的加减乘除运算进行角的加减乘除运算,遇到加法时,先加再进位;遇到减法时,先借位再减;遇到乘法时,先乘再进位;遇到除法时,先借位再除.4.探索角的个数探索由一个点引出若干条射线组成的角的个数时,可按边分别按逆时针或顺时针的顺序数,先确定以一条边为始边的所有角的个数,再确定以另一条边为始边的所有角的个数,以此类推,再求和可得角的总个数,并利用这一关系求出从一个点出发若干条射线时构成的角的个数的规律.数角时,观察一定要有条理,既要防止重复,又要防止遗漏.解技巧 从一个顶点出发的n 条射线组成的角的个数一般地,从点O 出发引出n 条射线,能组成(n -1)个基本角,共有角的个数为(n -1)+(n -2)+…+3+2+1=n (n -1)2. 【例4】 观察下列图形,并阅读相关文字:从图中的规律能知道从一个点出发10条射线时构成__________个不同的角.解析:2条射线构成角的个数为1;3条射线构成角的个数为2+1=3;4条射线构成角的个数为3+2+1=6;5条射线构成角的个数为4+3+2+1=10;…;由此可得10条射线构成角的个数为9+8+7+6+5+4+3+2+1=45.答案:455.钟表盘上角的度量与换算钟表上的时针与分针如果看作两条射线,不同时刻它们组成的角大小不同,时针与分针不同时间分别旋转过的角的大小各不相同,解决这类问题的关键是判断不同时刻时针与分针的位置以及各自每分钟旋转的角度的大小,然后运用角的定义和度量解决问题.【例5】 若时针由2点30分走到2点55分,问时针、分针各转过多大角度?分析:时针和分针每分钟转过的角度如下表所示.时针 一小时转一小格 一小时转30° 一分钟转0.5°分针 一小时转一圈 一小时转360° 一分钟转6° 解:所以分针转过的角度为360°60×(55-30)=6°×25=150°, 时针转过的角度为360°60×12×(55-30)=150°×112=12.5°.6.实际问题中的方位角的操作方位角一般以正北、正南为基准,描述物体所在的方向.如图所示的是我们常用到的一些方向,但实际上八个方向还不够用,如果要详尽准确地表示每一个方向上的角,就要借助角度来表示.(1)用射线表示的方位角一般说法是北偏东×度,北偏西×度,南偏东×度,南偏西×度.一般把南、北放在前,但东南、西南、西北、东北例外.(2)方位角是表示方向的射线与正北、正南方向的夹角,若已知条件给的不是这个角度,则需转化成与正北、正南方向的夹角.(3)通常规定上北、下南、左西、右东.【例6】 如图,在一张某地区的地图上,原标有学校、公园和广场三个位置,由于被墨水污染,广场的具体位置已看不清了.根据记忆,广场位置在学校的北偏东60°的方向,在公园的北偏西45°的方向.根据上述信息,请找出广场的具体位置.分析:根据题意,可知广场在学校的北偏东60°的方向.画图时,应以学校所在地为测点,在此处画出上北下南,左西右东的方向,以正北方向的射线为始边,顺时针旋转60°,则广场的位置就在这条射线上,同理,在公园的位置作一条北偏西45°的射线,这两条射线的交点,即为广场的位置.解:所画的图形如图所示.。
4.5 角的比较与补(余)角1.角的大小比较(1)叠合法:把一个角放在另一个角上,使两个角的顶点和一边分别重合,并使这两个角的另一边都放在这条边的同侧,就可以明显看见两个角的大小.如果两角的另一边重合,这两个角相等;如果两角的另一边不重合,则这两个角不等,其中一个角的另一边落在另一个角的内部,则这个角比另一个角小,其中一个角的另一边落在另一个角的外部,则这个角比另一个角大.①先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果OB与ED重合,则表示这两个角相等,如图,记作∠AOB=∠CED.②先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果ED落在∠AOB的外部,则表示∠AOB小于∠CED,如图,记作∠AOB<∠CED.③先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果ED落在∠AOB的内部,则表示∠AOB大于∠CED,如图,记作∠AOB>∠CED.(2)度量法:用量角器量出角的度数,根据角的度数大小来判定角的大小,度数大的角大,度数小的角小,度数相等时,角相等.即角的大小和它们的度数大小一致.辨误区用叠合法比较角的大小时应注意的问题用叠合法比较角的大小时,一定要将角的另一边落在重合边的同侧.【例1-1】已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是( ).A.∠AOC一定大于∠BOCB.∠AOC一定小于∠BOCC.∠AOC一定等于∠BOCD.∠AOC可能大于、等于或小于∠BOC解析:由题可知射线OC可能在OA这一侧,那么此时∠AOC就小于∠BOC,如果射线OC 在OB这一侧,那么∠AOC就大于∠BOC,如果射线OC垂直直线AB,那么∠AOC=∠BOC=90°,综合所述∠AOC可能大于、等于或小于∠BOC.答案:D【例1-2】如图有两块三角板,你能比较∠BAC与∠DEF的大小吗?分析:可以用特殊值法,通过三角板的特殊值来比较大小;还可以使用叠合法来比较这两个角的大小.解:能.只要把两块三角板如图那样叠合在一起,就可以比较出∠BAC和∠DEF的大小.说方法比较两个角的大小的常用方法比较两个角的大小,常用的方法是叠合法和测量法两种.一般地,若两个角的大小差别明显,则用叠合法进行验证;若两个角的大小差别不明显,则用测量法进行验证.2.角的和差关系角的和、差有几何与代数两种意义,几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.(1)几何意义:设有两个角∠AOB和∠BOC(∠AOB>∠BOC),如图所示,把∠BOC移到∠AOB上,使它们的顶点重合,边OB重合,当∠BOC在∠AOB的外部时(如图1),它们的另两边OA与OC所成的∠AOC就是∠AOB与∠BOC的和,即∠AOC=∠AOB+∠BOC;当∠BOC在∠AOB内部时(如图2),它们的另两边OA与OC所成的∠AOC是∠AOB与∠BOC的差,即∠AOC =∠AOB-∠BOC.(2)代数意义:已知∠A=36°,∠B=60°,那么∠A+∠B=36°+60°=96°,∠B-∠A=60°-36°=24°.即两个角的和、差关系等于两个角的度数的和、差关系.【例2】已知一条射线OA,如果从点O再引两条射线OB和OC,使∠AOB=60°,∠BOC =20°,求∠AOC的度数.解:当OC在∠AOB的内部时,如图(1),图(1)此时∠AOC=∠AOB-∠BOC=60°-20°=40°.当OC在∠AOB的外部时,如图(2),图(2)此时∠AOC =∠AOB +∠BOC =60°+20°=80°.综上可知,∠AOC 的度数为40°或80°.辨误区 作图题要分类讨论根据题意画图时,要考虑到所有可能的情况进行分类讨论,防止漏解.3.角的平分线在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,OC 是从∠AOB 的顶点O 出发的一条射线,把∠AOB 分成两个相等的角,即∠AOC =∠BOC ,则OC 叫做∠AOB 的平分线.角平分线定义的推理步骤(1)角平分线的性质的推理步骤∵OC 是∠AOB 的平分线(已知),∴∠AOC =∠BOC =12∠AOB 或∠AOB =2∠AOC =2∠BOC(角平分线的定义). (2)角平分线的判断的推理步骤∵∠AOC =∠BOC(已知),∴OC 是∠AOB 的平分线(角平分线的定义).释疑点 对角的平分线的理解角的平分线是一条射线,每个角都有且只有一条角平分线,它把这个角分成相等的两个角.【例3】 如图所示,已知∠AOB =90°,∠BOC =60°,OD 是∠AOC 的平分线,求∠BOD 的度数.分析:从图形上看,∠BOD =∠BOC +∠COD ,因为∠BOC =60°,故只要求出∠COD 的度数即可获解,因为OD 是∠AOC 的平分线,而∠AOC =∠AOB -∠BOC =30°,故∠COD 可求.解:∵∠AOC =∠AOB -∠BOC =30°,OD 是∠AOC 的平分线,∴∠COD =12∠AOC =12×30°=15°. ∵∠BOD =∠BOC +∠COD ,∴∠BOD =60°+15°=75°.说方法 如何求角的度数和求线段长一样,求一个角的度数时,我们通常将这个角拆成另外几个易求角度的角的和或者差的形式,通过求出另外几个角达到求这个角的目的.4.补角与余角的概念(1)如果两个角的和等于一个平角,那么我们就称这两个角互为补角,简称互补,其中一个角是另一个角的补角.即:若∠1+∠2=180°,则∠1与∠2互补.反之,若∠1与∠2互补,则∠1+∠2=180°.(2)如果两个角的和等于一个直角,那么我们就称这两个角互为余角,简称互余,其中一个角是另一个角的余角.即:若∠1+∠2=90°,则∠1与∠2互余.反之,若∠1与∠2互余,则∠1+∠2=90°.谈重点余角与补角的关系(1)互余和互补描述的都不是一个角,而是指具有特殊数量关系的两个角,只与两个角的大小有关,与它们的位置无关.(2)锐角A的余角表示为(90°-∠A),补角可表示成(180°-∠A).(3)两角互为邻补角,它们一定互补,但两角互补,它们不一定为邻补角.(4)一个锐角的补角比它的余角大90°.【例4-1】如图所示,AOB是一条直线,∠AOC=90°,∠DOE=90°,问图中互余的角有几对?互补的角有几对?分析:由互为余角和互为补角的定义,只需找出图中和为90°的两个角以及和为180°的两个角即可.也可令∠1=x°,则∠2=90°-x°,∠3=x°,∠4=90°-x°,∠BOD =180°-x°,∠AOE=90°+x°.从而判断出互余、互补的角.解:互余的角:∠1与∠2,∠1与∠4,∠3与∠2,∠3与∠4;互补的角:∠1与∠BOD,∠3与∠BOD,∠2与∠AOE,∠4与∠AOE.说方法表示一个角的余角或补角可任意设一个角为x°,用含x°的代数式设法表示出其他所有的角,凡是90°-x°的角都与这个角互余,凡是180°-x°的角都与这个角互补.【例4-2】一个角的补角是它的余角的3倍,那么这个角的度数是( ).A.60°B.45°C.30°D.15°解析:由于一个角和它的补角的和是平角,与它的余角的和是直角,如果设这个角为x°,则它的补角是180°-x°,余角是90°-x°,由题目中所给的数量关系列出方程180°-x°=3(90°-x°),所以180°-x°=270°-3x°,所以x°=45°.答案:B析规律根据互余和互补求角的度数根据互余和互补的概念求角的度数的问题,一般设出这个角的度数,用含有这个角的代数式来表示这个角的余角和补角从而得到关于这个角的方程.解方程可解决问题.5.补角与余角的性质(1)补角性质:同角(或等角)的补角相等.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.若∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,则∠2=∠4.(2)余角性质:同角(或等角)的余角相等.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3.若∠1+∠2=90°,∠3+∠4=90°,∠1=∠3,则∠2=∠4.释疑点进一步理解余角与补角锐角的余角为锐角,锐角的补角为钝角;钝角的余角不存在,钝角的补角为锐角;如果互补的两个角相等,那么这两个角都是直角.【例5】如图,∠AOB=∠COD=90°,试说明∠AOC=∠BOD.解:∵∠AOB=90°(已知),∴∠AOC+∠BOC=∠AOB=90°(角的和差).∵∠COD=90°(已知),∴∠BOD+∠BOC=∠COD=90°(角的和差).∴∠AOC=∠BOD(同角的余角相等).析规律根据互余、互补判断两角的相等关系当题目中的角有互补互余的关系时,判断两个角的相等关系通常运用等角的余角相等;等角的补角相等来解决.6.角的计算与证明角的和、差关系,角平分线及性质,余角、补角及其性质是进行角的计算与证明的基础,熟练掌握这些知识及其推理的基本步骤是关键.在解决具体问题时要结合图形,观察角与角之间的关系,并运用这些关系与性质来解决问题.析规律根据角平分线的性质进行角的运算结合图形和角的平分线的性质判定角的和、差、倍、分的关系,并运用这一关系解决问题,体现了数形结合思想及方程思想.【例6】如图所示,一副三角尺的两个直角顶点O重叠在一起.(1)比较∠AOC与∠BOD的大小,并说明理由.(2)∠AOD与∠BOC的和是多少度?解:(1)∠AOC与∠BOD相等,理由:∵∠AOB=∠COD=90°,∴∠AOB-∠COB=∠COD-∠COB,∴∠AOC=∠BOD.(2)∵∠AOD=∠AOB+∠BOD,∴∠AOD+∠BOC=∠AOB+∠BOD+∠BOC=∠AOB+∠COD=90°+90°=180°.7.角平分线的性质的综合运用折叠问题是几何中常见的问题,折叠过程中,角的大小不变.解决这类问题时,常与角的平分线,平角、周角的大小的关系,角的和差关系结合起来探求解决问题的思路.析规律折叠问题的解法结合折叠问题画出图形,结合图形,并根据角的和、差、倍、分的关系来寻找未知角与已知角之间的关系,并通过正确的推理求出未知角.【例7】如图,将书页斜折过去,使角的顶点A落在F处,BC为折痕,BD为∠EBF的平分线,求∠CBD的度数.解:由折叠的性质可知,∠CBF=∠CBA.由角平分线的性质可知,∠DBF=∠DBE.∵∠DBF+∠DBE+∠CBF+∠CBA=180°,∴2∠CBF+2∠FBD=180°.∴∠CBD=90°.8.角的比较与测量的应用比较角的大小有两种常用的方法:一是叠合法;二是度量法.叠合法简单易行,方便操作;度量法需要测量工具,虽然比较精确,但会与标准有差距.角的比较与测量的实际应用比较广泛,主要应用于产品尺寸的质检和测绘等方面,解决这类问题要结合实际问题中的要求采用合适的方法来解决.说方法估测角的大小对要求不高的或精确度不高的也可用估测法:直接通过观察的方法,比较角的大小较为直观,但不够准确,适用于角度差别较大或要求不高的角的大小的比较.利用余角和补角的定义解决实际问题.【例8】在某工厂生产流水线上生产如图所示的零件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用你所学的知识分析一下,该名质检员采用的哪种比较方法?你还能给该质检员设计较好的质检方法吗?请说说你的方法.分析:角的比较方法有两种,测量法和叠合法,测量具体,而叠合更直观,在检验中,采用叠合的方法比较快捷.解:该质检员采用的是测量法.还可以使用叠合法,即在工作中找一个角度为31°和一个角度为29°的两个工件,然后可把几个工件夹在这两个工件中间,使顶点和一边重合,观察另一边的情况.。