振动与噪声实验技术
- 格式:docx
- 大小:15.25 KB
- 文档页数:8
噪声与振动测量技术手册
噪声与振动测量技术手册是一本专门介绍噪声和振动测量技术的综合性手册。
该手册涵盖了噪声和振动的基本概念、测量仪器、测量方法、数据分析等方面的内容,旨在为工程技术人员、科研人员和相关专业学生提供全面的噪声和振动测量技术知识和实用指南。
该手册首先介绍了噪声和振动的基本概念,包括声音和振动的物理特性、噪声的危害和分类等方面的内容。
接着,手册详细介绍了测量仪器,包括声级计、频谱分析仪、振动计等常用仪器的原理、使用方法和维护保养等方面的知识。
此外,手册还提供了各种测量方法,包括噪声测量方法和振动测量方法。
这些方法包括基本测量方法、标准测量方法和精密测量方法等,适用于不同的应用场景和测量需求。
手册还对测量数据的分析和处理进行了详细介绍,包括数据的采集、处理、分析和评估等方面的内容。
此外,手册还针对不同行业和领域的应用需求,提供了具体的噪声和振动测量解决方案和技术案例。
这些案例包括机械制造、交通运输、建筑环保、医疗保健等领域,为相关行业的技术人员提供了实用的参考和指导。
总的来说,噪声与振动测量技术手册是一本全面介绍噪声和振动测量技术的综合性手册,具有很高的实用价值和参考价值。
无论您是工程技术人员、科研人员还是相关专业学生,都可以从中获得有用的知识和指导。
噪声与振动控制实验报告一、实验目的本实验旨在通过对噪声与振动进行控制,达到降低环境噪声和减少振动影响的目的。
通过实验,掌握噪声与振动控制的基本原理和方法,提高工程人员在实际工作中的应用能力。
二、实验设备本次实验所用的设备包括噪声生成器、振动传感器、振动试验台等各种实验设备。
三、实验原理1. 噪声控制原理:噪声是一种具有不良影响的声音,通过对噪声的控制可以使其达到合理范围内,减少对人体的损害。
常用的噪声控制方法包括隔声、吸声、降噪等。
2. 振动控制原理:振动是物体在运动中产生的周期性的震动现象,对机械设备和人体健康均有不良影响。
振动控制的方法包括减振、隔振、吸振等。
四、实验步骤1. 在实验室内设置噪声生成器,并调节至适当的音量。
2. 将振动传感器安装在振动试验台上,并调节振动幅度至一定水平。
3. 开始记录噪音和振动的数据,包括频率、幅度、时长等参数。
4. 分析数据,根据噪声和振动的特点,制定相应的控制方案。
5. 进行控制实验,观察结果并记录数据。
6. 分析实验结果,总结控制效果并提出改进意见。
五、实验结果经过对噪声和振动的控制实验,得出以下结论:1. 通过合理的隔声和吸声措施,可以有效降低环境噪声。
2. 通过减振和隔振措施,可以降低机械设备的振动影响。
3. 对噪声和振动进行有效控制,可以提高工作环境的安静舒适度,减少对人体的不良影响。
六、实验总结本次实验通过对噪声与振动控制的探索,使我们更加深入地了解了噪声与振动的威胁以及控制方法。
掌握了噪声与振动控制的基本原理和技术,提高了我们的实践能力和应用水平。
希望通过今后的学习和实践,能够更好地应用噪声与振动控制技术,为工程实践提供更好的支持和保障。
永磁同步电机高频振动与噪声研究一、概述永磁同步电机以其高效率、高功率密度及优秀的控制性能,在电动汽车、风力发电、工业驱动等领域得到了广泛应用。
随着电机运行频率的提高,高频振动与噪声问题日益凸显,成为制约永磁同步电机进一步发展的关键因素。
对永磁同步电机高频振动与噪声的研究具有重要的理论价值和实际意义。
高频振动主要来源于电机内部的电磁力波动、机械结构共振以及材料特性等因素。
这些振动不仅影响电机的稳定运行,还可能导致电机部件的疲劳损坏,降低电机的使用寿命。
同时,高频振动还会引发噪声污染,对人们的生产和生活环境造成不良影响。
针对永磁同步电机高频振动与噪声问题,国内外学者进行了大量的研究。
研究内容包括但不限于电机电磁设计优化、结构动力学分析、振动噪声测试与评估等方面。
通过改进电机电磁设计,优化绕组分布和磁极形状,可以有效降低电磁力波动,从而减少高频振动。
通过结构动力学分析,可以识别出电机的共振频率,进而采取相应的措施避免共振现象的发生。
目前对于永磁同步电机高频振动与噪声的研究仍面临一些挑战。
一方面,电机内部的电磁场和机械结构相互耦合,使得振动与噪声的产生机制复杂多样,难以准确描述和预测。
另一方面,随着电机技术的不断发展,新型材料和先进制造工艺的应用使得电机的振动噪声特性也发生了变化,需要不断更新和完善研究方法和手段。
本文旨在深入研究永磁同步电机高频振动与噪声的产生机理和影响因素,提出有效的抑制措施和优化方案,为永磁同步电机的设计、制造和运行提供理论支持和实践指导。
1. 永磁同步电机概述永磁同步电机,作为电动机和发电机的一种重要类型,以其独特的优势在现代工业中占据着举足轻重的地位。
其核心特点在于利用永磁体来建立励磁磁场,从而实现能量的高效转换。
定子产生旋转磁场,而转子则采用永磁材料制成,这种结构使得永磁同步电机在运行时能够保持稳定的磁场分布,进而实现平稳且高效的能量转换。
永磁同步电机可以分为他励电机和自励电机两种类型,前者从其他电源获得励磁电流,后者则从电机本身获取。
实验室噪声与振动控制实验室噪声与振动控制是科学研究中的一个重要课题。
在进行实验室研究时,噪声和振动的控制是必不可少的,以确保实验结果的准确性和可靠性。
本文将探讨实验室噪声与振动的影响、控制方法和相关技术。
一、实验室噪声的影响实验室噪声对科研工作和研究人员的健康都会产生负面影响。
首先,噪声会干扰实验结果的准确性。
对于一些对声音敏感的实验,如声学研究、噪声控制等,实验室内的噪声会干扰实验信号的接收和处理,影响实验结果的可靠性。
其次,噪声也对研究人员的健康造成风险。
长期处于高噪声环境中,容易导致听力损伤、心理压力及工作效率下降等健康问题。
二、实验室噪声控制方法为了降低实验室噪声产生的影响,我们可以采取以下措施:1. 声源控制:将噪声产生源降低到最小。
例如,合理设置实验仪器和设备,采用低噪声的仪器设备,减少机器运转时的噪声产生。
2. 隔声措施:通过隔声材料或结构,减少噪声的传递。
可以选择具有隔声性能的材料进行实验室墙壁、天花板和地板的装饰,减少噪声在室内的传播。
3. 吸声处理:使用吸声材料吸收噪声,降低噪声的反射和回声。
在实验室内添加吸声板、吸声棉等吸音材料,有效减少噪音反射,提高实验室的声学环境。
4. 噪声遮挡:利用其他声音来遮住实验室噪声,使其不易被人耳察觉。
例如,可以放置白噪音发生器或播放柔和音乐等。
三、实验室振动的影响实验室振动同样对科研工作和研究结果产生不良影响。
实验室振动会对高精密度的实验设备和仪器造成干扰,对实验结果的准确性有很大影响。
另外,振动也会对一些对振动敏感的实验产生干扰,如显微镜观测、精密测量等。
四、实验室振动控制方法为了降低实验室的振动干扰,我们可以采取以下措施:1. 设备布置:合理布置实验室设备,保持设备的稳定性。
将易受振动的设备放置在牢固的台面或地基上,减少外界振动的干扰。
2. 振动隔离:使用专门的振动隔离装置,将设备与外界振动隔离。
例如,采用减震台、隔振支撑等装置,能有效地减少实验设备受到的振动影响。
第六章振动与噪声试验车辆行驶时产生的噪声与振动严重影响乘员的舒适性,同时还关系到行驶安全、环境污染等问题。
由于道路的不平度、汽车各总成旋转机构的不平衡、空气动力扰动以及各总成的振动等而引起的车辆振动,影响汽车的平顺性,也造成汽车某些部件的早期疲劳失效和其他性能指标(如操纵稳定性等)下降。
引起噪声的原因也十分复杂,诸如发动机的燃烧噪声、机械噪声、进排气系统和风扇引起的空气动力噪声、传动系噪声、轮胎噪声等。
随着科学技本的发展,带来了汽车振动与噪声试验技术的长足进步。
随着计算机的发展,许多数字分析方法得以实现,在汽车振动与噪声的分析中引进了频谱分析、数字滤波、模态分析、有限元、时间序列分析、小波分析等,并在传统的试验方法基础上又增加了组合激励、声振、激光测振、全息图像、声强法等新的试验技术与手段。
大大地丰富了振动与噪声的试验技术。
第一节汽车振动试验汽车整车的振动试验主要有平顺性试验和振动性试验。
平顺性试验在第5章的11.7汽车平顺性中叙述。
1、悬架系统固有频率和阻尼比的测定悬架系统的偏频率、阻尼比和测量的固有频率是有关汽车平顺性的重要设计参数,也是重要的试验内容。
1)试验目的测定悬架系统固有频率和阻尼比。
2)试验方法汽车悬架系统固有频率和阻尼比测定方法在GB 4783-84的标准中已有明确规定。
传感器都是安装在前、后及其上方的车身(或车架)上的相应位置。
具体的测试方法是一种滚下法:即将汽车的两个前轮(或两个后轮)压在半梯形的凸块上,凸块高度60~120mm,然后将汽车从凸块上推下来,并使左右两车轮同时落地,与此同时记录汽车整个落地受振的过程,试验重复三次。
3)数据处理(1)时间历程法利用车身和车轴测出的自由衰减曲线(图6-1-1)计算出衰减率。
图6-1-1 车身和车轴所测出的加速度自由衰减曲线a)车身部分;b)车轴部分21/A A =ϕ式中:1A ——自由衰减振动曲线上第2、3峰—峰值;2A ——自由衰减振动曲线上第3、4峰—峰值。
振动噪声试验解决方案1. 引言振动噪声是许多工业环境中常见的问题。
它可以导致机械设备的故障、失效以及工作环境的不适。
为了解决这个问题,进行振动噪声试验是必要的。
本文将介绍一种振动噪声试验解决方案,旨在帮助解决振动噪声问题,提高设备的可靠性和工作环境的舒适性。
2. 振动噪声试验概述振动噪声试验是通过测量和分析设备在正常运行时产生的振动和噪声来评估设备的性能。
通过振动和噪声信号的采集和分析,可以识别设备的问题和潜在的故障,进而采取相应的措施进行修复和优化。
振动噪声试验通常包括以下步骤:1.准备工作:确定试验对象、选择适当的传感器和测量仪器,并进行相关的校准工作。
2.数据采集:使用传感器将设备产生的振动和噪声信号转换为电信号,然后采集这些信号。
采集的数据应具有足够高的采样率和准确度。
3.数据处理:对采集到的数据进行处理和分析,包括频谱分析、时域分析、幅度分析等。
这些分析可以提供设备振动和噪声的频率、幅度、相位等信息。
4.问题识别:根据数据处理的结果,识别设备可能存在的问题和故障,并进行分类和定位。
5.解决方案提出:基于问题识别的结果,提出相应的解决方案和改进措施,以减少振动和噪声,并提高设备的可靠性和工作环境的舒适性。
6.验证和改进:实施解决方案后,对设备进行再次振动噪声试验,验证解决方案的有效性,并根据试验结果进行改进。
3. 振动噪声试验解决方案具体步骤3.1 准备工作在进行振动噪声试验之前,需要进行一些准备工作。
包括:•确定试验对象:选择需要进行振动噪声试验的设备或部件,并确定试验的目的和要求。
•选择传感器和测量仪器:根据试验对象的特性和试验要求,选择适当的振动、噪声传感器和测量仪器。
确保这些设备具有足够的采样率和准确度。
•校准传感器和测量仪器:对传感器和测量仪器进行校准,以保证测量结果的准确性和可靠性。
•确定试验环境:选择适当的试验环境,满足试验的要求,如噪声限制、温度控制等。
3.2 数据采集在数据采集阶段,需要按照事先确定的方法和参数,采集振动和噪声信号。
振动噪声测量实验报告实验目的本实验旨在学习振动噪声的测量方法,了解不同类型的振动噪声对人体的危害,并熟悉振动噪声测量仪器的操作。
实验器材和仪器- 振动噪声测量仪器(包括加速度传感器、低噪声测量放大器和频谱分析仪等)- 调频音频信号发生器- 校准质量块实验原理振动噪声是指工作环境中的振动信号或机械设备产生的噪声。
它的主要特征是频率和振幅的随机变化。
振动噪声可以对人体产生不良影响,包括听觉损伤、神经系统紊乱和心理压力等。
因此,对振动噪声进行科学准确的测量是至关重要的。
实验步骤1. 连接振动噪声测量仪器。
将加速度传感器连接到低噪声测量放大器的输入端,然后将放大器的输出端连接到频谱分析仪。
2. 放置加速度传感器。
将加速度传感器粘贴在要测量的物体的表面,并确保其与物体有良好的接触。
3. 调节振动噪声测量仪器。
根据测量要求,将振动噪声测量仪器的工作模式、采样频率和测量范围等参数进行相应的调整。
4. 进行校准。
使用校准质量块对振动噪声测量仪器进行校准,确保其准确度和稳定性。
5. 进行实验测量。
根据实验要求,选择适当的测量时间和测量点,并记录测量数据。
6. 分析测量结果。
使用频谱分析仪分析测量数据,获取振动噪声的频率、振幅等信息,并进行相关统计计算。
实验结果与讨论在实验中,我们对不同类型的机械设备进行了振动噪声测量。
通过观察实验数据和分析结果,我们得出以下结论:1. 不同类型的机械设备会产生不同频率和振幅的振动噪声。
2. 噪声级别(dB)越高,振动噪声越强烈,对人体的危害也越大。
3. 将振动噪声变为频谱图可以更直观地了解噪声的频率分布情况。
4. 经过校准处理后,测量仪器的测量结果更加准确可信。
实验结论通过本次实验,我们了解了振动噪声的测量方法,包括仪器的连接和调节,以及测量数据的分析和处理。
我们还了解到了振动噪声对人体的危害,并意识到科学准确地测量振动噪声的重要性。
通过实验测量和分析,我们获得了不同类型机械设备产生的振动噪声的频率、振幅等信息,为进一步研究和控制振动噪声提供了参考依据。
东北大学研究生考试试卷考试科目:振动与噪声实验技术 ________ 课程编号:_______________________________ 阅卷人:_________________________________ 考试日期:2012.11 _______________ 姓名:______________ 吕亮 _______________ 学号:1200461 _______________注意事项1•考前研究生将上述项目填写清楚2•字迹要清楚,保持卷面清洁3.交卷时请将本试卷和题签一起上交东北大学研究生院摘要工程振动与振动工程振动以前被看作是力学的一个分支,从某种意义上说,它曾经是一门基础科学,早期是物理学家尤其是声学家的研究对象,本世纪二、三十年代,随着生产的发展、机械的高速化和结构的轻型化,工程中的振动问题愈来愈多了,于是出现了面向工程问题的工程振动。
这可以说是“振动”发展的第二阶段。
当前工程振动的发展又到了一个新的转折点,量变引起了质变,因此提出一个新的学科名叫振动工程。
工程振动的着眼点和落脚点是振动,它实质上仍是基础科学的一个分支,而振动工程的着眼点和落脚点是工程,是工程科学的一个分支。
基础科学和工程科学有何区别呢?基础科学着重认识世界、说明世界、力求把纷纭繁杂的以及不被注意的现象说明得有条有理一清二楚,而工程科学应能直接指导人们有根据、有目的、有步骤地去改造世界。
工程科学是指导实践去改造世界的学问。
从工程振动到振动工程表明我们的重点已由认识世界、说明世界进展到改造世界,这是一个非常重要的一步,具有伟大的科学意义。
本文主要简要介绍如下几个方面:(1)机械振动的基本理论,振动的发展史及其分类;(2)振动利用工程的提出,振动利用的新技术和新方法;(3)对振动利用工程的发展进行展望;关键字:工程振动振动工程振动机械振动、利用及其新技术一. 绪论振动及其利用最近30 多年来的发展举世瞩目。
就拿振动机械来说,目前已成功应用于工矿企业中的该类机器已达到数百种之多,在许多部门,如采矿、冶金、煤炭、石油化工、机械、电力、水利、土木、建筑、建材、铁路、公路交通、轻工、食品和谷物加工、农田耕作、生物工程、信息技术等部门以及在人类日常生活过程中,数以万计的振动机器和振动仪器已成功用来完成许多不同的工艺过程。
在振动利用技术中,除利用线性振动原理和非线性振动原理外,波动与波能在许多部门也得到了广泛的应用。
例如,在工程地质部门,利用振动所发生的应力波进行检测和地质勘探;在石油开采中,利用振动所引发的弹性波来提高原油产量;在海洋工程方面,海浪波动的能量可以用来发电;在医疗方面,利用超声波等诊断和治疗疾病,彩超、医用CT 和核磁共振等,都是对振动与波动原理的实际应用;在电子和通信工程方面,电视机和收音机中的振荡电路、门铃、电话机、光导纤维通信技术、录音机、电视机、收音机、程控电话等诸多电子器件以及电子计时装置和通信系统使用的谐振器等都是通过振动才能有效地工作。
从广义的角度来看,在自然界及宇宙中到处存在着振动,月亮的圆缺、潮汐的涨落、树木的年轮等,对这些振动和波动现象进行研究,找出其内在规律,并进行有效的利用,无疑会产生重大的社会效益与经济效益,并造福于人类。
在社会与经济生活中,如人口的增长与衰减、农作物虫灾发生的周期性现象、股市的涨跌和振荡、社会经济发展过程中速度的增长与衰减等,都可以归纳为不同形式的振动。
振动按其类型大致可分为:线性振动与近似于线性的振动、非线性振动、波动(水波、应力波、声波、超声波、红外波、可见光波、紫外波、各种射线波等)及电磁振荡等。
因此,可将振动及其利用技术分为线性与近似于线性的振动的利用、非线性振动的利用、波动和波能的利用、电磁振荡器在工程技术中的应用、自然界和人类社会中的振动现象与规律及其利用等。
随着我国经济建设和科学研究事业的进一步发展,新用途的振动利用技术将会不断出现,它们在各个部门中的使用也将日益增多,并将发挥越来越重要的作用。
为了使这类技术获得更有效的使用并促进其进一步的发展,对它们的工作理论与设计计算方法进行较系统和详细的叙述无疑是十分必要的。
特别是随着现代科学技术,诸如非线性动力学理论与方法、现代设计理论与方法和计算机技术的迅速发展,应用最新的科学技术,构建起振动及其利用”新学科的理论框架,并对振动利用技术和设备进行全面、系统的阐述,为该种技术与设备提供研究、设计的理论与方法,将是研究与开发出新的技术与设备,以及保证该类机械可靠和有效运行的重要措施和必要手段。
二.机械振动简介2.1振动介绍振动的强弱用振动量来衡量,振动量可以是振动体的位移、速度或加速度。
振动量如果超过允许范围,机械设备将产生较大的动载荷和噪声,从而影响其工作性能和使用寿命,严重时会导致零、部件的早期失效。
例如,透平叶片因振动而产生的断裂,可以引起严重事故。
由于现代机械结构日益复杂,运动速度日益提高,振动的危害更为突出。
反之,利用振动原理工作的机械设备,则应能产生预期的振动。
在机械工程领域中,除固体振动外还有流体振动,以及固体和流体耦合的振动。
空气压缩机的喘振,就是一种流体振动。
2.2研究简史20世纪初,人们关心的机械振动问题主要集中在避免共振上,因此,研究的重点是机械结构的固有频率和振型的确定。
1921年,德国的H.霍尔泽提出解决轴系扭转振动的固有频率和振型的计算方法。
30年代,机械振动的研究开始由线性振动发展到非线性振动。
50年代以来,机械振动的研究从规则的振动发展到要用概率和统计的方法才能描述其规律的不规则振动——随机振动。
由于自动控制理论和电子计算机的发展,过去认为甚感困难的多自由度系统的计算,已成为容易解决的问题。
振动理论和实验技术的发展,使振动分析成为机械设计中的一种重要工具。
2.3分类机械振动有不同的分类方法。
按产生振动的原因可分为自由振动、受迫振动和自激振动;按振动的规律可分为简谐振动、非谐周期振动和随机振动;按振动系统结构参数的特性可分为线性振动和非线性振动;按振动位移的特征可分为扭转振动和直线振动。
1)自由振动去掉激励或约束之后,机械系统所出现的振动。
振动只靠其弹性恢复力来维持机械振动,当有阻尼时振动便逐渐衰减。
自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
2)受迫振动机械系统受外界持续激励所产生的振动。
简谐激励是最简单的持续激励。
受迫振动包含瞬态振动和稳态振动。
在振动开始一段时间内所出现的随时间变化的振动,称为瞬态振动。
经过短暂时间后,瞬态振动即消失。
系统从外界不断地获得能量来补偿阻尼所耗散的能量,因而能够作持续的等幅振动,这种振动的频率与激励频率相同,称为稳态振动。
例如,在两端固定的横梁的中部装一个激振器,激振器开动短暂时间后横梁所作的持续等幅振动就是稳态振动,振动的频率与激振器的频率相同。
系统受外力或其他输入作用时,其相应的输出量称为响应。
当外部激励的频率接近系统的固有频率时,系统的振幅将急剧增加。
激励频率等于系统的共振频率时则产生共振。
在设计和使用机械时必须防止共振。
例如,为了确保旋转机械安全运转,轴的工作转速应处于其各阶临界转速的一定范围之外。
3)自激振动在非线性振动中,系统只受其本身产生的激励所维持的振动。
自激振动系统本身除具有振动元件外,还具有非振荡性的能源、调节环节和反馈环节。
因此,不存在外界激励时它也能产生一种稳定的周期振动,维持自激振动的交变力是由运动本身产生的且由反馈和调节环节所控制。
振动一停止,此交变力也随之消失。
自激振动与初始条件无关,其频率等于或接近于系统的固有频率。
如飞机飞行过程中机翼的颤振、机床工作台在滑动导轨上低速移动时的爬行、钟表摆的摆动和琴弦的振动都属于自激振动。
三.振动及其利用简介振动及其利用是研究振动与波利用的理论、技术及设备的一门新兴的学科。
在人类生活与生产等各个方面均获得广泛应用,并已扩展到生物工程与社会经济等众多领域,目前它正处在迅速发展过程中,由于该学科所涉及的有关技术与工农业生产及人类生活联系十分密切,已正真成为人类生产活动与生活过程中一种不可缺少的手段与必要的机制。
振动(包括波动)按其类型可分为:线性与近似于线性的振动、非线性振动、波动以及电磁振荡等,因此,相应地可把振动的利用划分为在这些方面的应用。
振动与波不仅已广泛应用工程技术部门,目前正在向信息技术、生物工程、社会经济领域以及人类日常生活的各个方面,预计它还会得到更进一步的发展。
由于振动及其利用牵涉面很广,涉及的领域及其相关的学科较多,应用范围及其分布十分零散。
因此,给它的系统和深入的研究带来较大难度,这也可能是目前其他国家未能对这一学科进行系统研究与总结的主要原因。
中国首先提出了“振动及其利用”学科的新概念,并进行了综合与总结并提出了一些新技术:1)物料在振动平面上及振动锥体内运动的理论。
研究了直线运动、圆周运动及椭圆运动的各类振动工作面上及锥体内的物料滑行运动和抛掷运动的理论,进而提出了振动机运动学和动力学参数及工艺参数的计算方法。
2)物料筛分过程的理论。
结合中国企业部门的需要,研究了物料筛分过程的理论。
在此基础上,研究出了一种新的概率‘等厚筛分的方法,并将其应用于新型筛分机械中,并在一些企业中获得了成功应用。
3)利用非线性动力学理论研究了物料的结合质量和当量阻尼。
在研究含分段惯性力的非线性振动系统理论的基础上,分析了物料在振动平面上的运动特性,进而计算出在该振动系统中物料的结合系数及当量阻力系数,这为振动机械产品设计提供了有用的参考。
4)非线性自激振动系统的利用在工程中,自激振动得到广泛的应用。
例如,采矿工业中应用的气动式与液压式凿岩机与碎石机,采煤用的风镐,铸造车间清理铸件的风铲,锻造车间使用的蒸汽锤,选煤厂应用的气动无活塞跳汰机,蒸汽机的工作过程也属于自激振动,由液压阀控制的往复油缸或活塞驱动的各种机件所组成的系统等。
在无线电通讯及仪器仪表工业部门,如无线电收音机和电视机中的电子振荡器,各种仪器仪表中广泛采用的振荡器和不同形状波形发生器,各种恒温容器采用的开关型温度调节器等。
日常生活中所必需的手表和挂钟,依赖琴弦演奏的各种乐器等。
人体内心脏的跳动也是一种自激振动。
5)冲击非线性振动系统的利用利用冲击来完成工艺过程的振动机械有蛙式夯土机、振动锤锻机、冲击桩机、带有冲击的振动落砂机和振动钻探机等。
冲击式振动机械是非线性振动机一个特例。
根据理论计算与试验都可以证明,冲击情况下物体瞬间所产生的加速度较一般线性振动机的最大加速度大几倍、几十倍,甚至几百倍。
利用冲击可以产生很大的冲击力,这对压实土壤,沉桩、使物体产生塑性变形、岩石发生破坏或碎裂、促使铸件上的型砂剥落都是十分重要。
四.对振动及其利用的发展进行展望振动在国民经济中的应用越来越广泛,涉及面很广,并日益受到人们的重视。