考研数学-2011北京大学高等代数与解析几何真题(回忆版)
- 格式:docx
- 大小:28.19 KB
- 文档页数:2
绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞) (2)复数212i i-=+(A )i(B )-i(C )(D )4355i--4355i -+(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A)(B) (C) (1,0)(1,)2π(1,2π-(D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A )-3 (B )-12(C )13(D )2(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。
给出下列三个结论:AD+AE=AB+BC+CA ;○1回归往日精品,再现今日辉煌AF·AG=AD·AE○2③△AFB ~△ADG 其中正确结论的序号是(A )①② (B )②③ (C )①③ (D )①②③(6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D )60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) (C)10 (D) (8)设,,,.记为平行四边形()0,0A ()4,0B ()4,4C t +()(),4D t t R ∈()N t ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为()N t(A ) (B ) {}9,10,11{}9,10,12(C ) (D ) {}9,11,12{}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2011年考研数一真题及答案解析一、选择题1、 曲线()()()()4324321----=x x x x y 的拐点是( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)【答案】C 【考点分析】本题考查拐点的判断。
直接利用判断拐点的必要条件和第二充分条件即可。
【解析】由()()()()4324321----=x x x x y 可知1,2,3,4分别是()()()()23412340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''===(2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。
2、 设数列{}n a 单调减少,0lim =∞→n n a ,()∑===n k k n n a S 12,1 无界,则幂级数()11nn n a x ∞=-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2]【答案】C 【考点分析】本题考查幂级数的收敛域。
主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。
【解析】()∑===n k k n n a S 12,1 无界,说明幂级数()11nn n a x ∞=-∑的收敛半径1R ≤;{}n a 单调减少,0lim =∞→nn a ,说明级数()11nn n a ∞=-∑收敛,可知幂级数()11nn n a x ∞=-∑的收敛半径1R ≥。
因此,幂级数()11nn n a x ∞=-∑的收敛半径1R =,收敛区间为()0,2。
又由于0x =时幂级数收敛,2x =时幂级数发散。
1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。
121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。
证明:多项式在有理数域上不可约。
20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。
(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。
20,A B 五、(分)设是两个n 级正定矩阵。
证明:AB 是正定矩阵的充要条件是A 与B 可交换。
1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。
10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。
试证:向量不共面。
15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。
(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。
{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。
2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =−−−−的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=−∑的收敛域为( )(A) (1,1]−. (B) [1,1)−. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12PP . (B) 112P P −. (C) 21P P . (D) 121P P −.(6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x −'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ .(13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x−→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x −=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++−=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A −⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭.(I) 求A 的特征值与特征向量; (II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=−==,2222(2),2(2),2,y x y x y '''=−=−= 32333(3),3(3),6(3),y x y x y x '''=−=−=− 432444(4),4(4),12(4),y x y x y x '''=−=−=− (3)()y x P x ''=−,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=−∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=−∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂−''''==⋅=−=∂ 又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>.(4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP −=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P −==.因此,121A P P −=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =−=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413−=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D). 【解析】选项(D)1122()()()()f x F x f x F x dx +∞−∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞−∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞−∞⎡⎤=⎣⎦⎰12()()|F x F x +∞−∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1+.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x −=.【解析】由通解公式得(cos )dx dxx y e e x e dx C −−⎰⎰=⋅+⎰(cos )x e xdx C −=+⎰(sin )xe x C −=+.由于(0)0,y =故C =0.所以sin xy e x −=.(11)【答案】4. 【解析】2sin 1()F xy y x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +−=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdyydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅−+−+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=−−+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x−→+0ln(1)1lim[1].1x x x x e e →+−−=2ln(1)limx x xx e →+−=22201()2lim x x x o x x x e→−+−=22201()2lim x x o x x e→−+=12e −=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=−()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1x g x x x R x =−∈+,()()()222222211220111x x x x g x x x x +−⋅'=−=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=−=−,()lim lim arctan x x xf x k x→∞→∞=−=+∞, 所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −≥时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫−=+−=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++−=−∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫−=−+−−=+=−+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫−+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=−>+− ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏,()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=−>+−>+−> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=−⎢⎥⎣⎦⎰⎰ ()11''0(,1)(,)x x xdx f x f x y dy =−⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'(,)xI xdx f x y dy =−⎰⎰11'0(,)x dy xf x y dx =−⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰ Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭ 1002150104210001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭, 故112324βααα=+−,2122βαα=+,31235102βααα=+−.(21)(本题满分11分)【解析】(I)由于111100001111A −⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=−=,则()()1212,,A αααα=−,即1122,A A αααα=−=,而120,0αα≠≠,知A 的特征值为121,1λλ=−=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x −=⎧⎨+=⎩. 解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==−====. 令()123,,Q βββ=,则110TQ AQ −⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ22122001102201022⎛−⎛⎫⎪ ⎪−⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎪ ⎪− ⎪⎪⎝⎭ ⎪⎝⎭220012200000002210001022⎛−⎛⎫− ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=−==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==−=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====−==−−===;{}{}{}11,110,13P X Y P Y P X Y==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y====−===.即,X Y的概率分布为(II)Z的所有可能取值为1,0,1−.{}{}111,13P Z P X Y=−===−=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==−=−=−=.Z XY=的概率分布为(III)因为XY Cov XY E XY E X E Y ρ−⋅==其中()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=.所以()()()0−⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x nnnx i i i L f x eμμσσσσπσ=−−−−−==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=−=−−∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=−=−+∑2202211[()]2()nii x μσσ==−−∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==−∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==−∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=−,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑442244112{()[()]}(3)σσσ=−=−=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
北京大学数学学院期末试题2011-2012学年第一学期考试科目 高等代数I 考试时间 2012年1月3日姓 名 学 号一. (10分)已知n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111011001 , B =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡n 321332122211111 . 求矩阵X , 使得 A X = B .解: 对矩阵 [ A | B ] 作初等行变换⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1n 2101110022101101110001011110001n 3211111033211112221001111110001⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→100010000110010011100010111100012n 1001100011001001110001011110001故 X =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100110111 .二.(15分)设 A : X A X 是R 3上的线性变换, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200211011.(1) 求线性变换 A 像空间的维数和一组基;(2) 求矩阵A 的特征值与特征向量;(3) 判断矩阵A 能否对角化并说明理由.解: (1) 在标准基下, A 像空间就是矩阵A 的列空间, 它的一组基为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡220011,, 维数是2 .(2)A 的特征值为λ = 2 (代数二重), 0 .对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000100011000211011通解为x 1 = x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x x α1 = [ 1 1 0 ] T 构成λ = 2特征子空间的一组基.22)2λ(λ)λ2λ()2λ(1λ111λ)2λ(2λ0021λ1011λλ-=--=-----=------=-|A I |对λ = 0解齐次方程组 A X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000100011200211011通解为x 1 = - x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x xα1 = [ -1 1 0 ] T 构成λ = 0特征子空间的一组基.(3) 由于特征值 λ = 2特征子空间的维数1小于其代数重数2,A 不能否对角化.三.(35分)填空题 (多选) .1.已知3阶矩阵A 的特征值为 1, 1/2 , 0 , 相应的特征向量为[ 1 0 1 ] T , [ 0 1 0 ] T , [ 1 2 0 ] T , 则 2 A 3 – 3 A 2 = .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101121010100121010100002100010012101011// 2. 设A = . 当t 取 不等于1的值 时, 存在矩阵B ,使得 AB = I . 当t 取 1 时, 存在非零矩阵C , 使得 C A = 0 .3. 当 -4/5 < t < 0 时, 三元二次型x 2 + y 2 + 5 z 2 + 2 t x y – 2 x z + 4 y z 正定.4. 设α是n 维欧氏空间里的单位列向量 , 则 | I – 5 α αT | = - 4 . 注: 可计算行列式或利用 | I m –A B | = | I n –B A | .5. 在实数域上,以下诸矩阵的相抵分类是 {A,B,D},{C},⎥⎦⎤⎢⎣⎡+421211t t相似分类是 {A,D},{B},{C} , 合同分类是 {A},{B},{C},{D}.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000010212D 103010001C 010131010B 101010101A ,,,6. 以下说法正确的有 (a)(b)(c)(d) (多选).a) 如果两个实对称矩阵相似, 它们也一定合同;b) 实方阵都能写成P Q 的形式, 其中P 是实对称矩阵, Q 是正交矩阵 c) 每个矩阵都能写成P J 的形式, P 是可逆矩阵, J 是行简化阶梯矩阵 d) 实方阵都能写成Q R 的形式, Q 是正交矩阵, R 是上三角矩阵四.(12分)判断对错, 正确的请给出证明, 错误的举出反例.1) 在包含n (n>1)个向量的向量组中, 若任意n - 1 个向量都线性 无关, 则整个向量组也线性无关.解: 此命题错误. 例如, 考察向量组 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0201,, 其中由任意一个 向量构成的部分组都线性无关, 但整个向量组线性相关.2) 设A 是m ⨯ n 矩阵. 若存在矩阵B 与C, 使得 BA = I n , AC = I m , 则必有m = n , 且 B = C .解: 此命题正确. 由矩阵乘法的结合律, 有C = ( BA ) C = B ( AC ) = B , 于是 m = n.五.(20分)设 f = 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 是三元二次型.(1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量;(2) 求正交矩阵P 及对角矩阵D, 使得A = P D P T ;(3) 求二次齐次函数 f ( x 1 , x 2 , x 3 ) 在单位球面 x 12 + x 22 + x 32 = 1上的最大、最小值, 并确定在何处取到.解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==321321T AX X f x x x x x x 011101110A 的特征值为λ = - 1 (代数二重), 2 .对λ = - 1解齐次方程组 ( A + I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000111111111111通解为x 1 = - x 2 - x 3 , x 2 、x 3为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011323232321x x x x x x x x xα1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 构成λ = -1特征子空间的一组基. 对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000110101000112121211121112通解为 x 1 = x 3 , x 2 = x 3 , x 3为自由变量. 向量形式:)2λ()1λ()2λλ()1λ(1λ0011λ112λ1λλ101λ111λλ111λ111λλ22-+=--+=+-----=+------=------=-|A I |⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1113333321x x x x x x x 于是α3 = [ 1 1 1 ] T 构成λ = 2特征子空间的一组基.(2) 将α1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 正交化:令β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=2112101121101β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21161β||β||1γ,01121β||β||1γ222111 将α3 = [ 1 1 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11131γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] 为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==T 3T 2T 1321γγγ211]γγγ[T P D P A (3) 做正交替换X = P Y ,f = X T A X = Y T P T A P Y = Y T D Y = - y 12 - y 22 + 2 y 32 . 由于P 正交, x 12 + x 22 + x 32 = 1 当且仅当 y 12 + y 22 + y 32 = 1.当 y 12 + y 22 + y 32 = 1时,f = - y 12 - y 22 + 2 y 32 ≤ 2( y 12 + y 22 + y 32 ) = 2,等号成立当且仅当 y 3 = ±1, y 1 = y 2= 0, 即X 取λ = 2特征子空间中的单位向量 ± γ3时成立.类似地, 当 y 12 + y 22 + y 32 = 1时,f = - y 12 - y 22 + 2 y 32 ≥ - ( y 12 + y 22 + y 32 ) = -1,等号成立当且仅当X 取λ = -1特征子空间中的单位向量时成立.六.(8分)设 A 是一个n 阶正定矩阵, 其 ( i , j ) 元记为a i j .证明: a 11 a 22 . . . a nn ≥ | A | .证法1. 对 n 应用数学归纳法.当 n = 1 时, A = a 11 = | A | , 命题成立.以下设命题对n -1成立, 考察A 是n 阶矩阵的情况.记A =⎥⎦⎤⎢⎣⎡-nn αT αα1n A , 其中A n-1是n - 1阶正定矩阵, α是 n - 1 维列向量. 对 A 做成对的行,列分块运算, 得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-----αααααα1-1-n 1n 1-1-n 1n 1n 1-1-n 1n A 00A 1A 0I A 1A 0I T T T T nn T nn αα 于是 | A | = | A n-1 | ( a nn - αT A n-1-1 α ) .由归纳假设, | A n-1 | ≤ a 11 a 22 . . . a n-1n-1 . 又由A n-1 正定知A n-1 的特征值都 > 0, 于是实对称矩阵A n-1-1的特征值也都大于0, 故A n-1-1 也正定. 特别地, 有αT A n-1-1 α ≥ 0 .综上所述, | A | = | A n-1 | ( a nn - αT A n-1-1 α )≤ a 11 a 22 . . . a n-1n-1 a nn .故命题对所有n ≥成立.证法2. 利用Cholesky 分解: 每个正定矩阵A都可写成A = L T L,其中L是对角元都> 0的实上三角矩阵.设L 的( i , j ) 元为b i j , 则有a j j = b1 j2+ b2 j2 + … +b j j2 ≥b j j2 .故 a 11 a22 . . . a nn ≥b112 b222. . . b nn2 = | L T L | =| A |.。
高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
2011北京大学高等代数与解析几何考研题
1.判断是非,并陈述理由(40分,每题各4分)
(1)A 是一个秩为5的矩阵,A 的3、4行线性无关,1、3列也线性无关,那么A 的行列式的一个2阶子式A(3,4;1,3)不等于0
(2)Ax=0的解唯一,则Ax=b 的解也唯一
(3)
(4)非零线性变换A,在某组基上的矩阵的对角线上元素均不为0,则A 必有非0特征根
(5)线性变换σ及其共轭转置*σ,证明ker *σσ=ker σ
(6)
(7)13阶线性空间必有10阶不变子空间.
(8)对任意的n,存在多项式p(x)在有理数域上不可约.
(9)对角线上元素均不相等的上三角矩阵必可对角化
(10)A 是域F 上的矩阵,且A 可逆,则必存在F 中的数011,,,n a a a -,使得1210121
n n A a I a A a A a A ---=++++ 2.给出4阶矩阵A = 110
0010200120
001⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭ (1)求矩阵的最小多项式.
(2)求15A
(3)求A 的Jordan 标准型 (4)定义 []1,n i i i i Q A a A a Q =⎧⎫=∈⎨⎬⎩⎭
∑,求这个线性空间的维数。
3.二次型()222
123123122331,,444f x x x x x x x x x x x x =+++++ (1)求()123,,T
f x x x X AX =的矩阵A,特征值,特征向量 (2)A=CDC'要求求C 为正交矩阵D 为对角矩阵,求C 、D 。
(3)在单位球2221231x x x ++=上求二次型()123,,f x x x 的最大最小值
4.同构空间的维数:
设域F 上线性空间W,U,V.他们分别是r,s,t 维的. σ为W 到U 上的线性映射,f 属于Hom(W,U) 证明(1)dimHom(W,U)=rs
(2)设*
σ为Hom(W,U)到Hom(W,V)上线性映射.则存在单射σ,使 ()()*f w fw σσ=, 其中w W ∈。