医学遗传学与检验
- 格式:doc
- 大小:61.50 KB
- 文档页数:4
遗传性疾病检验技术—标本采集技术对遗传性疾病的诊断常常需要通过检验患者的遗传物质变异,来确定疾病的病因。
常用的检验技术包括染色体或染色质检查、DNA及RNA变异的检验等。
因此,采集的标本往往是含有遗传物质的组织细胞。
在通常情况下,外周血标本即可满足多种检验需要。
此外,在产前诊断中常需要对胎儿的组织进行取材,如胎儿绒毛细胞、羊水中胎儿脱落的细胞、脐带血等。
胸腹水中的脱落细胞、骨髓细胞常是肿瘤或白血病患者诊断中采用的标本。
一、一般采集技术(一)外周血标本采集1.常规消毒受检者取坐位,取前臂水平伸直置于枕垫上,在肘部选择前静脉,幼儿可选颈外静脉或股静脉采血。
在穿刺点上方约6cm处系紧压脉带,嘱受检者握紧拳,使静脉充盈显露。
用75%酒精棉签从内向外擦拭消毒皮肤2~3次(勿用碘酒)。
2.采血75%酒精消毒含肝素溶液的瓶盖,在酒精灯下用无菌的5ml注射器吸取肝素液湿润内壁至3ml刻度处,然后将多余肝素推弃,抽静脉血3~5ml,盖上无菌盖,转动注射器,防止血液凝固,标本送实验室。
(二)羊水细胞标本采集1.适应证(1)孕妇年龄大于或等于35岁。
(2)孕妇有曾生育过染色体异常患儿史。
(3)夫妇一方有染色体结构异常者。
(4)孕妇曾生育过单基因病患儿或遗传性代谢病患儿史。
(5)产前筛查具有高风险的孕妇。
(6)其他需要抽取羊水标本检查的情形。
2.禁忌证(1)先兆流产。
(2)术前2次测量体温(腋温)高于37.2℃。
(3)有出血倾向(血小板≤70×109/L,凝血功能检查有异常)。
(4)有盆腔或宫腔感染征象。
(5)非医学需要的胎儿性别鉴定。
3.术前准备(1)穿刺前认真核对适应证、妊娠周数、子宫大小、有无穿刺禁忌证。
(2)孕妇签署知情同意书。
(3)术前查血常规,血型和Rh因子,白细胞及血小板计数正常者方可手术,如Rh(-),查间接Coombs试验,告知胎母输血的风险,建议准备抗D球蛋白。
(4)术前检查HIV抗体、HBsAg、抗梅毒抗体。
1. 什么是医学遗传学?医学遗传学(Medical genetics)就是用人类遗传学的理论和方法来研究遗传病从亲代传至子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(包括诊断、治疗和预防)的一门综合性学科。
2.什么是遗传病?包括哪些类型?有何特点?☆一般把遗传因素作为唯一或主要病因的疾病称为遗传病(Genetic disorders)。
遗传物质改变而引起的疾病称为遗传病。
类型:①单基因病单基因突变所致AD、AR、XR、XD、YL②多基因病有一定家族史、但没有单基因性状遗传中所见到的系谱特征的一类疾病,环境因素在这类疾病的发生中起不同程度的作用。
③染色体病染色体结构或数目异常引起的一类疾病④体细胞遗传病其累积病变只在特异的体细胞中发生,体细胞基因突变是此类疾病发生的基础。
⑤线粒体遗传病特点:①传播方式:一般以“垂直方式”出现,不延伸至无亲缘关系的个体。
②数量分布:患者与正常成员之间有一定的数量关系。
③先天性:先天性即生来就有的特性。
④家族性:疾病的发生所具有的家族聚集性,但不是所有的家族性疾病都是遗传病,如夜盲症。
⑤传染性:人类朊粒蛋白病是一种既遗传又传染的疾病。
3.理解遗传病与先天性疾病及家族性疾病的关系。
(1)遗传病往往具有先天性特点(白化病),但并非所有的遗传病都是先天的(亨廷顿舞蹈症);反过来,有些先天性疾病是遗传的(白化病),但有些是获得性的(妇女妊娠时感染风疹病毒,致使婴儿患有先天性心脏病)。
(2)疾病的发生往往具有的家族聚集性(亨廷顿舞蹈症),但并非所有的遗传病都表现为家族性(白化病);反过来,不是所有的家族性疾病都是遗传病,如夜盲症。
4.基因(gene):基因是具有特定遗传效应的DNA片段,它决定细胞内RNA和蛋白质(包括酶分子)等的合成,从而决定生物的遗传性状。
5.基因组(genome): 细胞或生物体内一套完整的单倍体遗传物质的总和,称为基因组。
6.基因家族(gene family): 来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。
医学检验技术专业知识
医学检验技术是一门涉及多学科领域的专业,主要研究疾病诊断、预防和治疗过程中所需的各种实验室检查技术。
医学检验技术专业知识主要包括以下几个方面:
1. 基础理论知识
包括生物化学、分子生物学、细胞生物学、免疫学、医学遗传学等,为后续专业课程奠定理论基础。
2. 临床生理与病理知识
了解人体各系统的生理功能及其异常情况,为疾病诊断提供依据。
3. 检验技术知识
包括血液学、生化学、免疫学、微生物学、分子生物学等检验技术理论与操作。
4. 仪器分析知识
掌握常用医学检验仪器的工作原理、操作规程及质量控制。
5. 标本采集和处理知识
标本采集、运送、保存、处理等规范操作流程。
6. 质量控制和实验室管理
建立质量控制体系,实现实验室标准化管理。
7. 医学伦理与法律法规
遵守医学职业道德,了解相关法律法规。
8. 临床思维与病例分析
运用检验结果进行病情评估,为临床诊疗提供依据。
医学检验技术专业知识贯穿了疾病诊断、治疗的全过程,是临床医学不可或缺的重要组成部分,对于维护人民健康、医疗质量控制等具有重要意义。
1960年Nowell 和Hungerford发现了慢性粒细胞白血病特异性染色体异常,即Ph染色体,从此推动了细胞遗传学在肿瘤细胞学上的广泛应用,促进了血液肿瘤分子生物学的发展。
血细胞染色体检验主要包括染色体非显带技术、染色体显带技术、染色体高分辨技术、姐妹染色单体互换技术、染色体脆性部位显示技术、早熟凝集染色体技术、染色体原位杂交技术(FISH)。
【临床意义】细胞染色体检验是恶性血液病研究不可缺少的方法。
染色体异常,特别是染色体易位,常涉及癌基因易位,新产生的融合基因及其产物在肿瘤的发生、发展中起着重要的生物学作用。
特异染色体异常同肿瘤细胞的形态学、肿瘤的预后及疗效判断等有密切的联系,临床上已用于疾病的诊断、分型、治疗方案的选择,在预后判断和微小残留病灶的检测等方面,发挥着重要作用。
1、在白血病诊断和分型中的应用常规显带技术可在50%~80%急性髓细胞白血病(AML)中发现克隆性染色体异常。
如t(8;21)(q22;q22) 异常绝大多数见于AML-M2型。
t(15;17)(q22;q12) 目前仅见于AML-M3型,可作为M3诊断的标准。
2、在白血病预后判断、指导治疗中的作用 AML中具有t(15;17),inv(16),t(8;21)异常的患者对治疗反应良好,缓解期较长,而具有-5、-7、+8及t(9;22)的AML患者则预后较差。
3、鉴别白血病微小残留病灶在微小残留病灶的检测中,FISH技术的灵敏性要远远超过常规技术,通过设计多种探针直接对中期和间期染色体进行检测,可发现各种染色体数目异常或结构异常,达到在103个细胞中检出一个异常细胞的水平。
当临床及形态学还没有复发的证据时,检测到原已消失的克隆性染色体异常和/或新的克隆性染色体异常时,往往预4、在骨髓增生异常综合征(MDS)中的应用染色体异常见于40%~80%的MDS,常表现为染色体的丢失、部分缺失,亦可见染色体增加和结构异常如-7、-17、-Y、5q-、7q-以及+8、+11和t(3;3)(q21;q26)、t(5;17)(q32;q12)等。
医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。
2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。
3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。
包括单基因病、多基因病、染色体病、体细胞遗传病。
三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。
常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。
遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。
3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。
遗传病相关个体化医学检测技术指南(试行)目录1. 本指南适用范围 (2)2. 标准术语 (2)3. 遗传病检测概述.......................................................................................................5 3.1 遗传病的分类及分子基础 (5)3.2 遗传病诊断技术发展概况 (6)4. 遗传病分子检测前质量控制...................................................................................7 4.1 遗传咨询 (7)4.2 知情同意 (9)4.3 样本采集 (10)4.4 样本运输、提取与保存 (12)4.5 样本的质量控制 (14)4.6 样本信息采集与录入 (15)5. 遗传病的细胞、分子诊断技术及质量控制.........................................................15 5.1 染色体核型分析技术.......................................................................................165.2 FISH 技术 (17)5.3 实时荧光PCR 及相关技术 (19)5.4 MLPA 相关技术 (25)5.5 基因芯片技术 (27)5.6 Sanger 测序技术................................................................................................285.7 焦磷酸测序技术 (30)5.8 高通量测序技术 (33)5.9 时间飞行质谱生物芯片系统(Sequenom MassARRAY) (35)6. 常见遗传病及诊断方法选择.................................................................................37 6.1 染色体病...........................................................................................................376.2 核基因病 (39)6.3 线粒体病 (43)7. 遗传病诊断结果的报告和解释.............................................................................47 7.1 总体原则...........................................................................................................477.2 细胞遗传学实验的检测报告 (47)7.3 分子遗传学实验的检测报告 (48)8. 遗传病检测实验室设计要求.................................................................................50 8.1 细胞遗传学检测实验室的设计.......................................................................508.2 分子遗传学检测实验室的设计 (51)8.3 对检测实验室人员及设备的要求 (51)9. 遗传病个体化医学检测的质量保证.....................................................................53 9.1 标准操作程序(Standard Operation Procedure,SOP) (53)9.2 质控品和室内质量控制 (54)9.3 室间质量评价 (55)10. 常见遗传病分子诊断示例................................................................................56 10.1 Duchenne 肌营养不良(DMD/BMD)基因诊断指南 (56)10.2 地中海贫血基因诊断指南 (63)11. 附录 A 产前诊断相关知情同意书................................................................7112. 附录 B 基因检测知情同意书........................................................................7413. 附录 C 不同诊断方法的优缺点....................................................................771前言遗传病是指由于基因突变或染色体数目或结构变异导致的疾病。
细胞遗传学检查一、概述细胞遗传学检查是指通过对人体细胞进行染色体分析,以确定染色体的数量、结构和功能是否正常,从而诊断遗传性疾病或评估生殖健康状况的一种检查方法。
细胞遗传学检查主要包括染色体核型分析、FISH技术、CGH阵列比较基因组杂交技术等。
二、染色体核型分析1. 检测对象染色体核型分析适用于出现先天畸形、智力低下、性腺发育异常等情况的人群,以及不孕不育患者等。
2. 检测方法(1)外周血淋巴细胞培养法:将受检者的外周血淋巴细胞培养后进行标本制备和染色,通过显微镜观察染色体形态和数量。
(2)羊水或脐带血培养法:对于孕妇和新生儿,可以采用羊水或脐带血进行培养和检测。
(3)组织培养法:对于出现肿瘤或其他组织异常的患者,可以采用组织培养法进行染色体核型分析。
3. 检测结果染色体核型分析的结果主要包括染色体数量、结构和功能等方面的信息。
正常人的染色体核型为46,XX或46,XY,其中XX为女性,XY为男性。
如果出现染色体数量异常(如21三体综合征)、结构异常(如易位、倒位等)或功能异常(如X染色体失活等),则可能会导致遗传性疾病的发生。
三、FISH技术1. 检测对象FISH技术适用于需要检测特定基因或染色体区域的人群,如癌症患者、先天畸形患者等。
2. 检测方法FISH技术是一种基于荧光探针原理的检测方法,通过特异性标记DNA序列并与待检测标本进行杂交反应,从而观察目标DNA序列在细胞核内的位置和数量。
3. 检测结果FISH技术可以检测到特定基因或染色体区域是否存在缺失、重复、易位等异常情况,并且可以提供更加精准的遗传风险评估。
四、CGH阵列比较基因组杂交技术1. 检测对象CGH阵列比较基因组杂交技术适用于需要全基因组范围内检测DNA拷贝数变化的人群,如自闭症患者、智力低下患者等。
2. 检测方法CGH阵列比较基因组杂交技术是一种高通量的检测方法,通过将待检测标本DNA与参考DNA进行杂交反应,并在芯片上进行信号检测和数据分析,从而确定DNA拷贝数变化情况。
1.名词解释:遗传病:由于遗传物质改变而引起的疾病称为遗传病。
单基因遗传病:由于一对同源染色体上的单个基因话一对等位基因发生突变所引起的疾病。
染色体病:先天性的染色体数目或结构上的改变所引起的具有一系列临川症状的疾病。
体细胞遗传病:体细胞中遗传物质改变所引起的疾病。
多基因家族:基因组中由一个祖先基因进过重复和变异所形成的一组来源相同,结构相似,功能相关的基因。
拟基因:与某些功能基因结构相似但却不能产生相应功能的基因产物的基因。
顺式作用元件:基因启动子中有一些保守序列能与转录因子特异性结合,调节基因转录,这些元件称为顺式作用元件。
复制子:真核细胞的DNA复制有许多复制起始点,一个复制起始点所进行复制的DNA区段为复制单位,称为复制子。
细胞周期:细胞从上一次有丝分裂借宿到下一次有丝分裂王城的全过程,包括细胞间期和分裂期。
易位:两条染色体同时发生断裂,其染色体片段结合到另一条染色体上。
倒位:一条染色体上发生两次断裂后,两个断裂点之间的片段旋转180°重接。
分臂内倒位和臂见倒位。
插入:一条染色体的短片转移到另一条染色体的中间部位。
重复:一条染色体片段在同一条染色体上出现两次或两次以上。
衍生染色体:相互易位的染色体在减数分裂中,进过同源染色体间的配对,减缓和分离,不再长生心的结构重组的染色体,这类染色体称为衍生染色体。
重组染色体:倒位或插入的染色体在减数分裂中,由于在移位片段和正常位置的相应片段发生了交换,从而产生了新的片段组成的染色体,为继发性重排的产物。
嵌合体:一个体内同时含有两种或两种以上的不同和兴的细胞系。
系谱图:从先证者入手,追溯调查所有家族成员的数目,亲属关系及某种遗传病的分布资料绘制而成的图解。
表现度:基因在个体中得表现程度,或者说具有统一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现得程度可能有显著差异。
外显率:是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的百分率。
名词解释医学遗传学
医学遗传学是研究遗传因素对人类健康和疾病产生影响的学科。
它涉及到遗传学、生物学、医学、统计学等多个学科的交叉。
医学遗传学的主要研究对象是人类遗传变异的原因和机制,以及这些变异对健康和疾病的影响。
医学遗传学包括两个主要方面:遗传性疾病和复杂性疾病。
遗传性疾病是由单一遗传基因突变引起的疾病,这些突变可以是在单个基因上发生的点突变、插入/缺失或重组突变,也可以是整个基因缺失或基因重组的结果。
遗传性疾病的症状和表现会遵循特定的遗传模式,例如常见的自显性遗传病、隐性遗传病、X连锁遗传病等。
通过遗传咨询、基因检测等手段,可以帮助家庭成员了解疾病的发生机制,进行遗传风险评估和预防。
复杂性疾病是由多个遗传和非遗传因素共同作用引起的疾病,例如糖尿病、心脏病、癌症等。
这些疾病的遗传风险是由多个基因和环境因素的相互作用所决定的,因此研究复杂性疾病需要综合运用基因组学、转录组学、表观遗传学等高通量技术和大数据分析。
医学遗传学的应用广泛,包括个体化医疗、遗传诊断、药物研发、新生儿筛查、家族遗传咨询等。
同时,医学遗传学也面临着伦理、法律
和社会等多方面的挑战。
因此,开展医学遗传学研究需要遵循伦理规范和法律法规,保护个体隐私和尊严,确保研究成果的公正和可靠。
医学遗传学(Medical Genetics)教学大纲教学目的与要求:课程性质:临床医学专业、基础医学专业的专业课。
基本目的:医学遗传学通过理论和实验教学,结合临床医学,介绍疾病的发生、发展过程中遗传或基因在其中所起的作用,以及疾病发生的遗传机制;遗传或基因作为分子医学的基础为现代医学(健康保健和疾病预防、诊断与治疗)所提供的新观念与新思路;重要疾病在遗传学角度的新进展;临床医学中有关的遗传学技术。
基本要求:掌握医学遗传学的基本原理和疾病的遗传遗传机制,了解遗传医学新进展;掌握医学遗传学的基本实验方法。
教学方式:理论课与实验课结合。
教学手段:多媒体教学,实验教学,实践教学参考教材:1.张咸宁等主编《医学遗传学》北京大学医学出版社2009年(中英文双语教材)2.Leland Hartwell, Leroy Hood, Michael Goldberg, etc. 主编《Genetics :From Genes to Genomes 4th》教学内容安排:第1章绪论教学要求1.掌握医学遗传学、遗传病、再发风险等基本概念。
2.掌握遗传因素对疾病发生的作用类型,遗传病的特点和分类。
3.熟悉遗传病的研究策略。
4.熟悉医学遗传学的分支学科。
5.了解医学遗传学的发展历史。
第2章人类基因教学要求1.掌握基因、断裂基因、基因组、密码子与反密码子等概念,基因的化学本质,DNA分子结构及其特征,基因的分类,基因组组成,基因复制,基因表达,RNA编辑及其意义,人类基因组计划,结构基因组学及其研究内容,后基因组计划及其研究内容;2.熟悉基因概念的演变,断裂基因的结构特点,遗传密码的通用性与兼并性,基因表达的控制;3.了解人类基因组计划已取得的成就。
注:本章教学时数与内容可根据学生学习的“细胞生物学”的教学内容作适当删减第3章基因突变教学要求1.掌握基因突变的特性,基因突变的类型和分子机制;2.熟悉诱发基因突变的因素和基因突变的修复机制;3.了解动态突变疾病的临床及遗传学特征。
三种检验方法的原理及应用1. 简介检验方法在各个领域中都起到至关重要的作用。
它们帮助我们验证和确认实验结果的准确性,并为产品的质量和安全性提供保证。
本文将介绍三种常见的检验方法,包括统计检验、非破坏性检验和遗传性检验,探讨它们的原理和应用。
2. 统计检验统计检验是一种用统计学方法进行推理和判断的检验方法。
它基于对样本数据进行分析来推断总体参数,并评估样本与总体之间的差异。
统计检验的主要原理是假设检验,即根据样本数据对总体参数的假设进行判断。
统计检验应用广泛,常见的包括: - 方差分析(Analysis of Variance, ANOVA):用于比较两个或多个样本均值是否存在显著差异。
- t检验(t-test):用于比较两个样本均值是否存在显著差异。
- 卡方检验(chi-square test):用于检验观察值和期望值之间的差异是否显著。
统计检验可以在医学、社会科学、市场调研和制造业等领域得到应用。
它能够根据样本数据和统计学原理,辅助决策、验证假设、预测结果。
3. 非破坏性检验非破坏性检验是一种不破坏被检测物体的方法,通过检测和分析材料的物理性能和特征来评估其质量和完整性。
非破坏性检验能够在不损坏被检测物体的情况下获取其内部信息。
非破坏性检验有多种方法,包括: - 超声波检测:利用超声波在材料中传播和反射的特性,评估材料的内部缺陷和结构。
- 射线检测:使用X射线或伽马射线穿透被检测物体,检测缺陷和材料内部结构。
- 磁粉检测:利用磁粉在磁场中的磁化特性,检测磁性材料中的缺陷。
- 热成像检测:利用红外热像仪检测物体表面的热分布,评估其热特性和缺陷。
非破坏性检验在航空航天、电力设备、建筑结构和核工业等领域具有重要应用。
它能够帮助工程师和技术人员评估材料的质量、安全性和可靠性。
4. 遗传性检验遗传性检验是一种用于检测个体遗传信息的方法,主要应用于遗传疾病的筛查、基因突变的分析和亲子鉴定等。
遗传性检验可以通过分析DNA、RNA和蛋白质等生物分子,揭示个体的遗传特征和遗传疾病的风险。
浅谈医学遗传学教学的体会
近年来,随着社会发展的不断推进,人们对于生物领域的关注度有所增加,医学专业的发展也日益蓬勃。
医学遗传学作为生物学的分支学科,其重要性也是不可忽视的。
因此,医学遗传学的教学也越来越受到关注。
笔者以自身经历来总结一下医学遗传学教学的体会。
首先,作为一名医学遗传学教学者,我最大的收获就是能够深入理解遗传学的各种原理与机制,以及学习相关的遗传学理论。
通过对这些理论的学习,我更深入地了解了遗传学的原理,拓宽了自己的知识面,从而更好地把握遗传学的各种思维体系,有助于更好的完成教学任务。
其次,我认为,作为一名医学遗传学教学者,应该在讲授遗传学时能够充分把握机会,注重学生的认知,在教学的过程中,充分调动学生的学习积极性,运用图文并茂的方式,使学生更好地理解遗传学的教学内容,拓宽学生的视野,用生动形象的例子让学生更深入地理解遗传学。
此外,作为一名医学遗传学教学者,我认为,还应该重视教学实践。
学生在学习医学遗传学的过程中,可以运用实验的方式,深入地了解遗传学的特点、机制与原理,以及如何从遗传学的角度观察和理解生物现象,同时运用实验来检验遗传学理论。
最后,作为一名医学遗传学教学者,我认为,还应该充分利用新技术,将遗传学教学内容与新技术相结合,更好地促进学习效果,结合当今社会发展状况,增加对遗传学理论的认知,让遗传学不再是一
种不可接受的神秘内容,而是充满科学性、趣味性的一门学科,以此提高学生的学习热情。
综上所述,医学遗传学教学的意义重大,无论是在讲授遗传学理论,还是实验实践都有其重要性,希望能够积极努力,做好教学任务,不断提高自己的教学水平,为推动学生全面发展,贡献自我的力量。
遗传病gene c disease :发生需要有一定的遗传基础,通过这种遗传基础、并按一定的方式传于后代发育形成的疾病传于后代发育形成的疾病医学遗传学medical gene cs :应用遗传学的理论与方法研究遗传因素在疾病的发生、流行、诊断、预防、治疗和遗传咨询等中的作用机制及其规律的遗传学分支学科诊断、预防、治疗和遗传咨询等中的作用机制及其规律的遗传学分支学科再发风险率recurrence risk :病人所患的遗传性疾病在家系亲属中再发生的风险率基因gene :编码蛋白质或RNA 等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA 序列序列割裂基因split gene :真核生物的结构基因由编码序列与非编码序列两者间隔排列组成城断裂状,称割裂基因裂状,称割裂基因基因组genome :单倍体细胞核、细胞器或病毒粒子所含的全部DNA 分子或RNA 分子分子 假基因pseudogene :一种畸变基因,核苷酸序列与有功能的正常基因有很大的同源性,但由于突变、缺失或插入以至不能表达,因而没有功能的基因由于突变、缺失或插入以至不能表达,因而没有功能的基因基因家族gene family :从已克隆的基因来看,它们并不都是单拷贝,有的是重复的多拷贝,这一部分基因属于两个或多个相似基因的家族,称为基因家族这一部分基因属于两个或多个相似基因的家族,称为基因家族基因突变gene muta on :基因在结构上发生碱基对组成或排列顺序的改变称为基因突变基因在结构上发生碱基对组成或排列顺序的改变称为基因突变 诱变剂mutagen :凡是能够诱发基因突变的各种内外环境因素,均被称之为诱变剂凡是能够诱发基因突变的各种内外环境因素,均被称之为诱变剂静态突变sta c muta on :生物世代中基因突变的发生,总是以相对稳定的一定频率发生,并且能够使得这些突变随着世代的繁衍、交替而得以传递并且能够使得这些突变随着世代的繁衍、交替而得以传递动态突变dynamic muta on :又称不稳定三核苷酸重复序列突变。
遗传学就业方向遗传学是生物学的一个重要分支,研究基因的遗传规律和遗传变异,对于人类的健康、农业生产、环境保护等方面都有着重要的意义。
随着科技的不断发展,遗传学的应用领域也越来越广泛,遗传学专业的毕业生也有着丰富的就业方向。
医学遗传学方向医学遗传学是遗传学的一个重要分支,主要研究人类遗传病的发生机制、诊断和治疗方法。
医学遗传学方向的毕业生可以在医院、疾控中心、基因检测公司等单位从事遗传病的诊断、咨询和研究工作。
此外,随着基因治疗技术的不断发展,医学遗传学方向的毕业生还可以从事基因治疗相关的研究和开发工作。
农业遗传学方向农业遗传学是研究农作物、家畜、家禽等生物的遗传规律和遗传变异的学科。
农业遗传学方向的毕业生可以在农业科研院所、种子公司、养殖企业等单位从事农作物、家畜、家禽等生物的遗传改良、新品种选育、疾病抗性研究等工作。
此外,随着基因编辑技术的不断发展,农业遗传学方向的毕业生还可以从事基因编辑相关的研究和开发工作。
环境遗传学方向环境遗传学是研究环境因素对生物遗传变异的影响和作用的学科。
环境遗传学方向的毕业生可以在环境监测机构、环境保护企业、生态保护机构等单位从事环境污染对生物遗传变异的研究和评估工作。
此外,随着环境修复技术的不断发展,环境遗传学方向的毕业生还可以从事环境修复相关的研究和开发工作。
基因检测方向基因检测是通过检测个体基因组中的遗传变异来预测个体患病风险、制定个性化治疗方案等的技术。
基因检测方向的毕业生可以在基因检测公司、医院、疾控中心等单位从事基因检测、基因咨询等工作。
此外,随着基因检测技术的不断发展,基因检测方向的毕业生还可以从事基因检测相关的研究和开发工作。
总之,遗传学专业的毕业生有着广泛的就业方向,可以在医学、农业、环境、基因检测等领域从事研究、开发、咨询等工作。
随着科技的不断发展,遗传学的应用领域也将越来越广泛,遗传学专业的毕业生也将有更多的就业机会。
01医学遗传学概述Chapter定义与发展历程定义发展历程研究对象及内容研究对象研究内容与医学的关系与生物学的关系与社会学的关系030201与其他学科关系02遗传物质基础ChapterDNA结构与功能DNA双螺旋结构DNA碱基组成DNA功能基因概念及类型基因类型基因定义包括结构基因、调节基因、操纵基因等,分别控制不同性状的表达。
基因与性状关系基因组与人类基因组计划基因组定义一个生物体所有基因的总和,包括核基因组、线粒体基因组和病毒基因组等。
人类基因组计划旨在测定人类基因组的全部DNA序列,解读其中包含的遗传信息,为医学、生物学等领域的研究提供基础数据。
基因组学研究内容包括基因组的结构、功能、进化以及基因与疾病关系等方面的研究。
03遗传信息传递与表达ChapterDNA复制的定义和意义DNA复制是指DNA双链在细胞分裂间期阶段进行以一个初始DNA分子产生两个相同的DNA复制品的生物过程。
DNA复制是生物遗传的基础,能够保证亲子代之间遗传信息的连续性。
DNA复制的过程DNA复制主要包括起始、延伸和终止三个阶段。
起始阶段需要特定的蛋白质和酶识别并结合到DNA的复制起点上,形成复制叉。
延伸阶段则以复制叉为起点,在DNA聚合酶的作用下,按照碱基互补配对原则合成新的DNA链。
终止阶段则涉及到复制叉的解体以及DNA连接酶对新合成DNA链的封口。
DNA复制的特点DNA复制具有半保留复制、半不连续复制以及高度忠实性等特点。
半保留复制是指新合成的DNA分子中,一条链是旧的,另一条链是新的,保留了亲代DNA的一条母链。
半不连续复制则是指DNA复制时,前导链连续合成,而后随链则是不连续合成的。
高度忠实性则保证了DNA复制过程中极少出现错误,保证了遗传信息的稳定性。
DNA复制过程及特点转录过程及调控机制翻译过程及蛋白质合成04基因突变与遗传病Chapter01020304包括错义突变、无义突变和同义突变,影响蛋白质的结构和功能。
一、亲子鉴定我室采用PCR -STR分型技术,必须检测的STR 基因位点有16个,从以下18个位点中选:vWF40、D1S80、D19S400、DYS390、D18S51、D22S683、D21S11、FGA、TH01、SE33、D8S1179、Amelogenin、D2S1338、CSF1PO、D13S317、D16S539、D3S1358、D5S818、TPOX。
其基本方法是:先通过单纯PCR或复合PCR 扩增STR片段, 然后用不同的电泳方法分离等位基因片段, 最后经银染, 溴化乙锭染色或荧光标记法检测STR分型结果, 对照等位基因分型标准物判断基因型。
再应用统计学方法计算父权指数(PI)、联合父权指数(CPI)以及相对父权机会(RCP)。
RCP≥99.73%为最低的“认定”具有事实上的血缘关系的最低标准。
参照国际标准对可疑父亲的父权作出相应的评估和结论。
以国际上通用的亲子关系概率即相对父权机会(relative chance of paternity,RCP)≥99.73%作为最低的“认定”具有事实上的血缘关系的最低标准。
分以下几种情况考虑:1. RCP低于99.73%时,应增加遗传基因座的检验数目,以提高亲子关系概率。
2. 当仅有1个或2个基因座不符合遗传规律时,应增加其他系统(如其他常染色体、Y染色体及线粒体等遗传标记),若未发现不符合遗传规律的系统,且其RCP值大于99.99﹪,则可视为突变。
3. 检测系统中若有3个或3个以上的STR位点违反孟德尔遗传规律,则可以否定具有亲生关系。
4. 对于单亲的亲子鉴定,由于双亲缺少一方检查,为了避免父母具有某一等位基因而造成的差错,只作“不排除的结论”。
二、性别畸形的SRY基因的检测基本原理:位于染色体Yp11.3的睾丸决定基因(SRY)缺失使46,XY核型的个体发育成女性;由于易位而使具46,XX核型的个体有睾丸,具男性特征。
该基因长3.8kb,mRNA长1.1kb。
诊断方法:应用PCR扩增SRY基因进行缺失检测或性别诊断。
三、苯丙酮尿症(经典型)苯丙酮尿症是一种常染色体隐性遗传病,98~99%是由于肝脏细胞中苯丙氨酸羟化酶(PAH)基因突变,致使PAH缺陷或活性减少, 导致苯丙氨酸异常增高,从而表现出一系列相应的临床症状。
苯丙酮尿症在我国的发病率约为1/11188,北方地区的发病率高于南方地区,男女发病率无明显差异。
致病基因携带率为1/50~1/60。
人类的PAH基因位于12q24.1,长度约90kb,含13个外显子,全长2.3kb,其阅读框架为1353bp,共编码451个氨基酸。
PAH基因突变具有以下特点:(1)突变位置多变:所有外显子、内含子、5′UTR和3′UTR区均发现突变,突变不能单从CpG位点解释。
(2)突变类型多样:有错义突变(61.85%)、小缺失(13.25%)、剪接位点突变(10.44%)、沉默突变(6.02%)、无义突变(5.22%)、小插入(1.61%),大片段插入罕见(<1%)。
(3)突变呈现明显的异质性:不同种族和地区人群之间苯丙氨酸羟化酶基因座突变部位及分布具有较大差异。
目前已发现PAH基因突变498种, 其中约80%为点突变。
这些突变集中分布在几个外显子,其中以7号及6号外显子为最多,分别占全部突变的16.47%和13.86%。
最常见的是7号外显子R408W,占全部突变的9.23%。
中国目前已确定的突变将近30种。
基因诊断方法及诊断率:(一)连锁分析联合应用PAH基因内含子3内的短串联重复序列STR(TCTA)n,数目可变的串联重复序列VNTR以及X mnI RFLP多态性进行连锁分析,其PIC值在中国人中可达75%。
联合应用这3种多态性,可以快速,简便的进行产前诊断和携带者的筛选。
(二)突变检测应用PCR-SSCP检测PAH基因的全部13个外显子,据报道检出率可达80%左右。
四、亨廷顿舞蹈病Huntington舞蹈病(Huntington chorea, HC; Huntington disease, HD)也称慢性进行性舞蹈病(chronic progressive chorea),是一种由IT15基因上CAG重复序列异常扩展所致的、以舞蹈样运动为特征的迟发性神经系统疾病。
HD呈典型的常染色体显性遗传性疾病,外显率高。
HD的相关基因IT15定位于4p16.3,基因中5′端(CAG)n重复序列的异常扩增是导致该病发生的主要原因。
正常人的重复拷贝数在6 -37之间,患者突变基因的(CAG)n拷贝数明显增加。
通过在分子水平上检测(CAG)n片段的长度,可进行基因诊断。
基因诊断方法及诊断率:应用巢式PCR及琼脂糖凝胶电泳技术对HD家系中的高风险成员进行了基因诊断。
为临床上进行HD 高风险者的检出及随后的产前诊断,避免患儿的出生提供了一种简便、易行的检测方法。
五、镰刀性贫血症引起镰刀性贫血症的原因是基因的点突变,即编码血红蛋白β肽链上一个决定谷氨酸的密码子GAA变成了GUA,使β肽链上的谷氨酸变成了缬氨酸,引起了血红蛋白的结构和功能发生了根本的变化。
五、进行性肌营养不良(DMD)DMD的发病率在男产活婴中为1/3000。
临床特点:该病呈X-连锁隐性遗传,由缺失型和非缺失型两种类型的突变引起的。
表现为腓肠肌假性肥大,病情呈进行性加重,最先行走困难,慢慢地站立不稳,最后卧床不起直到死亡。
BMD的临床表现与DMD相类似,不过发病较轻预后较好,也是由同一致病基因引起的。
遗传方式:该病呈X-连锁隐性遗传。
DMD基因位于Xq28,全长2.3Mb,有79个外显子,cDNA全长大于14kb。
诊断方法:缺失检测:19对常见引物为:外显子3、4、6、8、12、13、17、19、43、44、45、47、48、49、50、51、52、60、Pm引物。
检测率为60-70%;对未发现上述外显子缺失的病例,采用PCR-DHPLC技术进行这些外显子的突变筛查(患者加正常的DNA模板后在进行PCR,对患者的母亲或其他怀疑携带者则可直接筛查)。
连锁分析:主要用于产前基因诊断。
但连锁分析必须要抽提患者的外周血DNA,并且首先需要对患者进行分析。
六、α-地中海贫血α-地中海贫血(α-thalassemia)[MIM141800]是α-珠蛋白基因突变导致α-珠蛋白链合成缺陷所引起的一种遗传性溶血性贫血,简称α-地贫。
血红蛋白四聚体的α-链合成量不足或失效,从而引起α链/非α链失衡,是导致溶血发生的直接原因.发病遍及全世界,但好发于东南亚,中国南部以及北非某些地区.国内长江以南各省区为高发区,其中广西和广东群体筛查发现α-地贫携带者频率分别高达14.95%和8.3%.α-地中海贫血通常被认为是染色体隐性遗传病,但其表现型呈明显的异质性.缺失突变是α-珠蛋白基因最常见的突变类型,缺失范围差异较大,从几个kb 到100kb以上,多累及1个或2个α-珠蛋白基因完全丢失。
全球范围内已鉴定至少35种缺失突变,其中29种属α-地贫1突变,6种属α-地贫2突变。
在华人群中已发现7种α-珠蛋白基因,其中3种属α-地贫2基因突变(-α3.7,-α4.2及-α2.7),另外4种属α-地贫1基因突变(--SEA,--THAI,--FI L及,--HW)。
--SEA缺失突变(有称东南亚型)约累及20kb,跨越α-珠蛋白基因簇上“φα2-φα1-α2-α2-α2-θ1区间”。
有报道显示—SEA是东南亚和国内南方地区,香港及台湾等地最常见的类型,国内Barts水肿胎儿的基因行主要属(--SEA/--SEA).. .α-地贫2基因突变类型中的-α3.7和-α4.2,也是国内常见的α-珠蛋白基因缺失突变.诊断方法:运用ARMS或Gap-PCR技术针对上述缺失进行诊断。
七、β-地中海贫血β-地贫是我国南方常见的常染色体隐性遗传性疾病。
临床表现:由于β-蛋白合成不足,造成贫血。
遗传方式:常染色体隐性遗传性疾病。
诊断方法:运用扩增不应突变系统技术检测我国最常见的突变CD41/42(41.6%)、IVS2-654(21.8%)、CD17(18.0%)、TATA-28(8.0%)、CD71/72(3.9%)五个位点进行检测。
检出率:93%。
八、甲型血友病又称抗血友病球蛋白缺乏症或VIII因子缺乏症。
临床表现:本病主要表现是出血倾向。
其出血特点是:缓慢地持续渗血;多发于创伤之后;大量出血罕见。
发病率:国外报告发病率为0.005-0.01%。
遗传方式:X-连锁隐性遗传。
诊断方法:采用st14(DXS52)位点的可变串联重复序列、FⅧ基因第13内含子的(CA)n重复多态性和FⅧ基因第18外显子中存在的BclI酶切位点多态性共三个位点来连锁分析对HA家系进行间接基因诊断。
单用上述前2个多态位点中的1个,可诊断率约为66.7%;而用该两个位点联合应用,可诊断率约为88.9%。
两个位点均可提供遗传诊断信息的家系占44.4%。
误诊率:St14 VNTR 可诊断率虽高,但有5 %重组率可能导致误诊。
所以仅有此位点的诊断存在一定的风险。
九、脆性X 综合征Fra(X)综合征是最常见的遗传性智力低下疾病。
国外报道男性为1/1500,女性为1/2500。
临床表现:临床特点主要为智力低下、长脸、大耳、长下巴、凸前额和巨睾。
Fra(X)综合征在细胞遗传学上主要表现为Xq27.3裂隙和断裂(脆性位点)。
遗传方式:低外显率的X-连锁不完全显性遗传病。
诊断方法:利用PCR技术扩增FMR-1基因CGG重复序列,通过是否有扩增来鉴别正常人并确定携带者,从而对临床可疑病例进行快速筛查。
对全突变患者则不能作出明确诊断,只能作为初筛。
检出率:不确切。
十、粘多糖贮积症II型粘多糖贮积症Ⅱ型(mucopolysaccharidosisⅡ,MPSⅡ)(OMIM309900)首例由Hunter于1917年报道,又名Hunter syndrome。
该病由于溶酶体艾杜糖醛酸硫酸酯酶缺乏,导致硫酸皮肤素(DS)和硫酸乙酰肝素(HS)不能降解,在溶酶体内贮积,并大量由尿液排出体外。
重型一般2-4岁发病,身矮,颈短,面容丑陋,智能低下,视网膜色素变性,视力减退,无角膜混浊,进行性耳聋,骨骼畸形(多发性骨发育不良),患者往往由于青少年期(<15岁)因呼吸道感染或心力衰竭而死亡。
轻型一般10岁前发病,症状较轻,智能发育正常或呈轻度障碍。
遗传方式:呈X连锁隐性遗传。
诊断方法:联合应用聚合酶链反应-单链构象多态性(PCR-SSCP),DNA测序分析和聚合酶链反应-限制性片段长度多态性(PCR-RFLP)对IDS基因外显子2、3、5、7、8、9进行突变检测,据报道突变检出率约为80%。
十一、成骨不全症成骨不全症(Osteogenesis imperfecta,OI)又称骨质脆弱症(fragilitas ossium),本病是由遗传性中胚层发育障碍造成骨骼脆性增加及胶原蛋白代谢紊乱为特征的结缔组织异常性疾病。