电子技术基础实验7 比例求和运算电路
- 格式:ppt
- 大小:371.00 KB
- 文档页数:7
比例求和运算电路实验1.实验目的(1)掌握用集成运算放大器组成比例、求和电路的特点及性能。
(2)掌握上述电路的测试和分析方法。
2.实验仪器(1)数字万用表。
(2)示波器。
(3)信号发生器。
(4)集成运算放大电路模块。
3.预习要求(1)计算表5.6.1中的V 0和A f 。
(2)估算表5.6.3的理论值。
(3)估算表5.6.4、表5.6.5中的理论值。
(4)计算表5.6.4中的V 0值。
(5)计算表5.6.7中的V 0值。
4.实验原理(1)比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出。
反相比例放大器 1Fi 0f R R V V A -== 1R r if =同相比例放大器 1Fi 0f R R V V A +==1 ()id od r F A r +≈1式中Od A 为开环电压放大倍数,F11R R R F +=,id r 为差模输入电阻。
当0F =R 或∞=1R 时,0f =A 这种电路称为电压跟随器。
(2)求和电路的输出量反映多个模拟输入量相加的结果,用运算放大器实现求和运算时,既可采用反相输入方式,也可采用同相输入或双端输入的方式,下面列出它们的计算公式。
反相求和电路 )V R 1V R 1(R V i22i11F 0⋅+⋅-= 双端输入求和电路 ⎪⎪⎭⎫⎝⎛-'=i11Σi22ΣΣF0V R R V R R R R V 式中,F 1Σ//R R R =,32Σ//R R R ='5.实验内容(1)电压跟随器。
实验电路如图5.6.1所示。
图5.6.1 电压跟随器按表5.6.1内容进行实验,测量并记录相关数据。
表5.6.1(2)反相比例放大器。
实验电路如图5.6.2所示。
图5.6.2 反相比例放大器① 按表5.6.2内容进行实验,测量并记录相关数据。
表5.6.2② 按表5.6.3内容进行实验,测量并记录相关数据。
比例求和放大电路实验一、实验目的1、掌握用集成运算放大器组成比例、求和电路的特点及性能;2、学会上述电路的测试和分析方法;3、掌握各电路的工作方法。
二、实验仪器与设备三、实验原理实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。
运算放大器是具有高增益、高输入阻抗的直接耦合放大器。
它外加反馈网络后,可实现各种不同的电路功能。
如果反馈网络为线形电路,运算放大器可实现加、减、微分、积分运算;如果反馈网络为非线形电路,则可实现对数、乘法、除法等运算;除此之外还可组成各种波形发生器,如正弦波、三角波、脉冲发生器等。
1、电压跟随器图2.7.1 电压跟随器图 图2.7.2 反相比例反大器 电路如图2.7.1所示,设组件LM324为理想器件时,则o i v v =即输出电压跟随输入电压的变化。
2、反相比例运算在图2.7.2所示电路中,设组件LM324为理想器件时,则fo i 1R v v R =-其输入电阻if 1R R ≈,2f11R R R R =≈。
由上式可知,输出与输入反相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。
在选择电路参数时应考虑:(1)根据增益,确定f R 与1R 的比值,即vf f 1/A R R =-(2)具体确定f R 与1R 的值若f R 太大,则1R 也大,这样容易引起较大的失调温漂;若f R 太小,则1R 也小,输入电阻i R 也小,,不能满足高输入阻抗的要求。
一般取f R 为几十千欧~几百千欧。
若对放大器的输入电阻已有要求,则可根据i 1R R =,先定1R ,再求f R 。
(3)为减小偏置电流和温漂的影响,一般取2f1R R R =,由于反相比例运算电路属于电压负反馈,其输入、输出阻抗均较低。
3、同相比例放大器在图2.7.3所示电路中,设组件LM324为理想器件时,则f o i 11R v v R ⎛⎫=+ ⎪⎝⎭由上式可知,输出与输入同相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。
实验五 比例、求和运算电路实验1.实验目的① 掌握比例、求和电路的设计方法,熟悉由集成运算放大器组成的基本比例运算电路的运算关系。
② 通过实验,了解影响比例、求和运算精度的因素,进一步熟悉电路的特点和功能。
2.实验电路及仪器设备(1)实验电路① 用一个运放设计一个数字运算电路,实现下列运算关系:U O=2U I1+2UI2-4U I3已知条件:U I1=50~100mV;U I2=50~200mV;U I3=20~100mV参考电路如下:② 设计一个能实现下列运算关系的电路:U O=-10U I1+5U I2;U I1=U I2=0.1~1V参考电路如下:比例运算实验电路如图1-22所示。
(2)实验仪器设备双路直流稳压电源、示波器、直流信号源、数字万用表、实验箱。
3.实验内容(1)根据设计题目要求,选定电路,确定集成运算放大器型号,并进行参数设计(2)按照设计方案组装电路(3)在设计题目所给输入信号范围内,任选几组信号输入,测出相应输出电压 u o,将实测值与理论值作比较,计算误差。
比例求和设计电路如下:注意:实际上输入可以是任意波形,由于实验室条件所限,本实验输入信号选用直流信号。
μΑ741参数:A od=105dB;R id=2MΩ;R o=1kΩ;f H=10Hz引脚说明:2脚IN--:反相输入端3脚IN+:同相输入端6脚OUT:放大器输出端4脚V--:负电源入端(-12V)7脚V+:正电源入(+12V)(4)在输入端加入不同的输入电压,用万用表直流电压档测量输出值,填写下表:4.实验报告要求准备报告: 写出电路的具体设计过程。
总结报告:根据实验结果,分析产生误差原因。
5.实验注意事项(1)实验完毕要交回元件完整的元件袋!(2)关闭电源连电路,做完实验拆电路时,也要关闭电源拆电路!(3)万用表在测量电阻后测电压时,要注意及时变换档位,否则会烧坏万用表!。
比例求和电路心得体会比例求和电路是一种常用的电路组成部分,在我学习的电路课程中,我对比例求和电路有了更深入的了解。
通过学习和实践,我深刻体会到了比例求和电路的原理和应用。
首先,比例求和电路是由一个或多个电阻、电容、电感等组成的,其作用是将多个输入信号比例相加,并输出一个综合信号。
比例求和电路的基本原理是利用不同元件对电压或电流的比例关系,将输入信号按照一定权重相加,形成一个输出信号。
这样的设计可以实现对多个输入信号的加权求和,使得我们能够根据不同权重的信号得到一个综合的结果。
其次,比例求和电路有许多实际应用。
在音频处理领域中,比例求和电路可用于音频混音器。
通过调节不同输入信号的权重,混音器可以实现不同声音的综合,以产生最终的音频输出。
在通信系统中,比例求和电路可以用于信号的合并与处理。
如在天线选择器中,可以利用比例求和电路将多个信号按照一定比例合并,以实现信号的共享和切换。
此外,比例求和电路还广泛应用于自动控制系统、传感器信号处理和仪器测量等领域。
在学习比例求和电路的过程中,我对其原理有了更深入的理解。
比例求和电路利用了电阻、电流等元件之间的比例关系,通过调节不同元件的参数,可以设置不同输入信号的权重,从而获得所需的输出结果。
此外,我还学到了比例求和电路的分析方法,如节点法、回路法等。
这些方法帮助我更加清晰地理解电路的工作原理,并能够准确地计算电路参数和输出结果。
除了理论知识,我还进行了一些比例求和电路的实验,锻炼了实际操作的能力。
在实验中,我使用示波器和函数发生器等仪器观察和测量电路的输入输出波形,通过调节电阻、电容等参数,实验验证了比例求和电路的工作原理。
通过实验,我不仅巩固了理论知识,还提高了解决电路问题的能力。
在学习比例求和电路的过程中,我也遇到了一些挑战。
比如,在进行电路分析时,复杂的电路结构和参数计算可能会令人头疼。
此外,在实际操作中,出现的电路故障和测量误差也会对实验结果产生影响。
实验四比例求和运算电路一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能。
2、学会上述电路的测试和分析方法。
二、实验仪器1、数字万用表2、信号发生器3、双踪示波器三、预习要求1、计算表1中的V o和A f。
2、估算表3、表4、表5中的理论值。
3、计算表6、表7中的V o值。
四、实验内容1、电压跟随电路实验电路如图1所示。
按表1内容进行实验测量并记录。
图1:电压跟随电路图2:反相比例放大电路表1:电压跟随电路 直流输入电压 V i (V ) −2 −0.5 0 +0.5 1 输出电压V o (V )R L =∞R L =5.1k Ω2、反相比例放大器 实验电路如图2所示。
⑴、按表2内容进行实验测量并记录。
表2:反相比例放大电路⑴ 直流输入电压 V i (mV )30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差⑵、按表3要求进行实验测量并记录。
表3:反相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑶*、测量图2电路的上限截止频率f H 。
3、同相比例放大电路 实验电路如图3所示。
⑴、按表4和表5内容进行实验测量并记录。
图3:同相比例放大电路表4:同相比例放大电路⑴ 直流输入电压V i (mV ) 30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差表5:同相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑵*、测出图3所示电路的上限截止频率f H 。
4、反相求和放大电路实验电路如图4所示。
比例求和运算电路实验报告思考题
1. 比例求和运算电路的作用是什么?
比例求和运算电路是一种将多个输入信号按照一定比例加权求和的电路, 其作用可以用于信号的加权平均、滤波、调制解调等。
2. 如何实现一个比例求和运算电路?
比例求和运算电路可以用多种电路实现,如简单电阻网络、放大器电路、运放电路等。
具体实现分为两步:
(1) 将输入信号与一个比例系数相乘,得到权值,再将多个权值相加。
(2) 将多个加权和的结果相加,即得到比例求和运算的结果。
3. 如何计算比例求和运算电路中各输入信号的比例系数?
比例系数通常由电路设计者根据实际需要进行选择,可以通过计算、经验公式、仿真等方法来确定比例系数。
例如,在一个三输入信号的比例求和电路中,每个输入信号的比例系数可以分别为 1、2、3,表示第一个信号的贡献最小,而第三个信号的贡献最大。
4. 比例求和运算电路的优点和缺点是什么?
优点:
(1) 比例求和运算电路可以实现多个输入信号的加权平均,提高信号质量。
(2) 比例求和运算电路可以实现滤波、调制解调等功能,具有很强的实用价值。
缺点:
(1) 比例求和运算电路中需要多个加法器和乘法器,从而增加了电路的复杂度和价格。
(2) 对于比例系数的确定需要经验或计算,比较繁琐,不利于实际应用。
《电工电子技术》课程电子教案教师:韩振花序号:07比例运算电路用集成运放实现的基本运算除了有上面可以构成上面的加减法外,还有比例运算等,这里主要介绍反相比例运算电路与同相比例运算电路。
知识引导比例运算电路:1.反相比例运算电路输入信号加在集成运放反相输入端的电路称为反相运算电路。
图1是反相比例运算电路。
输入信号Iu经电阻1R加到集成运放的反相端,而集成运放同相端经电阻2R接地。
为使集成运放工作在线性区,在集成运放的输出端与反相端之间接有反馈电阻R F。
根据负反馈判别准则可知,该电路为电压并联负反馈。
图1 反相比例运算电路由理想集成运算放大器的“虚短”与“虚断”特性,和图1可知FIiiiiuu=≈==≈+-+-而FOfOF1I1IIRuRuuiRuRuui-≈-==-=--所以FO1IRuRu-=整理得I1FOuRRu-=(1)式(1)表明,输出电压Ou与输入电压Iu之间存在着比例运算关系,比例系数由R F与R1阻值决定,与集成运放本身参数无关。
改变R F与R1的阻值,可获得不同的比例值,从而实现了比例运算。
图1电路中,同相输入端电阻R2对运算结果没有影响,只是为了提高集成运放输入级的对称性,使两个输入端电阻保持平衡,通常取F12//RRR=。
PPT、动画演示、图片20F O R u -=知识引导若取R F = 0,则IOuu即输出电压与输入电压大小相等、相位相同,此时同相比例运算电路称为电压跟随器。
PPT、动画演示、图片教学步骤教学内容学生活动时间分配操作训练反相比例运算电路测试按实图3在模拟实验包上搭建电路,确定无误后,接入±15V直流稳压电源。
首先对运放电路进行调零,即令U i=0,再调整调零电位器R P,使输出电压U o=0。
图3 反相比例运算放大电路(1)按实表1指定的电压值输入不同的直流信号U i,分别测量对应的输出电压U o,并计算出电压放大倍数。
(2)将输入信号改为f=1kHz、幅值为200 mV的正弦交流信号,用示波器观察输入、输出信号的波形。
集成运放比例求和运算电路实验讲解
集成运放比例求和运算电路是一种常用的电路,主要用于将多个电压信号进行比例加权求和,产生一个输出电压。
该电路中可以使用一个或多个运放,通常使用的是差分放大器运放。
下面通过一个实验来介绍如何设计和制作一个集成运放比例求和运算电路:
实验材料:
- 集成运放LM741
- 可变电阻器
- 固定电阻器
- 多用途实验板
- 直流电源
实验步骤:
1. 首先,在实验板上连接一个固定电阻器,输入端连接到电源的正极,输出端接地。
2. 将另外两个固定电阻器连接到实验板上,且输入端分别连接到电源的正极,输出端分别连接到不同的输入端口。
3. 在实验板上放置一个可变电阻器,其输入部分连接到电源的正极,输出端连接到比例权重电路的输入端口。
4. 将比例权重电路的两个输入端口连接到之前连接的两个固定电阻器的输出端口。
5. 此时可以将输出端口连接到示波器进行测试。
实验结果:
当可变电阻器额定电阻为0时,可将电路视为一个比例权重电路,其输出电压为:
Vout = (-R2/R1) * Vin1 + (-R3/R1) * Vin2
其中,Vout为输出电压,Vin1和Vin2为两个输入电压,R1、R2、R3分别为三个固定电阻器的阻值。
当可变电阻器的电阻值改变时,可以改变比例权重电路的比例系数,实现对输出电压的调节。
最后需要注意的是,在实验完成后应该及时断开电源,以确保实验安全。
比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例,求和电路的特点和性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表 DM-441B2.双踪示波器 OS-5040A3.信号发生器 FG-7002C三、预习要求1.计算表6.1中的V o 和A f 。
2.估算表6.3的理论值。
3.估算表6.4、表6.5中的理论值。
4.计算表6.6中的V o值。
5.计算表6.7中的V o值。
6. 预习有关集成运放上限频率的概念,并写出测量运放上限频率的实验方法和步骤(可参考实验三的实验内容3)。
四、实验内容1.电压跟随器,实验电路如图6.1所示按表6.1内容实验并测量记录表6.1V i(V) -2 -0.5 0 +0.5 1V o(V)R L= ∞R L=5K12.反相比例放大器实验电路如图6.2所示(1) 按表6.2内容实验并测量记录表6.2直流输入电压V i(mV)30 100 300 1000 3000输出电压Vo 理论估算(mV)实际值(mV)误差(2)按表6.3要求实验并测量记录(3) 测量图6.2电路的上限截止频率。
表6.3测试条件理论估算值实测值ΔV OR L=∞,直流输入信号Vi由0变为800mVΔV ABΔV R2ΔV R1V OL R L由开路变为5K1,V i =800mV3.同相比例放大器,电路如图6.3所示(1)按表6.4和6.5实验测量并记录:(2)测出电路的上限截止频率表6.4直流输入电压V i(mV)30 100 300 1000 3000 输出电压V O理论估算(mV)实测值(mV)误差表6.5测试条件理论估算值实测值ΔV OR L=∞,直流输入信号Vi由0变为800mVΔV ABΔV R2ΔV R1V OL R L由开路变为5K1,V i =800mV4.反相求和放大电路实验电路如图6.4所示按表6.6内容进行实验测量,并与预习计算比较。
表6.6V i1(V)0.3 -0.3V i2(V)0.2 0.2V o(V)5.双端输入求和放大电路实验电路为图6.5所示按表6.7要求实验并测量记录。
深圳大学实验报告课程名称:电路与电子学实验项目名称:比例、求和、积分、微分电路学院:专业:指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法二、实验环境1、数字万用表2、双踪示波器3、信号发生器三、实验内容与步骤:1.电压跟随电路实验电路图如下,按表1内容实验并测量记录。
V i(V) -2 -0.5 0 +0.5 1R L=∞V0(V)R L=5.1KΩ2.反相比例放大器实验电路如图,U0=-R F*U i/R1,按表2内容实验并测量记录。
表23.同相比例放大电路实验电路如下所示,U 0=(1+R F /R 1)U i ,按表3实验测量并记录。
直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V) 误差(mV )4.反相求和放大电路直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V )误差(mV)实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。
Vi1(V) 0.3 -0.3Vi2(V) 0.2 0.2V0(V)V0估(V)表4四、实验结果与数据分析:五、实验体会及自我评价:六、诚信承诺:本人郑重承诺在完成该项目的过程中不发生任何不诚信现象,一切不诚信所导致的后果均由本人承担。
签名:2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。