+U Rf Cl + Rs + Us - + Ui -
CC
Rc C2 + + RL Uo - Rs + Us - Cl + Ui -
Rb +
Rc
+ UCC C + 2 + RL Uo -
Re
(a)
(b)
图 6 – 2 反馈电路举例
2. 负反馈和正反馈
若反馈信号使净输入信号减弱, 则为负反馈;若反馈信号使净输入 信号加强, 则为正反馈。负反馈多用于改善放大器的性能;正反馈多用 于振荡电路。 反馈极性的判定多用瞬时极性法, 其步骤如下: (1) 首先在基本放大器输入端设定一个递增(或递减)的净输入信号, 对 并联反馈, 设定一个电流信号; 对串联反馈, 设定一个电压信号。 (2) 在上述设定下, 推演出反馈信号的变化极性。 (3) 判定在反馈信号的影响下, 净输入信号的变化极性。 若该极性与 前面设定的变化极性相反, 则为负反馈;若相同, 则为正反馈。
Ii Rs Us + - 反馈网络 If I′i Xo
基本放大器
图 6 – 7 并联反馈示意图
I Ii I f
' i
(3) 串联反馈和并联反馈的判定方法: 对于交变分量而言,若信号源的输出端和反馈网络的
比较端接于同一个放大器件的同一个电极上,则为并联反
馈;否则,为串联反馈。 按此方法可以判定,图 6-2(a)是并联反馈,图 6-2(b) 是串联反馈。
可见, 引入电压负反馈后可使输出电阻减小到ro/
(1+AoF) 。不同的反馈形式,其Ao、F的含义不同。串联
电压负反馈F=Fu=Uf/Uo, Ao=Au=Uo/Ui′; 并联电压负反馈 F=Fg=If/Uo, Ao=Ar=Uo/Ii′。
+U Rf Cl + Rs + Us - + Ui -