归纳:求相互独立事件的概率
1.求相互独立事件同时发生的概率的步骤: (1)首先确定各事件之间是相互独立 的; (2)确定这些事件可以同时发生; (3)求出每个事件的概率,再求积.2.使 用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事 件是相互独立的,而且它们同时发生.
练习2.
所以 M,N 不是相互独立事件;
③中,P(M)= ,P(N)= ,P(MN)= ,P(MN)=P(M)P(N),因此 M,N 是相互独立事件.
练习1.
2.【2021年·新高考Ⅰ卷】 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次, 每次取1个球. 甲表示事件“第一次取出的球的数字是1”, 乙表示事件“第二次取出的球的数字是2”, 丙表示事件“两次取出的球的数字之和是8”,
4 (4,1) (4,2) (4,3) (4,4)
我们再用理论来验证:
对于A与B,因为A=AB∪AB,而且AB与AB互斥,所以 P(A)=P(AB∪AB)=P(AB)+P(AB)=P(A)P(B)+P(AB)
所以 P(AB)=P(A)-P(A)P(B)= P(A)(1-P(B))= P(A)P(B) 由事件的独立性定义,A与B相互独立. 类似地,可以证明事件A与B,A 与 B也都相互独立.
所以P(A
B)=
P(A)P( B)=
1 2
1 2
1, 4
P(AB)= P(A)P(B)=
1, 4
P(AB)= P(A)P(B)=
1, 4
因此A与B,A 与B,A与 B是独立的.
1 第二次
第一次
2
3
4
1 (1,1) (1,2) (1,3) (1,4)